
Improved Implementation of Multiple Shooting for
BVPs

Weidong Zhang
University of Toronto Computer Science Department

February 2, 2012

Abstract

Boundary value problems arise in many applications, and shooting meth-
ods are one approach to approximate the solution of such problems. A Shoot-
ing method transforms a boundary value problem into a sequence of initial
value problems, and takes the advantage of the speed and adaptivity of ini-
tial value problem solvers. The implementation of continuous Runge-Kutta
methods with defect control for initial value problems gives efficient and re-
liable solutions. In this paper, we design and implement a boundary value
solver that is based on a shooting method using a continuous Runge-Kutta
method to solve the associated initial value problems. Numerical tests on a
selection of problems show that this approach achieves better performance
than another widely used existing shooting method.

1 Introduction

Applications of boundary value problems (BVPs) arise in many different areas -
see [1], section 1.2. Consider a boundary value problem defined by the system of
ordinary differential equations (ODEs)

y′ = f(t, y), g(y(a), y(b)) = 0 (1)

where t ∈ [a, b], y : Rn, f : R×Rn → Rn, and g : Rn ×Rn → Rn.
One approach for solving BVPs is to use a shooting method, which replaces

a given BVP by one (simple shooting) or more (multiple shooting) initial value
problems (IVPs). The idea of multiple shooting was first proposed by Morrison
et al. [2], later popularized by Keller [3], who developed and analyzed both a
simple shooting method (SSM) and a multiple shooting method (MSM). A more
recent version of a multiple shooting method, MUSN, was developed by R. M.
M. Matteij and G.W.M Staarink [4] (the latest version is available online through
NETLIB [5]).

In this paper, we construct a new BVP solver which combines the shooting
approach with a recently introduced class of continuous Runge-Kutta(CRK) IVP

1

solvers for the solution of BVPs. This new BVP solver generally converges faster,
is more accurate and provides more robust solutions than the multiple shooting
solver MUSN.

The existence and uniqueness theory for BVPs is considerably more difficult
than it is for IVPs. Necessary and sufficient conditions for the existence and
uniqueness of a solution of (1) can be found in [1], section 3.1. But the kind of
conditions under which the BVP may have multiple solutions is far from clear, and
such difficulties can arise in realistic problems in applications. So for a given BVP,
there maybe multiple solutions. This is the case we will encounter in our test prob-
lems later in this paper. There are other general purpose methods for solving BVPs.
One of the most popular methods, and the one that we will be using to benchmark
the performance of our shooting method is a collocation method, COLNEW [6].

In section 2, we briefly review shooting methods. We introduce CRK IVP
solvers in section 3, which we then use to implement a particular shooting method.
We combine the shooting approach and a CRK method to create a prototype model
of a new BVP solver. Some implementation issues that arise from this combination
will be discussed in section 4. We report several test results in section 5. From the
results of tests, we have some conclusions and observations which are presented in
section 6.

2 Shooting Methods

Shooting methods transform a BVP to a sequence of IVPs by attempting to find
the right initial conditions which lead to an approximate solution of the IVP that
satisfies the boundary conditions. They take advantage of the speed and adaptivity
of IVP methods. But they also inherit the stability (or instability) of the associated
IVP, which may be unstable even if the BVP itself may be quite stable.

When applied to (1), shooting methods look for initial conditions y(a) = s, so
that the solution u(t) of the resulting IVP satisfies g(s, u(b)) = 0.

2.1 Simple Shooting

A simple shooting method applied to (1) introduces the associated IVP:

y′ = f(t, y), y(a) = s, a ≤ t ≤ b (2)

where s is a prescribed initial vector. If we denote y(t; s) as the solution of (2),
then problem (1) is reduced to finding a solution s = s∗ of the nonlinear system of
equations,

g(s∗, y(b; s∗)) = 0. (3)

This problem is solved iteratively, where on each iteration, we must evaluate g(s, y(b; s))
for some s and this involves the solution of IVP (2), integrated from t = a to t = b
(as Figure 1 illustrates).

2

Figure 1: Representation of the iteration associated with simple shooting method

Although simple shooting is straightforward, there can be serious difficulties
with the IVPs integrated in the method. One trouble is that the IVPs might be
unstable, even when the BVP is well-conditioned. Another is that the solution of
the IVP may not exist over the whole interval for a given s. These troubles can
often be addressed by implementing multiple shooting.

2.2 Multiple Shooting

A multiple shooting method tries to resolve the difficulties arising with simple
shooting methods by dividing the interval [a, b] into a mesh of N subintervals

a = x1 < x2 < · · · < xN < xN+1 = b, (4)

and replacing the unknown vector s = y(a) by a set of unknown vectors si ≈
y(xi), 1 ≤ i ≤ N . The initial value integrations are performed (possibly in
parallel) on each subinterval [xi, xi+1] (as Figure 2 illustrates).

A multiple shooting method applied to (1) introduces N associated systems of
IVPs for 1 ≤ i ≤ N

y′ = f(t, y), y(xi) = si, xi ≤ t ≤ xi+1. (5)

If we denote yi(t; si) as the solution of (5), then there are n × N unknown
parameters

sT = {sT1 , sT2 , . . . , sTN} (6)

to be determined, so that the solution is continuous over the entire interval [a, b],
and satisfies the boundary conditions of (1).

There are N − 1 additional matching conditions (the continuity constraints)

3

Figure 2: Visualization of one iteration of a multiple shooting method

added to the nonlinear equation (3) for finding a solution s = s∗ of,

F (s∗) =


s∗2 − y1(x2; s∗1)
s∗3 − y2(x3; s∗2)

...
s∗N − yN−1(xN ; s∗N−1)

g(s∗1, yN (b; s∗N))

 = 0. (7)

Note that the dimension of F (s) is nN .
When implementing a shooting method, the partitioning of the mesh (4) is

often determined adaptively to cope with numerical instabilities that arise when
solving the associated IVPs. These difficulties can arise when the associated IVPs
are stiff. This implies thatN is affected by the stiffness of the IVPs associated with
the BVP. The quality of the integration on each subinterval [xi, xi+1], 1 ≤ i ≤ N
is determined by the chosen IVP solver. The IVP solver determines its own IVP
mesh

xi = ti1 < ti2 < · · · < tiMi
< tiMi+1

= xi+1. (8)

The total number of mesh points associated with all the IVPs solved on each itera-
tion is M =

∑N
i=1Mi + 1.

3 Continuous Runge-Kutta Methods

Continuous Runge-Kutta methods were first introduced for practical problems such
as graphic output, which require dense output to reveal details of an approximate
solution - see [7], chapter II.6.

An s-stage, explicit pth-order discrete Runge-Kutta formula applied to (5) de-
termines,

yij = si, y
i
j+1 = yij + hij

s∑
r=1

ωrk
i
r (9)

4

where hij = tij+1 − tij , 1 ≤ j ≤Mi, and

kir = f

tij + crh
i
j , y

i
j + hij

r−1∑
q=1

arqk
i
q

 .

The standard error control mechanism of a discrete Runge-Kutta method applied
to (5) can be described by introducing the local error associated with each step (9).

Let yij be defined by (9) for j = 1, 2, . . . ,Mi, and let zij(t) be the solution of
the local IVP,

z′ij = f(t, zij), zij(t
i
j) = yij , t ∈ [tij , t

i
j+1], (10)

1 ≤ j ≤Mi, 1 ≤ i ≤ N.

The method attempts to ensure that the local error per unit step is bounded by a user
specified tolerance TOL on each interval [tij , t

i
j+1]. That is, the method attempts

to ensure
‖zij(tij+1)− yij+1‖ ≤ TOL(tij+1 − tij).

To make a multiple shooting method efficient, both M and N should be kept as
small as possible.

A continuous Runge-Kutta method extends the discrete formula (9) by adding
(s̄− s) additional stages to obtain an accurate approximation for any t ∈ [tij , t

i
j+1]

(see [8] for details),

uij(t) = yij + hij

s̄∑
q=1

bq(τ)kiq = zij(t) +O((hij)
p+1) (11)

where τ =
t−tij
hij

, and bq(τ) is a polynomial of degree at most p+ 1,

bq(τ) =

p+1∑
r=0

βqrτ
r.

One can analyze the error in (11) by considering the local interpolant uij(t) to be
an approximation to the local solution zij(t) for t ∈ [tij , t

i
j+1].

This polynomial interpolant can be written as

uij(t) = d0(τ)yij + hijd1(τ)f(xij , y
i
j) + d2(τ)yij+1+

hijd3(τ)f(xij+1, y
i
j+1) + hij

∑s̄−s
q=1 dq+3(τ)kis+q

(12)

where dq is a polynomial degree ≤ p. The polynomial uij(t) satisfies uij(t) =
zij(t)+O((hij)

p) for t ∈ (tij , t
i
j+1). The polynomials {uij(t)}, i = 1, 2, . . . , N, j =

1, 2, . . . ,Mi then define a vector of piecewise polynomials u(t), which are contin-
uous on [a, b]. And a simple set of constraints on bq(τ) will ensure that uij(t)
interpolate yij , y

i
j+1, so that the discrete Runge-Kutta method is embedded within

the CRK.

5

This approach allows one to decompose the error in uij(t) into two compo-
nents: the error inherent in polynomial interpolation (the local interpolation error)
and the error that arises as a consequence of “inexact” values being interpolated
(the data error associated with the fact that we are interpolating approximate solu-
tion and derivative values).

The piecewise polynomial u(t) allows an alternative error control mechanism
for continuous Runge-Kutta methods, defect control, which is different from the
local error control discussed earlier. The defect δ(t) associated with u(t) is defined
for t ∈ [a, b] to be,

δ(t) ≡ u′(t)− f(t, u(t)). (13)

That is, δ(t) is the amount by which the associated piecewise polynomial fails to
satisfy the differential equation. With an interpolation scheme defined by (11), one
can show that the corresponding defect satisfies

δ(t) = ψp+1(τ)hp+1 +O(hp+2) (14)

with h = maxi,j h
i
j and ψp+1(τ), independent of h, satisfies

ψp+1(τ) = q1(τ)F1 + q2(τ)F2 + · · ·+ qL(τ)FL.

The Fj , 1 ≤ j ≤ L are elementary differentials evaluated at (xi, yi), and the qj
are polynomials of degree ≤ p+ 1.

The additional s̄−s stages and the polynomial coefficients βqr are not uniquely
determined by the discrete formula (9), and different criteria can be used to identify
promising interpolation schemes. The challenge of defect control is to find an
efficient way to reliably estimate the maximum defect on each subinterval t ∈
[tij , t

i
j+1], 1 ≤ j ≤Mi.

There are two alternative promising defect estimation strategies, both of which
apply to interpolation schemes satisfying (11). One non-asymptotically justified
approach is to sample defects at one or more carefully selected points on each
subinterval, and hope that the ‘true’ maximum value will not be much larger than
the maximum sampled value. The number of samples has to be small in order to
be efficient. And the points should be chosen in a careful way, not near the roots of
the polynomials qj , 1 ≤ j ≤ L (see [8] for details). This defect control strategy is
referred as relaxed defect control (RDC). RDC works well on most problems, but
sometimes it can severely underestimate true maximum defect.

A more rigorous and asymptotically (as h → 0) justified defect estimation
strategy is referred as strict defect control (SDC) (the detailed process of deriving
SDC CRKs can be found in [9]). SDC methods will usually require more additional
stages (larger value for s̄) and in our tests we have not found the RDC strategy to
perform much worse than SDC, so we use RDC methods in this paper.

In implementation CRK formula, explicit CRKs are more straightforward than
implicit CRKs, because there are no nonlinear equations to be solved and the cost
of continuous extension is only the additional s̄ − s function evaluations on each
step. Several order p explicit CRK formulas have been investigated.

6

Formula p s s̄

CRK5 5 6 9
CRK6 6 7 11
CRK8 8 13 21

Table 1: Cost per step of the RDC explicit CRK formulas we have considered

The result of implementing and testing of some explicit CRKs with both RDC
and SDC on 25 standard non-stiff problems of the DETEST package can be found
in [10]. We have focused on RDC CRKs in our multiple shooting code as the
cost per step for the CRK is roughly 75% of that for the SDC CRKs and there is
little difference in the errors of the interpolants. Note that continuous Runge-Kutta
methods can also be applied directly to a BVP in a different way (see [11] for
details).

4 Implementation

Both simple shooting and multiple shooting methods need to solve nonlinear equa-
tions, either (3) or (7). We use a modified damped Newton method to solve these
systems.

For simple shooting, the Jacobian matrix of this nonlinear system is an n × n
matrix defined as,

∂g

∂s
=
g(s, y(b, s))

∂s
+
g(s, y(b, s))

∂y(b, s)
Y (b), (15)

where Y (t) = ∂y(t,s)
∂s is the n× n fundamental matrix which is the solution of the

matrix IVP,

Y ′ =
∂f(t, y(t, s))

∂y
Y, Y (a) = I, a ≤ t ≤ b.

For multiple shooting, the Jacobian matrix of the associated nonlinear system
is an nN × nN block bi-diagonal matrix,

∂F

∂s
=


−Y1(x2) I 0 · · · 0

0 −Y2(x3) I 0 · 0
... 0 · · ·

...
−YN−1(xN) I

g(s,y(b,s))
∂s 0 · · · 0 g(s,y(b,s))

∂y(b,s) YN (b)


(16)

where Yi(t) = ∂yi(t,si)
∂si

is an n × n fundamental solution associated with the ith
subinterval defined by the IVP,

Y ′i =
∂f(t, y(t, si))

∂y
Yi, Yi(xi) = I, xi ≤ t ≤ xi+1, 1 ≤ i ≤ N

7

The use of a damped Newton method in solving BVPs is discussed in [1], sec-
tion 8.1, where it is shown that convergence of Newton’s method can be improved.
A damped Newton method uses a parameter λ to control the magnitude of step to
be taken in the Newton direction,

sm+1 = sm − λ
(
F ′(sm)

)−1
F (sm), 0 < λ ≤ 1, (17)

where F ′(sm) = ∂F
∂s

∣∣
s=sm

. Newton’s method corresponds to taking λ = 1.

Let ∆m = − (F ′(sm))−1 F (sm), the Newton step on the (m + 1)st iteration.
For any s ∈ RN×m define, on the (m+ 1)st iteration, an objective function

ĝm(s) =
1

2

∥∥∥(F ′(sm)
)−1

F (s)
∥∥∥

2
. (18)

We follow the algorithm introduced in [1] to determine the acceptable λ ∈ [0.01, 1]
on each iteration. An overview of the algorithm in presented in Figure 3 where λr

is considered acceptable when

ĝm(sm + λr∆m) ≤ (1− 2λrσ)ĝm(sm), σ = 0.01.

Note that ĝm(sm) = 1
2 ‖∆

m‖2, and requires very little computation, whereas for
s 6= sm an evaluation of ĝm(s) requires the solution of a linear system plus the
computation of F (s). See [1] for a discussion and justification this technique for
determining an acceptable value for λ.

r = 1

λr =


1 for m = 1
λm−1 if λm−1 < λm−2(1− σ)
min(1, 2λm−1) otherwise

do
until λr < 0.01 or ĝm(sm + λr∆m) ≤ (1− 2σλr)ĝm(sm)

λr+1 = max
(
τλ, λ2ĝm(sm)

(2λr−1)ĝm(sm)+ĝm(sm+λm∆m)

)
r = r + 1

end do
if λr < 0.01 then

signed no acceptable λ
else
λm = λr

end

Figure 3: An overview of the algorithm used to determine an acceptable λ = λm
on the each iteration

The objective function not only provides an indication of convergence, but also
can be used to improve the initial guess and restart the iteration. From user pro-
vided initial guess s0, for any iterate si, i > 0, with ĝ(si) < ĝ(s0), we assume this

8

indicates that si is closer to the solution than s0. Since Newton’s method is sensi-
tive to the choice of initial guess, and converges to the solution very rapidly once
the initial guess is close to a solution, by monitoring the value of ĝ(si) on each
iteration, we can replace the user provided initial guess s0 by a better initial guess
si when a restart is indicated. The modified Newton iteration needs to be restarted
when certain events happen, such as when new mesh point(s) need to be inserted
or divergence of ĝ(sm) is detected. Then the si corresponding to the residual solve
of ĝ(si) derived so far will be the initial guess for the restarted iteration. We hope
with the better initial guess, we improve the chance of convergence.

The block matrix Yi(xi+1), 1 ≤ i ≤ N in (16) can be interpreted as a local
sensitivity matrix (see detail in [12]). We apply a QR-decomposition Yi(xi+1) =
QiRi. Let rii, 1 ≤ i ≤ n denote the diagonal entries of Ri, we use the ratio of

max(|rii|)
min(|rii|)

(19)

as a crude condition number estimator of the associated IVP (also see [13] for a
similar scheme). This condition number estimator can indicate stiffness at t ∈
[xi, xi+1]. If the condition number is large, then we insert an additional mesh point
in the middle of [xi, xi+1]. This mechanism can be used to determine the number
of mesh points automatically without requiring a user to provide the initial mesh.

We set the maximum number of iteration to 30. If after 30 iterations the result
is still not able to satisfy the given tolerance, then we double the number of mesh
points and try again. And we also set the maximum number of mesh points to 1000.
At any time, if the program tries to increase the number of mesh points greater than
1000, then we assume the given problem is too difficult for the multiple shooting
method, and the method will exit and signal a failure.

5 Numerical Tests

We report on some numerical tests to illustrate the performance of our new BVP
solver (denoted as MUSCRK). We use, as test problems, BVPs that depend on a
single parameter. In most cases, as the parameter changes, the problems change
from non-stiff to stiff. In this way, we can measure both performance and the range
of stiffness where the solver can be effective.

We use RDC CRK78 as the CRK IVP solver [14]. For comparison purpose,
we also report the performance of two other BVP solvers: COLNEW and MUSN.
As noted earlier, COLNEW is a popular BVP solver based on collocation. It can
be applied to a wide range of problems from non-stiff to stiff. In our testing, we
set the order to 8, matching the order of CRK78. MUSN is a multiple shooting
BVP solver discussed earlier. The IVP solver of MUSN is based on a Fehlberg 45
Runge-Kutta method, which is a lower order method than MUSCRK or COLNEW.

We consider several test problems and report results for MUSCRK, COLNEW,
and MUSN. These problems are subjected to two different tolerance 10−3 and

9

10−6, and we compare the results based on number of mesh point(s), the number of
iteration(s) (which are reported as (N,m), where N is the number of mesh points,
and m is the number of iterations), execution time, maximum defect (if applica-
ble), and maximum error. If the reported number of mesh point(s), and number of
iteration(s) appear as (N, ∗), then this means there is no convergence with N mesh
points. And if (N1,m1), (N2,m2), . . . appear, this indicate that although with N1

mesh points after m1 iterations, the method converges to a solution, the associated
error estimation does not satisfy the given tolerance, and further smooth refinement
is needed.

Here, the number of mesh points N has different meanings for BVP solvers
based on shooting (MUSCRK and MUSN), and the collocation method (COL-
NEW). For BVP solvers based on shooting, N is intended to control the instability
of the IVPs (as discussed in the end of section 2), and is normally insensitive to the
value of TOL. For a BVP solver based on collocation, N determines the underly-
ing discretization step, and must increases as TOL decreases.

The execution time measurement is measured on a dell studio 1558 laptop run-
ning Ubuntu 11.04. Each of the three methods solves a given test problem three
times, and we report the average time. When determining the timing result, the
program does not compute any of the other reported statistics.

MUSCRK uses a defect control mechanism on every step, so we can report the
maximum defect on the whole interval for each test problem. But for the other two
BVP solvers, defect control is not the default error control mechanism, they do not
have the defect control feature, so we only report maximum defect for MUSCRK.

For each of our test problem, there is no known explicit analytic solution. We
subjected these BVPs to a very severe tolerance (usually 10−10), and use the result
as the reference solution to the problem. Concerning the maximum error, MUSN
only produces the approximate solution at mesh points, so for MUSN, maximum
error is the maximum difference between the reference solution and computed so-
lution at mesh points. Since both MUSCRK and COLNEW can produce approx-
imate solution between mesh points, we divide the intervals of the test problems
into 100 subintervals, and get the approximate solutions on these 100 points, and
we use the maximum difference between the reference solution and approximate
solution over these points as the maximum error for both MUSCRK and COLNEW.

We have chosen four test problems from the boundary value literature. Each
depends on a parameter and we have generated results for four parameter values
for each problem. If for a given parameter value, the BVP method cannot converge
to a solution, we leave the column blank in the table associated with the method.

5.1 Plasma Confinement

y′′ = τ sinh(τy), t ∈ [0, 1]

subject to boundary conditions

y(0) = 0, y(1) = 1

10

and parameter values τ = 1, 7, 10, 16. The default initial guess is

y1(t) = 0, y2(t) = 0.

Refer to Figure 4 for a plot of the solutions and Tables 2 and 3 for a summary of
the results for the 3 methods. This problem is also known as Troesch’s equation.
Increasing τ increases the stiffness of this ODE (taken from [13]).

Figure 4: Solutions of plasma confinement problem for 4 values of τ

5.2 Swirling Flow III

εf ′′′′ + ff ′′′ + gg′ = 0
εg′′ + fg′ − f ′g = 0

subject to boundary conditions

f(0) = 0, f ′(0) = 0, g(0) = 1; f(1) = 0, f ′(1) = 0, g(1) = −1

and parameter values ε = 1.0, 0.05, 0.005, 0.001, and initial guess

y1(t) = 0, y2(t) = 0, y3(t) = 0, y4(t) = 0, y5(t) = 2 ∗ t− 1, y6(t) = 2

This problem is taken from [1]. Refer to Figure 5 for a plot of the solutions and
Tables 4 and 5 for a summary of the results for the 3 methods.

MUSCRK and COLNEW produce different solutions when ε = 0.001 as Fig-
ure 6 shows, MUSCRK produces a symmetric solution, while COLNEW produces
a non-symmetric solution. Are both actual solutions to the problem? We used a
reliable stiff IVP solver to verify both solutions. That is we applied the IVP solver
to the differential equation with the initial condition associated with the value of

11

method result

MUSCRK

τ ⇒ 1 7 10 16

Profile (1, 3) (1, *) (1, *) (1, *) (52, *)
(2, *) (2, *) (2, *) (78, *)
(3, *) (3, *) (3, *) (115, *)
(4, *) (4, *) (4, *) (161, *)
(5, *) (5, *) (5, *) (202, *)
(6, *) (6, *) (6, *) (212, *)
(7, 11) (8, *) (8, *) (224, *)

(10, *) (11, *) (240, *)
(13, *) (16, *) (255, *)
(17, *) (23, *) (259, *)

(20, 12) (34, *) (273, 20)

Time(sec) 0.003 0.023 0.054 3.992
Error 2.01× 10−4 1.25× 10−2 1.41× 10−2 0.161

Defect 8.89× 10−7 6.53× 10−4 1.96× 10−4 2.01× 10−4

COLNEW

τ ⇒ 1 7 10 16

Profile (5, 2) (5, 9) (5, 10) (5, 14)
(10, 1) (3, 1) (3, 2) (4, 5)

(6, 1) (6, 2) (8, 5)
(4, 1) (4, 1) (5, 5)
(8, 1) (8, 1) (10, 3)
(16, 1) (5, 1) (6, 2)

(10, 1) (12, 2)
(5, 1) (7, 1)
(10, 1) (14, 1)

(28, 1)

Time(sec) 0.004 0.007 0.009 0.016
Error 9.03× 10−9 4.73× 10−4 1.40× 10−2 0.166

MUSN

τ ⇒ 1 7 10 16

Profile (5, 2) (5, *)
(10, *)
(20, *)
(40, 9)

Time(sec) 0.004 0.018
Error 1.33× 10−6 2.37× 10−5

Table 2: Results for plasma confinement problem with TOL = 10−3, and 4 values
of τ

12

method result

MUSCRK

τ ⇒ 1 7 10 16

Profile (1, 5) (1, *) (1, *) (1, *) (115, *)
(2, *) (2, *) (2, *) (116, *)
(3, *) (3, *) (3, *) (161, *)
(4, *) (4, *) (4, *) (162, *)
(5, *) (5, *) (5, *) (202, *)
(6, *) (6, *) (6, *) (203, *)

(7, 11) (8, *) (8, *) (204, *)
(10, *) (11, *) (214, *)
(13, *) (16, *) (226, *)
(17, *) (23, *) (242, *)

(20, 16) (34, *) (257, *)
(35, *) (261, *)
(52, *) (275, 22)
(78, *)

Time(sec) 0.003 0.037 0.073 4.397
Error 1.53× 10−6 3.03× 10−6 6.73× 10−6 3.78× 10−5

Defect 8.89× 10−7 9.24× 10−7 4.81× 10−7 1.76× 10−7

COLNEW

τ ⇒ 1 7 10 16

Profile (5, 2) (5, 10) (5, 3) (5, 15)
(10, 1) (5, 2) (5, 2) (5, 6)

(10, 1) (10, 2) (5, 4)
(10, 1) (10, 1) (10, 4)
(20, 1) (20, 1) (10, 3)
(16, 1) (20, 1) (10, 2)
(32, 1) (40, 1) (20, 2)

(80, 1) (20, 1)
(20, 1)
(40, 1)
(80, 1)

(160, 1)

Time(sec) 0.004 0.004 0.007 0.016
Error 9.03× 10−9 1.82× 10−6 6.88× 10−8 4.61× 10−8

MUSN

τ ⇒ 1 7 10 16

Profile (5, 3) (5, *)
(10, *)
(20, *)

(40, 10)

Time(sec) 0.004 0.023
Error 3.65× 10−10 4.41× 10−6

Table 3: Results for plasma confinement problem with TOL = 10−6 and 4 values
of τ

13

method result

MUSCRK

ε⇒ 1.0 0.05 0.005 0.001

Profile (1, 5) (1, *) (4, *) (1, *) (149, *)
(2, 6) (7, *) (2, *) (168, *)

(8, *) (3, *) (170, *)
(9, *) (4, *) (171, *)
(10, *) (7, *) (172, *)

(12, 24) (13, *) (256, *)
(22, *) (257, *)
(23, *) (259, *)
(24, *) (260, *)
(25, *) (261, *)
(27, *) (262, *)
(33, *) (263, *)
(41, *) (265, *)
(47, *) (268, *)
(51, *) (270, *)
(66, *) (272, *)
(82, *) (303, *)
(91, *) (304, *)
(94, *) (305, *)
(95, *) (306, *)
(97, *) (307, *)

(109, *) (309, *)
(120, *) (311, 13)

Time(sec) 0.005 0.029 0.155 12.135
Error 4.29× 10−4 2.02× 10−4 1.23× 10−3 5.32× 10−4

Defect 1.47× 10−6 8.76× 10−6 5.70× 10−5 8.17× 10−5

COLNEW

ε⇒ 1.0 0.05 0.005 0.001

Profile (5, 3) (5, *) (5, *) (5, *)
(10, 1) (10, 4) (10, 6) (10, 10)

(20, 1) (20, 1) (7, 1)
(14, 1)

Time(sec) 0.010 0.015 0.019 0.025
Error 3.51× 10−9 1.56× 10−7 3.40× 10−4 *

MUSN

ε⇒ 1.0 0.05 0.005 0.001

Profile (5, 3)

Time(sec) 0.006
Error 1.55× 10−9

Table 4: Results for swirling flow III problem with TOL = 10−3 and 4 values of ε
∗ for severe TOL = 10−10 COLNEW is not able to converge to a solution

14

method result

MUSCRK

ε⇒ 1.0 0.05 0.005 0.001

Profile (1, 6) (1, 13) (5, *) (1, *) (116, *)
(9, *) (2, *) (151, *)
(10, *) (3, *) (169, *)
(11, *) (4, *) (171, *)
(13, *) (7, *) (174, *)

(14, 21) (13, *) (182, *)
(23, *) (183, *)
(24, *) (184, *)
(25, *) (185, *)
(27, *) (187, *)
(32, *) (190, *)
(39, *) (191, *)
(46, *) (194, *)
(50, *) (213, *)
(65, *) (214, *)
(83, *) (237, *)
(90, *) (238, *)
(94, *) (239, *)
(96, *) (240, *)
(98, *) (241, *)

(100, *) (242, *)
(102, *) (244, *)
(104, *) (246, *)
(105, *) (247, 15)

Time(sec) 0.009 0.031 0.157 11.439
Error 1.38× 10−6 9.19× 10−7 1.76× 10−6 1.00× 10−7

Defect 4.15× 10−8 3.54× 10−7 6.54× 10−7 8.20× 10−7

COLNEW

ε⇒ 1.0 0.05 0.005 0.001

Profile (5, 3) (5, *) (5, *) (5, *)
(10, 1) (10, 4) (10, 7) (10, 11)

(20, 1) (20, 1) (20, 1)
(40, 1) (40, 1)

(80, 1)

Time(sec) 0.009 0.016 0.021 0.035
Error 3.50× 10−9 1.55× 10−7 1.47× 10−8 *

MUSN

ε⇒ 1.0 0.05 0.005 0.001

Profile (5, 3)

Time(sec) 0.006
Error 1.50× 10−9

Table 5: Results for swirling flow III problem with TOL = 10−6 and 4 values of ε
∗ for severe TOL = 10−10 COLNEW is not able to converge to a solution

15

Figure 5: Solutions of swirling flow III problem for 4 values of ε

the converged BVP solution determined by the two BVP methods. In each case the
approximate solution generated for the respective initial value problem satisfy the
BVP boundary condition at the right endpoint. From the results of IVP approxi-
mations, we believe that both solutions are actual solutions to this problem.

result of MUSCRK result of COLNEW

Figure 6: Solutions of swirling flow III problem for ε = 0.001, f(t) versus t

We further test how different initial guesses can affect the solutions of BVP
solvers for this problem. We used the non-symmetric solution of COLNEW (ε =
0.001, and TOL = 10−6) to determine an initial guess for MUSCRK (at 50 equally
distributed points). The result of MUSCRK shows that MUSCRK can be forced
to converge to the non-symmetric solution. On the other hand, we use the sym-
metric solution of 50 equally distributed mesh points of MUSCRK (ε = 0.001,
and TOL = 10−6) to determine an initial guess for COLNEW. COLNEW didn’t
converge to a solution. When we increase the number to 100 equally distributed
mesh points, COLNEW converges to a totally different result as Figure 7 shows.

16

This result is different from either solution in Figure 6. We cannot verify this result
using a reliable stiff IVP solver. We conclude this result is not a solution of the
problem.

Figure 7: Result of CONEW to swirling flow III problem for ε = 0.001, f(t)
versus t by the solution of 100 equally distributed mesh points of MUSCRK as
initial guess to COLNEW

5.3 Nonlinear Elastic Beams
y′ = sin θ
θ′ = M

M ′ = −Q
ε

Q′ = (y−1) cos θ−M(sec θ+εQ tan θ)
ε

subject to boundary conditions

y(0) = y(1) = 0,M(0) = M(1) = 0

and parameter values ε = 0.1, 0.05, 0.01, 0.005 The default initial guess is

y1(t) = 0, y2(t) = −3− t, y3(t) = 0, y4(t) = 1 + t

(taken from [15]). Refer to Figure 8 for a plot of the solutions and Tables 6 and 7
for a summary of the results for the 3 methods.

From Figure 8 it is clear that there are two types of solutions determined by
the three methods. MUSCRK seems to produce one type (an oscillating solution
with a frequency that increases as ε is decreased). The second type of solution is
a “U-shaped” solution produced by COLNEW and MUSN with a boundary layer
at both endpoints that becomes sharper as ε is decreased. The question is: are both
of these actual solutions of the problem?

To investigate this question, we use the oscillating result (ε = 0.05, and TOL =
10−6) to determine an initial guess supplied to COLNEW and MUSN. We use 20
equally distributed mesh points to capture the feature of the oscillating result for
this initial guess, and plot the solution obtained in Figure 9. The result of MUSN
seems to confirm that the oscillating result is an actual solutions of the problem.

17

method result

MUSCRK

ε⇒ 0.1 0.05 0.01 0.005

Profile (1, 9) (1, *) (1, *) (1, *)
(2, 5) (2, *) (2, *)

(4, *) (4, *)
(8, *) (8, *)
(9, *) (16, *)
(10, *) (31, *)
(11, *) (32, 9)
(13, *)
(14, *)
(28, *)
(56, *)

(112, *)
(113, 9)

Time(sec) 0.018 0.021 0.707 0.272
Error 2.05× 10−3 1.76× 10−3 8.87× 10−4 4.29× 10−2

Defect 8.24× 10−4 2.91× 10−4 1.50× 10−4 7.88× 10−4

COLNEW

ε⇒ 0.1 0.05 0.01 0.005

Profile (5, 2) (5, 2) (5, 3) (5, 3)
(10, 1) (10, 1) (10, 1) (10, 1)

(5, 1) (20, 1)
(10, 1) (10, 1)
(5, 1) (20, 1)
(10, 1)

Time(sec) 0.006 0.006 0.011 0.012
Error 1.90× 10−5 3.39× 10−4 2.88× 10−3 5.83× 10−5

MUSN

ε⇒ 0.1 0.05 0.01 0.005

Profile (5, 3) (5, 4) (5, *) (5, 10)
(10, 5)

Time(sec) 0.006 0.008 0.016 0.040
Error 2.40× 10−4 7.03× 10−3 4.25× 10−2 3.92× 10−2

Table 6: Results for nonlinear elastic beams problem with TOL = 10−3 and 4
values of ε

18

Figure 8: Solutions of the nonlinear elastic beams problem for 4 values of ε (left
column solutions are computed by MUSCRK, middle column solutions are com-
puted by COLNEW, and right column solutions are computed by MUSN)

19

method result

MUSCRK

ε⇒ 0.1 0.05 0.01 0.005

Profile (1, 9) (1, *) (1, *) (1, *)
(2, 7) (2, *) (2, *)

(4, *) (4, *)
(8, *) (8, *)
(10, *) (16, *)
(11, *) (19, *)
(16, *) (20, *)

(32, 10) (31, *)
(32, *)
(64, *)

(128, 12)

Time(sec) 0.020 0.033 0.426 0.993
Error 2.22× 10−6 1.15× 10−5 1.70× 10−5 1.38× 10−5

Defect 9.99× 10−7 9.25× 10−7 8.72× 10−7 6.12× 10−7

COLNEW

ε⇒ 0.1 0.05 0.01 0.005

Profile (5, 3) (5, 3) (5, 3) (5, *)
(10, 1) (10, 1) (10, 1) (10, 1)
(20, 1) (20, 1) (10, 1) (20, 1)

(40, 1) (20, 1) (20, 1)
(40, 1) (16, 1)

(32, 1)

Time(sec) 0.009 0.013 0.014 0.015
Error 6.50× 10−7 5.48× 10−7 6.70× 10−6 4.09× 10−6

MUSN

ε⇒ 0.1 0.05 0.01 0.005

Profile (5, 5) (5, 5) (5, *) (5, *)
(10, 6) (10, *)

(20, *)
(40, 34)

Time(sec) 0.010 0.014 0.027 0.066
Error 3.24× 10−6 7.15× 10−6 3.69× 10−5 7.51× 10−5

Table 7: Results for nonlinear elastic beams problem with TOL = 10−6 and 4
values of ε

20

Initial guess of 20 equally distributed mesh points result of COLNEW result of MUSN

Figure 9: The result of nonlinear elastic beams problem using the oscillating so-
lution (ε = 0.05, and TOL = 10−6) as initial guess for COLNEW and MUSN,
M(t) versus t

Then, we use the “U-shaped” solution (ε = 0.05, and TOL = 10−6) to pro-
duce an initial guess for MUSCRK. We use 16 unequally distributed mesh points to
capture the feature of the result as initial guess for MUSCRK with the same values
of τ and TOL. The result is shown in Figure 10. With the change of initial guess,
MUSCRK is able to converge to the “U-shaped” solution.

As discussed above for the swirling flow III problem where multiple solu-
tions were derived, we used a reliable IVP solver to verify the “U-shaped” so-
lution produced by COLNEW and MUSN, and the oscillating solution produced
by MUSCRK. From the results of our IVP approximation, we believe there are at
least two different solutions to this problem “U-shaped” and oscillating solutions
(there may be more). On the other hand, the approximate solution determined by
COLNEW (in Figure 9) is not a solution.

For this problem, MUSCRK produces oscillating solutions, while COLNEW
and MUSN produce “U-shaped” solutions. We try to use the result of MUSCRK as
initial guess supplied to COLNEW, but COLNEW cannot produce the oscillating
solution (as illustrated in Figure 9). In Figure 9, we use 20 equally distributed initial
guesses provided by MUSCRK, we further tried 50 and 100 equally distributed
initial guesses provided by MUSCRK, and none of these resulted in convergence
to the oscillating solution. The approximation result of 100 equally distributed
initial guesses converges to “U-shaped” solution.

Of course one cannot compare performance when the methods are computing
approximation to different solutions.

5.4 Artificial Boundary Layer

y′′ =
−3τy

(τ + t2)2
, t ∈ [−0.1, 0.1]

21

Initial guess of 16 unequally distributed mesh points result of MUSCRK

Figure 10: The result of nonlinear elastic beams problem using the “U-shaped”
(τ = 10−5, and TOL = 10−6) as initial guess for MUSCRK, M(t) versus t

subject to boundary conditions

−y(−0.1) = y(0.1) =
0.1√

τ + 0.01

and parameter values τ = 0.01, 1e− 3, 1e− 4, 1e− 5. The default initial guess is

y1(t) = 0, y2(t) = 0,

(taken from [13]). It is easy to verify that the solution y(t) is an odd function
(−f(x) = f(−x)). Refer to Figure 11 for a plot of the solutions and Tables 8 and
9 for a summary of the results for the 3 methods.

From Figure 11 it is clear that there are two types of solutions determined by
the three methods. MUSCRK and COLNEW seem to approximate one type (an
“S-shaped” solution with a boundary layer in the middle that becomes sharp as
τ is decreased). The second type is an oscillating solution with a frequency that
increases as τ is decreased. We have the same question as we have in section 5.3:
are both types actual solutions to the problem?

To investigate this question, we use “S-shaped” result (τ = 10−5, and TOL =
10−6) to determine an initial guess for MUSN. We use 15 unequally distributed
mesh points to capture the feature of the “S-shaped” result. The result is displayed
in Figure 12, MUSN appears to converge to a solution from the supplied initial
guess, but the approximation is not accurate near the boundary layer.

Then, we used the oscillating result (τ = 10−4, and TOL = 10−6) as the
initial guess for MUSCRK and COLNEW. We use 50 equally distributed mesh
points to capture the feature of the result as initial guess with the same values of τ
and TOL. The result is shown in Figure 13, it seems that at least for this particular
problem, the change of initial guess is not able to alter the solution determined by
MUSCRK and COLNEW.

We further use a reliable IVP solver to verify whether the “S-shaped” result
produced by MUSCRK and COLNEW, and the oscillating solution produced by

22

method result

MUSCRK

τ ⇒ 0.01 1e− 3 1e− 4 1e− 5

Profile (1, 2) (1, 2) (1, 2) (1, 2)

Time(sec) 0.002 0.005 0.004 0.006
Error 2.17× 10−4 6.06× 10−4 2.66× 10−3 2.71× 10−3

Defect 1.79× 10−4 2.11× 10−4 4.05× 10−4 7.51× 10−4

COLNEW

τ ⇒ 0.01 1e− 3 1e− 4 1e− 5

Profile (5, 1) (5, 1) (5, 1) (5, 1)
(10, 1) (10, 1) (10, 1) (10, 1)

(20, *) (7, 1)
(40, 2) (14, 1)
(20, 1) (10, 1)
(40, 1) (20, 1)

(40, 1)

Time(sec) 0.004 0.004 0.011 0.009
Error 1.31× 10−2 1.47× 10−4 6.20× 10−3

MUSN

τ ⇒ 0.01 1e− 3 1e− 4 1e− 5

Profile (5, 1) (5, 2) (5, 3) (5, *)
(10, 3)

Time(sec) 0.003 0.003 0.004 0.008
Error 6.28× 10−6 4.32× 10−3 1.04× 10−4 7.02× 10−2

Table 8: Results for artificial boundary layer problem with TOL = 10−3 and 4
values of τ

23

Figure 11: Solutions of artificial boundary layer problem for values of τ (left col-
umn solutions are computed by MUSCRK, middle column solutions are computed
by COLNEW, and right column solutions are computed by MUSN)

24

method result

MUSCRK

τ ⇒ 0.01 1e− 3 1e− 4 1e− 5

Profile (1, 2) (1, 4) (1, 5) (1, 9)

Time(sec) 0.004 0.010 0.012 0.021
Error 4.59× 10−7 1.04× 10−6 3.81× 10−6 4.63× 10−6

Defect 6.41× 10−7 4.66× 10−7 7.85× 10−7 4.11× 10−7

COLNEW

τ ⇒ 0.01 1e− 3 1e− 4 1e− 5

Profile (5, 1) (5, 1) (5, 1) (5, 1)
(10, 1) (10, 1) (10, 1) (10, 1)
(20, 1) (20, 1) (20, *) (10, 1)
(40, 1) (40, 1) (40, 2) (10, 1)
(80, 1) (29, 1) (20, 1)

(160, 1) (58, 1) (20, 1)
(320, 1) (40, 1)
(640, *) (80, 1)

(1280, *) (40, 1)
(2560, *) (80, 1)

Time(sec) 0.007 0.011 0.014
Error 1.22× 10−5 4.56× 10−5 2.92× 10−5

MUSN

τ ⇒ 0.01 1e− 3 1e− 4 1e− 5

Profile (5, 2) (5, 3) (5, 4) (5, *)
(10, 5)

Time(sec) 0.003 0.004 0.008 0.019
Error 4.32× 10−6 6.73× 10−6 1.04× 10−4 2.36× 10−4

Table 9: Results for artificial boundary layer problem with TOL = 10−6 and 4
values of τ

Initial guess of 15 unequally distributed mesh points result of MUSN

Figure 12: The result of artificial boundary layer using “S-shaped” solution (τ =
10−5, and TOL = 10−6) as initial guess for MUSN, y(t) versus t

25

Initial guess of 50 equally distributed mesh points result of MUSCRK result of COLNEW

Figure 13: The result of artificial boundary layer using oscillating solution (τ =
10−4, and TOL = 10−6) as initial guess for MUSCRK and COLNEW, y(t) versus
t

MUSN are solutions of the BVP. In addition, we investigate the inaccurate approx-
imate solution in Figure 12 produced by MUSN (for all these IVP solutions, we
use τ = 10−5, and TOL = 10−3, 10−6, 10−8), to check whether they are solu-
tions or not. From the results of the IVP approximations, we are able to confirm
that “S-shaped” result is a solution, while all the other approximations produced
by MUSN are not. From the oscillating solution of MUSN, we select 5, 10, and
50 equally distributed mesh points as initial values for the IVP solver, none of IVP
approximations produces the oscillating result.

The approximation in Figure 12 produced by MUSN is produced by 15 un-
equally distributed mesh points from the solution of COLNEW. Using an IVP
solver confirms that it is not a solution. When we use 33 unequally distributed
mesh points of the solution of COLNEW as initial guesses, MUSN produces a
similar result as the one in Figure 12, and IVP approximation confirms that it is not
a solution either. So we can conclude both the oscillating results and the inaccu-
rate approximation result in Figure 12 produced by MUSN are not solutions of the
artificial boundary layer problem.

6 Conclusion and Observation

From the numerical tests we can see that MUSCRK can be applied to non-stiff and
mildly stiff BVPs. For non-stiff BVPs, MUSCRK could sometimes outperform
COLNEW and MUSN with lower execution time and fewer mesh points. As the
BVPs become stiffer, for MUSCRK, the number of mesh points and the execution
time increases rapidly. Generally, MUSCRK can be applied to wider range of stiff
BVPs than MUSN; but is not as effective as COLNEW for problems with very
sharp boundary layers.

MUSCRK generally does not need to be given mesh points as COLNEW and

26

MUSN do. MUSN cannot adjust the mesh points during the solution process.
MUSN can only generate solution at mesh points if it converges to a solution,
or display error message if it does not converge. So if dense output is required
with MUSN, the only choice is to increase the number of mesh points. COLNEW
can adjust mesh points during the process of solving BVPs. Generally for non-
stiff BVPs, MUSCRK requires fewer mesh points to converge to a solution than
does COLNEW and MUSN. For mildly stiff BVPs, MUSCRK requires fewer mesh
points to converge than MUSN.

Also as the comparison tests above show, for a given BVP, multiple solutions
may exist, and different initial guess can determine which solution is approximated.
MUSCRK generally can be forced to converge to a different solution by changing
the initial guess, while it is sometimes difficult for COLNEW to do so. Users do
assume that the approximations returned by a BVP solver are approximations to a
true solution. In our lengthy testing, we were able to find examples where this is
not the case for the two widely used BVP solvers, COLNEW and MUSN.

One of the disadvantages of our implementation of MUSCRK is as the number
of mesh points N becomes large, there are N IVPs to be integrated, and continu-
ous Runge-Kutta methods require substantially more function evaluations per step
than a discrete Runge-Kutta method of the same order. We made some time mea-
surement of function evaluations on some of the test problems, and we find that
function evaluations account for about 80% of the total computation time for a
method. One of the features of a multiple shooting method is that the integration
of N IVPs in (5) can be performed independently (mentioned in [1], section 4.3),
If we export this observation in MUSCRK, it should be possible to improve the
performance significantly.

Another disadvantage of MUSCRK compared with COLNEW is that as the
problem becomes stiffer, generally MUSCRK fails to converge to solution earlier
than COLNEW. This is because we use explicit continuous Runge-Kutta methods
(such as CRK78 and CRK56). We could switch to implicit Runge-Kutta method
when the problem becomes stiff.

7 Acknowledgments

I am grateful to my supervisor Prof. Wayne Enright for his efforts in conducting
my research project and preparing this thesis. I would like to thank M. Shakourifar
for his helpful discussions during the preparation of this paper. I would also like to
thank Dr. Tom Fairgrieve for his valuable comments and suggestions after carefully
reading this thesis.

References

[1] R.M.M. Mattheij U.M. Ascher and R.D. Russell. Numerical Solution of
Boundary Value Problems for Ordinary Differential Equations. Classics in

27

Applied Mathematics Series, Society for Industrial and Applied Mathemat-
ics, Philadelphia, 1995.

[2] J. D. Riley D. D. Morrison and J. F. Zancanaro. Multiple shooting method
for two-point boundary value problems. Comm. AMC, 1(5):613–614, 1962.

[3] Herbert B. Keller. Numerical Solution of Two Point Boundary Value Prob-
lems. SIAM, 1976.

[4] R.M.M. Mattheij and G.W.M. Staarink. An efficient algorithm for solving
general linear two point bvp. Report 8220, Math. Inst. Catholic University,
Nijmegen, 1982.

[5] R.M.M. Mattheij and G.W.M. Staarink. Musn. http://www.netlib.
org/ode/, June 1992.

[6] U.M. Ascher and G. Bader. Colnew. http://www.netlib.org/ode/,
June 1992.

[7] S. P. Nørsett E. Hairer and G. Wanner. Solving Ordinary Differential Equa-
tions I. Springer-Verlag, 1993.

[8] W.H. Enright. A new error-control for initial value solvers. Applied Mathe-
matics and Computation - AMC, 31(3):288–301, 1989.

[9] W.H. Enright and Li Yan, 2009. The Reliability/Cost Trade-off for a Class of
ODE solvers.

[10] W.H. Enright. Continuous numerical methods for odes with defect control.
Journal of Computational and Applied Mathematics, 125(2000):159–170,
1999.

[11] W.H. Enright and P.H. Muir. New interpolants for asymptotically correct
defect control of bvodes. Numerical Algorithms, 53(2):219238, 2010.

[12] U.M. Ascher and L. P. Petzold. Computer methods for Ordinary Differential
Equations and Differential-Algebraic Equations. SIAM, 1998.

[13] P. Deuflahrd. Nonlinear equation solvers in boundary value problem codes.
Proceedings of a Working Conference on Codes for Boundary-Value Prob-
lems in Ordinary Differential Equations, 76(1979):40–66, 1978.

[14] W. H. Enright. The relative efficiency of alternative defect control schemes
for high-order continuous runge-kutta formulas. SIAM Journal on Numerical
Analysis, 30:1419–1445, 1993.

[15] J. Cash. 35 boundary value test problems. http://www2.imperial.
ac.uk/˜jcash/BVP_software, June 1992.

28

