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Abstract

Cellular processes are typically viewed as systems of atemeactions. Often such processes involve
some species with low population numbers, and where aitvadltdeterministic model of classical chemical
kinetics fails to accurately capture the dynamics of theéesys In this case, stochastic models are needed to
account for the random fluctuations observed at the levelsirigie cell. We survey the stochastic models
of well-stirred biochemical systems and discuss impontacgnt advances in the development of numerical
methods for simulating them. Finally, we identify some kepits for future research.

Keywords: Chemical Master Equation, Chemical Langevin Equationle§jlie algorithm, tau-leaping, stiff sys-
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1 Introduction

Modeling and simulation of biochemical systems has becomar@a of intense research in recent years [34,
38, 39]. Cellular processes are typically represented stess of chemical reactions. The evolution of these
systems has been traditionally modeled by deterministictien rate equations. However, at the level of a
single cell it is often the case that some key reactants asept in low molecular numbers (eg., only few
copies of a gene or of some important regulatory moleculEsgrefore a continuous model may no longer be
employed [63, 67]. Moreover, such a system behaves stachlstather than deterministically [5, 6, 15, 16,
18, 46, 47, 49, 50, 59, 61]. The refined model of stochastionated kinetics, the Chemical Master Equation,
was developed decades ago by Gillespie [22], who also peapas exact algorithm to simulate it. In spite of
this, it was not until recently that this model has establisitself as a standard model for a wide variety of
biological processes. The Chemical Master Equation has $iren the subject of intense research and it has
been successfully applied to numerous biochemical sysires when the well-mixed assumption is not valid
(such as in the cell). The first application of Gillespie’'gaithm to a biological system is due to McAdams
& Arkin. They showed that stochasticity plays a criticaledh the lysis/lysogeny decision of the bacteria
A-phage [46]. Samoilov et al. [58] demonstrated that noiseilcduce bi-stability in an otherwise monostable
system.

However, stochastic models are computationally much mbatlenging than deterministic models. Fur-
thermore, biochemical systems are generally very comflegy involve reactant species with a wide range of
molecular numbers and/or reactions with multiple timelesaAlso, the network of interactions between the
reactant species can be quite complicated. Gillespietwigtign becomes prohibitively expensive on these sys-
tems. All these challenges have renewed the interest irlajeng effective numerical methods for a stochastic
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model, cable of coping with the level of complexity charaistéc to biological systems. An enhanced exact
algorithm was proposed by Gibson & Bruck [20]. Despite thigpiovement, the high computational cost of

exact methods on realistic applications motivated theckefmr more promising approaches. Several approx-
imate algorithms have been developed and this continues gouery active research area [32]. One strategy
to reduce the computational cost is due to Gillespie [26]p wioposed the tau-leaping method. More refined
algorithms based on various improvements of the tau-lgapiathods were explored by Rathinam et al. [54],

Cao, Gillespie & Petzold [10], Tian & Burrage [62], Chatemjet al. [L1]. Several theoretical studies of tau-
leaping methods were considered, addressing topics sumnaistency and stability by Rathinam et al. [55],

higher-order methods by Li [42], adaptive time-steppingAmglerson [3].

Moreover, the tau-leaping method has been shown to be aetiwdrbridge between a microscopic,
stochastic and discrete model of well-stirred biochemigaétics, the Chemical Master Equation [23] and
a macroscopic, stochastic and continuous model, the Chébtangevin Equation [25]. Langevin type equa-
tions, which are stochastic differential equations (SD&Ye received considerable attention, not only in sys-
tems biology [38], but also in a wide range of practical aggtions in physics, chemistry and biology [19, 35].
There exist numerous studies on numerical solution of ststahdifferential equations. We suggest as reading
on this topic the introductory treatment by Higham [31] ahed mmore comprehensive reference by Kloeden &
Platen [40], respectively.

Another strategy to reduce the computational cost whenlating more challenging biochemical systems
is to use a combination of models and/or a combination oftexad approximate algorithms for them. Hybrid
methods were designed and applied for models that sparmptewstiales in space and/or time. Among them are
the methods of Alfonsi et al. [2], Cao et al. [9], Haseltine &#ings [27], Hellander & Lotstedt [30], Kiehl
et al. [36], Mattheyses & Simmons [45], Puchalka & Kierzek][53Rao & Arkin [52], Salis & Kaznessis [56],
Samant & Vlachos [57], Weinan et al. [66].

In this paper we review the most important advances in théemaatical modeling and simulation of well-
stirred biochemical reaction systems. We provide the hackgl information for the most relevant existing
mathematical models for biochemical systems. Our aim is/@adetailed description of the some of the main
numerical methods developed for them. Since this area efirek has grown beyond the scope of any single
survey, it was not possible to cover all existing methods efcellent introductory reference for modeling and
simulations of biochemical kinetics is due to Higham [32]ilkiison [67] gives an accessible introduction to
probability theory and stochastic modeling of biologicgtems.

The paper is organized as follows. In section 2 we give anviewrof the hierarchy of mathematical
models for isothermal well-stirred biochemical kinetifrtem the most refined, the Chemical Master Equation,
to the intermediate model of the Chemical Langevin Equadiudh to the less accurate model based on reaction
rate equations. In section 3, we identify the key issues pm@fimating the solution of these models and some
of the most significant contributions to algorithm devel@mifor them. In section 4 we give some numerical
results and we conclude with a description of key challermgesopportunities for future research.

2 Stochastic chemical kinetics

Stochastic chemical kinetics of well-stirred systems isnagcurately described by the Chemical Master Equa-
tion. The theoretical justification of this model was given Gillespie [23]. Let us consider a well-stirred
system which containd’ biochemical specie§y, - - - , Sy involved in M reactionsRy, - -- , Ry;. The system
is assumed at thermal equilibrium with a constant volimé& he dynamical system is described by the vector
of statesX (t) = (X1(t),..., Xn(t))T, whereX;(t) is the number of; molecules at time. The vectoiX(t) is
a discrete (jump) Markov process. The aim is to find the statéovX(¢), given that at the initial timet, = ¢,
the system was in the statéty) = Xo.

Each reaction?; produces a change in the system given by the state-chang® vec= (145, .. ., uNj)T.
Here we denoted by;; the change in the number &f molecules caused by one reacti®. The matrix
3 = {vij hi<i<n,1<j<um is called thestoichiometric matrix In addition, a reactior?; can be described by its



propensity functionu;, which is defined by
a;(x)dt = the probability of a single occurence & in the infinitesimal intervalt, ¢t + dt) ,

whereX(t) = x.
For asecond-order reactign _
Sy + Sk —L ‘reaction products’ (1)

with ¢ # k the propensity function has the form(x) = c;z¢xj. Intuitively, this means that the probability
that this reaction takes place is proportional to the nunobél; and.S;, molecules present.
Similarly, for afirst-order reaction

S, L+ ‘reaction products’ 2)

the propensity function has the form(x) = c;z;. A similar argument is used: the probability that a reaction
of this type takes place is proportional to the number of ks of typeS;..
Finally, for adimerization

S + Sk —~» ‘reaction products’ (3)

the propensity function has the form(x) = c;zi(z; — 1)/2. This is a consequence of the observation that
the probability that this reaction takes place is propogiao the number of ways two molecules of tyfg
can be grouped as unordered pairs.

These formulae for the propensity functions are rigourpdsirived from the theory of molecular physics
and kinetic theory [23]. Making further approximating asgions can lead to the reaction rates in the deter-
ministic chemical kinetics, as will be discussed later.

2.1 Chemical Master Equation

Fort > ty we can define the probability that the state vector at tingeX (¢) = x given that at time, it was
X(to) = Xp-
P(x,t|Xo,tg) = Prob{X(t) = X, given X(tp) = Xo} -

To compute this probability, we first derive the probabilRyx, ¢t + dt| X, ty) wheredt is small enough that no
more than one elementary reaction occurs in the intétvak- dt). The system will be in stateat timet + dt

if one of the following events took place: either the systeasw this state at timeand no reaction occurred
in [t,t 4 dt) or, for somel < j < M, the system was in a state— v; at timet and exactly one reactioR;
occurred in the intervdk, t 4+ dt). There are thud/ + 1 such events which lead to the system being in state
at timet + dt, and these events are disjoint and exhaustive. Since tibalpitidy that one reactiom?; fires in
[t,t + dt) when at timef the system was in state— v is, by definition,a;(x — v;)dt and the probability that
no reaction occurs ift, ¢ + dt) when at timef the system was in stateis (1 — 2;‘4:1 a;(x)dt), from the laws
of probability, we derive that

M M
P(X,t + dt| Xo,t0) = P(X,t|Xo,t0) | 1= > _a;j(X)dt | + > P(x—v;,t|Xo,to)a;(x — v;)dt .
=1 i=1

By rearranging the terms, dividing lj and taking the limit agt — 0, we obtain the following equation

iP(Xﬂf! Xo,t0) = Y (P(X =, 1 X0, to)a; (X — v;) — P(X,t| X0, to)a; (X)) , 4)

M
dt ,

Jj=1

known as theChemical Master Equationlt is a coupled system of ordinary differential equatiorighvgize
equal to the number of all possible states of the system cutgje¢he M/ reaction channels. Thidiscreteand
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stochasticmodel is the most refined mathematical model of well-stickdmical reaction systems. Unfortu-
nately, it is intractable for most realistic applicatiorf=or example, in the Arkin et al. [5] model ofphage,
realistic population numbers lead to approximatily’ possible states in the Chemical Master Equation. Thus
other methods for simulation are needed for such problersieMer, we should mention that recent progress
has been made in dealing directly with the Chemical Masteakgn [48, 33].

2.2 Chemical Langevin Equation

Under certain assumptions, the Chemical Master equatinrbeaapproximated by a less refined model, the
Chemical Langevin Equation, which is more efficient to apprate numerically. Below, we outline the
conditions for which this approximation is justified.

Let 7 > 0 be some stepsize. For eath< j < M, we define the number of reactiofg that fire in an
interval of lengthr by

K;(7|x,t) = the number of reactions of type; that fire in[¢,¢ + 7), given thatX(¢) = x, (5)
and we wish to find a good approximation & (7|x, t). Clearly
M
X(t+7)=x+> viK;(rx1t).
j=1

Let us assume that there exists a time- 0 such that the followind.eap conditionis satisfied:a;(X(t))
remains almost constant ¢h¢ + 7) for all 1 < j < M. Fora;(X(-)) constant in this interval, the probability
that one reactio?; occurs int,t 4 7) is a;(x)T whereX(t) = x. Consequently, the number of reactioRls
that fire in the interval has a Poisson distribution with paetera;(x)r. That is, K;(7|x,t) =~ Pj(a;(X), 7).
Under the Leap condition assumption one can then approgimat

M
X(t+7)=x+>_ viPia;(x),7) . (6)
j=1

This is called the (explicitfau-leaping methof26]. If 7 > 0 is both small enough such that it satisfies the leap
condition, but also large enough such that

a;(x)T > 1foralll <j <M,

then the Poisson random variab®e(a;(x), 7), with mean and variance;(x)7, can be approximated by a
normal random variable with the same mean and variance

Pjaj(x),7) = a;(X)7 + 4/ a;(x)TN;(0,1) , ()

whereN;(0,1) with 1 < j < M are statistically independent normal random variables wiean zero and
variance one. This approximation holds when all reactaetisg have sufficiently large population humbers.
Substituting the approximation (7) into the tau-leapingragimation (6) we obtain

M M
X(t+7) =X+ via;()r+ > vjy/a;(x)v7N;(0,1) (8)
=1 j=1

We recognize in (8) the Euler-Maruyama numerical approioneof the following stochastic differential equa-

tion
M M
AX(t) =Y wvja;(X(6)dt+ > vi/a;(X(£)dW;(t) ©)
j=1 J=1
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whereW; for 1 < j < M are independent Wiener processes.

The equation (9) is called theéhemical Langevin Equatio he discrete stochastic process is approximated
by a continuous stochastic proces&) in the new model (9). The conditions under which the Langevirdel
is valid are those for which the approximation (8) holdsréhexistsr > 0 such that (i) each propensity function
has a small variation on an intenvial ¢ + 7) (the Leap condition) and that (ii) is sufficiently large such that
eacha;(x)T > 1. As discussed above, these conditions are typically satisthen molecular numbers of all
species are sufficiently large. This Langevin model is a ctgdn from the Chemical Master Equation, and
consists of a system of coupled stochastic differentiabégns of size equal to the number of reactant species.

2.3 Reaction rate equations

A further reduction of the model of well-stirred chemicahétics is obtained when very large numbers for each
species are present. More precisely, let us consideh#renodynamic limjtthat isX;(¢) — oo and the volume
V' — oo such thatX;(¢)/V remains constant for all < i < N. Hence, the stochastic terms in the Chemical
Langevin Equation (9) become much smaller than the detéstinerms, as the former grow as the square
root of the system size while the latter grow as the system Jiherefore the stochastic terms can be neglected
in a neighborhood of the thermodynamic limit.

In this regime, the mathematical model is typically writiarterms of concentrations, rather than in pop-
ulation numbers. We define the vector of concentratidfig to have componentg;(t) = X;(t)/(V N4) for
1 <4< N,whereN4 = 6.02214179 x 10**mol~!is Avogadro’s number antd is the volume. It follows that
the concentrations satisfy

dZ() N
Tdt _;VJ a;(Z(t)) - (10)

These are the classicadaction rate equationsNote that the reaction ratég(Z(t)) for 1 < j < M in the
reaction rate equation correspond to the propensity fonstin the Chemical Master Equation.
Indeed, in the case of the second-order reaction (1) théioeaate is

&j(Z(t)) = ijg(t)Zk(t) with k‘j = CjNAV .
The reaction rate of the first-order reaction (2) is
dj(Z(t)) = ]C]Zk(t) with k‘j =Cj.

In the case of the dimerization (3), the tetk (¢) in the expression of the propensity function is negligible
compared toX7 (t), for large population numbers. Therefore the reactionirethis case is

Mam:@%@wm@zgmw.

The reaction rate equations (10) are a deterministic antihcmus model, consisting of a system of coupled
ordinary differential equations of dimension equal to thenber of reactive species. It is a simplification of
the Chemical Langevin Equation, which is valid in the regmhgery large population numbers. An important
observation is that, unless all reactions are of first-grttex reaction rate equations are not obtained from
averaging over the Chemical Langevin Equation. Indeed pemimg the expectation of (9) leads to

AEX(1) _ N~ o
—a Zv E(a; (X (1))

HoweverE(a;(X(t))) # a;(E(X(t))) if the propensitya; is quadratic, which is the case for dimerization or
second-order reactions.



3 Methods

3.1 Exact methods

As mentioned before, solving directly the Chemical Mastgu&ion (4) is intractable for most realistic appli-
cations. Fortunately, there exist alternative methodsetd dith this difficulty. Instead of solving the Master
Equation to generate trajectories of all possible states,could simulate one correct trajectory at a time. Itis
possible to simulate such trajectories, by specifyingtieas and times of these reactions with thect prob-
ability distribution, consistent with the probability distribution associatéth the Chemical Master Equation.
Then by running many such trajectories, one can recoverdireat statistics for the solution of the Master
Equation. Using this approach, Gillespie [21, 22] gave twace stochastic simulation algorithms to solve
the Chemical Master Equation, the Direct Method and thet Resaction Method. The algorithms and their
derivation are describe below. Following Gillespie [21] define

p(7,j|x,t) = the probability that the next reaction will occur in the V@& [t + 7, + 7 + d)

and this reaction will be?;, given thatX(t) = x .
In addition, we denote by
Py(t|x,t) = the probability than no reaction occurs|int + 7) given thatX(¢) = X . (11)

The two events, that no reactions takes plade, in+-7) and that one reactioR; occurs int+7,t+74d7), are
independent. Their joint probability density functionAg(7|x, t), multiplied by the probability that a reaction
R; occurs oveft 4 7,t + 7 + dr), which isa; (x)dr. Therefore

p(T, jX, t)dr = Py(7|X,t) X a;j(x)dT . (12)
So, we need to compute the probabilfy(r|x, ¢). Following the definition (11), we observe that no reaction
occurs in[t,t + 7 + dr) if (i) no reaction occurs irt, ¢ + 7) and (ii) no reaction occurs ift + 7,¢t + 7 + d7).
These two events are independent. Their joint probabititthe product of the probability of the event (i),
which is Py(7|x, t), and the probability of the event (ii), which {$ — 224:1 ag(x)dr):

M
Py(m + dr|x,t) = Po(1|x,t) X <1 - Z ak(x)d7> .
k=1

By taking the limitd~ — 0 we obtain a differential equation for the desired probahilvhose solution is
Po(7|x, t) = exp(—ao(X)7) (13)

where
M
ag(X) = Zak(x) :
k=1

Equations (12) & (13) lead to
p(7,jIx,t) = exp(—ao(X)7) x a;(x) ,
or, equivalently,

plr.dlx ) = anX) exp(-ao (7)) x 2. (14)

This is the joint density function for the time to the nextatan and of the index of the next reaction. It can
be viewed as splitting into two density functions for

(i) 7,thetimeto the next reaction, of density(X) exp(—ao(X)7) ,

(i) j, theindexof the next reaction, of density; (X)/ao(X) .

These results lead to the following Monte Carlo method ofeSie [21, 22] for generating sample paths with
the correct probabilities.



Gillespie’s Direct Method This method computes directly the time to the next reactimhthe index of this
reaction, according to their correct distributions. Fitse system is initialized at time= ¢y by X(¢9) = Xo.
Then, it proceeds with the following steps:

(D).

(2).
@A).
(4).

(5).

Calculate the propensity functions,(x), for 1 < k < M, for the current state of the systeMit) = x,
and the sum of all propensitiegy(x) = 2,2”:1 ak(X).

Generate two independent unit-interval uniform randaumbers- andr,.
Calculate the time to the next reactionby= (1/ao(x)) In(1/71) .

Calculate the index of the next reaction, as the intg¢gatisfying

i1
ak(X) < Tgao(X) <
1 k=1

<

M~

ak(X) .

i

Update the state of the system to reflect that a readtjosccurred X (¢ +7) = X(t) +v;, sett =t +,
then return to stepl) or stop.

Gillespie’s First Reaction Method Gillespie’s [21] second exact algorithm computes the fbsdimer; at
which each reaction could occur, if no other reaction takesep Then it finds the indexof the first reaction,
that is with the smallest time. After the initialization,tahe t = ¢y by X(t9) = Xo, the algorithm consists of:

(1).

().

@A).
(4).

Calculate the propensity functions,(x) for 1 < k < M, for the current state of the systeX(t) = x,
and the the sum of all propensitieg,(x) = 224:1 ag(X).

For eachl < k < M, calculate the times, when the reactiom?;, occurs, according to the exponential
distribution with parametet;, (x), wherex is the current state vector. Each = (1/ax (X)) In(1/r),
wherery, o, ..., ry; are independent unit-interval uniform random numbers.

Calculatej for which 7; = min; << {7} and setr = 7;.

Update the state of the system to reflect that a reaétiopccurred X (t +7) = X(t) + v, sett = t+,
then return to stepl) or stop.

These two algorithms are equivalent, using the same priitlyadiistributions for~ andj, derived above.
Each of these methods requires (per iteration) a time ptiopat to A/, the total number of reactions. The
Direct Method uses two random numbers per iteration. Th&t Reaction Method use® random numbers

per iteration and hence it is less efficient than the Diredtidé. For this reason we subsequently consider only

the Direct Method, which is the faster of the two methods, ealtlit Gillespie’s algorithm or thestochastic
simulation algorithm(SSA).

Gibson-Bruck Algorithm: The Next Reaction Method Gibson & Bruck [20] modified Gillespie’s First
Reaction Method to give an exact algorithm which requiresach iteration, a computational time proportional

to the logarithm of the number of reactioisg M. The method does so by constructing a dependency graph

from the set of reactions and by using an appropriate datatste to store all the propensitiag and the
possible timesy. This structure is an indexed priority graph (also known &gap). The algorithm can also
be applied to systems with time-dependent propensity iomet



Algorithm  The initialization consists of settin§ (¢,) = X, attimet = ¢, and generating a dependency graph
G. Then it calculates the propensity functiong(x) for 1 < k < M, for the given state of the system. For
eachl < k < M, it computes the possible time,, when the reactio®; occurs, according to the exponential
distribution with parameteti (x), for the given state vector. It storeg in an indexed priority queu® and
follows the steps:

(1). Find, in the indexed priority queug, the index; of the reaction for which the possible time is the
smallest and set = 7.

(2). Update the state of the system to reflect that a readtjomccurred X (¢t + 7) = X(t) + v; .
(3). For each edggj, k) in the dependency gragh do

(). Updateay.
(i). Fork # jtakery = (ag,ota/aknew)(Te —1) +1 .

(iii). For k = j generate one unit-interval uniform random numband compute; = (1/a;(X)) In(1/7)+
t

(iv). Update the values; in the indexed priority queu® and set =t + 7.
(4). Return to step (1).

Further details on this method can be found in [20]. The GibBruck algorithm has the potential of being more
efficient than Gillespie’s algorithm for systems with mamesies and many reactions. Also, this algorithm is
an improvement over Gillespie’s algorithm when the systetarge and is not strongly coupled, that is firing of
one reaction does not affect many other reactions. On tlez btind, for small systems, the cost to maintain the
data structures dominates the simulation, thus the NexttReaMethod loses it's advantage over Gillespie’s
algorithm.

Any exact method simulates all reactions, one at a time.eSimast realistic biochemical systems have some
reactions evolving on very fast time scales, the exact nustihecome computationally very intense on these
practical applications. Typically, Monte Carlo simulatsorequire tens of thousands or hundreds of thousands
of individual trajectories to get an accurate estimationhef probability distributions. Thus the efficiency of
these simulations is very important. As a result, finding eb@rade-off between speed and accuracy of the
numerical methods for approximating the solution of the@ical Master Equation is essential.

3.2 Tau-leaping methods

A speed-up over the exact methods could be obtained by einglapproximateschemes, such &su-leaping
A tau-leaping method advances the system by leaping with prioai chosen time-step, rather than by
stepping from one reaction to the next with the correct podita distribution. To be faster than Gillespie’s
algorithm, tau-leaping should take a larger step-sizelléavdor more reactions to fire within this time-step.
should also be chosen to satisfy the Leap condition, thatdl propensity function changes only by a “small”
amount over the time intervat, t + 7). Several conditions to ensure that each propensity fumciaes not
vary significantly have been proposed. Among them, the aambroescribed in [10] is currently widely used.
This requires that the relative changes in each properssitpiformly bounded by a small accuracy parameter,
ek 1,

la;(X(t+ 7)) — a;(X)| < max(ea;j(x),c;) foreachl < j < M . (15)

Since(a;(X(t + 7)) — a;(x)) is a random variable, both its mean and standard deviationldtsatisfy the
condition (15). This leads to a procedure to determine thamam step-size for the desired accuracy [10].



Explicit tau-leaping  The (explicit) tau-leaping method (6) is due to Gillespié][2The algorithm consists of
initialization of the system at time= ¢, by X(ty) = X, followed by

(1). Forthe current state of the systenat timet, calculate the propensity functiong,(x) with 1 < k£ < M,
and the step-size which satisfies the Leap condition.

(2). Foreachl < j < M, generate the numbét, of reactionsR; that occur in the time intervdt, ¢ + 7)
from the Poisson random variati® (a;(x), 7).

(3). Update the state of the system to reflect thateactionsR; occurred,1 < j < M, X(t+ 1) =
X(t)+ 2;‘4:1 kjv;. Sett =t + 7, then return to stefl) or stop.

The main difficulty with this method is that biochemical s are almost always stiff, exhibiting both
fast and slow dynamics. As in the case of stiff determinististems, explicit schemes become impractical
when applied to stiff stochastic systems. They restrictstiep-size to the system'’s fastest mode. To improve
the efficiency and the accuracy of the simulations, furthefleaping schemes more suitable for stiff stochastic
systems were investigated.

Implicit tau-leaping  To overcome the step-size limitation due to the differemietiscales, implicit versions
of the tau-leaping method (6) were proposed in [54]. Thegeoisandom variable which appears in the explicit
tau-leaping methodP; (a;(x), 7), has meam;(x)7. If the deterministic termg;(X)r, is evaluated at the end
of the step, while the stochastic term of zero med)(a;(X),7) — a;(X)7), is evaluated at the beginning of
the step, then we derive timplicit tau-leapingmethod

M
X(t+7) =x+>_ (Ta;(X(t+ 7))+ Pi(a;j(x),7) — 7a;(X)) v; (16)
j=1

As in the deterministic case, this equation is normally edlby a variant of Newton’s method to determine
X(t + 7). In the reaction rate equations regime, of very large pajumanumbers, the explicit tau-leaping
method (6) reduces to the explicit Euler’s method while tinglicit tau-leaping method (16) reduces to the
implicit Euler’s method.

A drawback of the implicit tau-leaping method is that it dantpe noise excessively: the variance in the
fast components aX(¢) is reduced when large step-sizes are employed. To redweftact, a combination
of steps with the implicit tau-leaping and steps with Gilliess algorithm can be taken in order to recover the
correct probability distributions for the fast variablé&sl].

Other tau-leaping methods In an attempt to improve on the convergence and stabilitpgntaes of tau-
leaping methods, other leaping strategies have been mdpbsr example, based on the midpoint Runge-Kutta
method for ordinary differential equations, a midpointsien of the tau-leaping method has been introduced
in [26]. For ar which satisfies the Leap condition, the predicted stateeantlpoint(¢ + 7/2) is given by

X' =x+[37 Zj]‘il a;(x)v;] wherel] is the integer part. Then one generates sample values fr@fdisson
random variableP; (a;(x"), T) for eachl < j < M. The predicted state at tinfe+ 7) is

M
X(t+7)=x+>_ Pi(a;(X),7)v; a7)
j=1

which gives themidpoint tau-leapingnethod.

Burrage & Tian [8] introduced a class of Poisson-Runge-&uatiethods for simulating chemical reaction
systems. These methods are similar to the Runge-Kutta aetho stochastic differential equations driven by
Wiener processes [7]. The Chemical Langevin Equationstaohastic differential equations (SDE) obtained
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by simplifying the Chemical Master Equation, via the taagimg method. The idea that higher-order numerical
methods for the Langevin model can be generalized to highaardau-leaping methods for the Chemical
Master Equation seems promising, but it has been obseregdhit order of the Runge-Kutta methods for the
Langevin model was not inherited by the Poisson Runge-Ku#thods for the discrete stochastic model. This
is due to the lower order of convergence for the stochastigpament.

Consistency and stability of tau-leaping A theory of local errors, valid for small step-size for both the
explicit and implicit tau-leaping methods is developed atlitnam et at. [55]. This theory gives the framework
for constructing higher-order tau-leaping schemes. lritisahd the error estimates may be used for the design of
adaptive time-stepping strategies. While the paper [5&lvsHirst-order consistency of the explicit and implicit
tau-leaping methods for general chemical reaction systénosly proves their0-stability and convergence
of all the moments in the particular case when all properfsihctions are linear. The systems with linear
propensities consist only of first-order reactions. Fonthieoth the explicit and implicit methods are shown to
be of weak order of convergenteMore precisely, for a general chemical reaction systesy;-th conditional
moment of the incremenX (¢ + 7) — X(¢)) is

M
BI(X(t+7) = X)) [X(t) =X =7 _vja;(x) + O(7?) .
j=1

Then for the explicit tau-leaping approximatidthe following weak consistency result can be derived: fgr an
multivariate polynomial : R — R and initial statex there existC' > 0 andd > 0 such that for altr € [0, §]

|B(g(X(t+ 7)) = g(X(t + 7)IX(E) = X(t) = x)| < C7

Li [42] generalized this result by showing that, providedtthll propensity functions are locally Lipschitz,
the explicit tau-leaping method has strong order of coremeg1 /2 in the L2-norm and weak order of conver-
gencel. Specifically, suppose that the tau-leaping scheme isebplhhamesh =ty < t; < ... <t, =T of
the interval[0, T']. Then there exist§’ > 0 such that forr = (X (te41 — te) the following global results

<l<n-—1
hold

sup <(X(m - X(tg)‘2> <Cr

and A
B(9(X (1) ~ E(g(X ()| <

These findings are consistent with those for Euler’s (alsswknas Euler-Maruyama’s) method for SDE: it is a
scheme of strong order of convergerig and weak order of convergenteWe refer the reader interested in
more details on numerical methods for SDE to [40].

Still, none of the tau-leaping methods presented here lghehbrder convergency with respectrtdéhan
the explicit tau-leaping method. This behavior is différenthe ordinary differential equation setting, where
e.g., the midpoint scheme, has higher order than Eulerisnseh For an error analysis of tau-leaping methods
with respect to other parameters we refer the interestatkrda [4].

Avoiding negative populations When Poisson tau-leaping methods are applied to chemuetimg systems
with some species in small population numbers, a large Sitepmay lead to negative population numbers.
Therefore careful step-size selection strategies shoalldnployed to avoid such physically unrealistic pre-
dictions [10]. An alternative approach for tackling thisopblem was proposed by Tian and Burrage [62] and
independently by Chatterjee et al. [11]. They considerbthamial tau-leapingnethod, in which the Poisson
random variables are replaced by binomial random variatfksce a binomial random variable has a finite
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range of sample values, the parameters in the binomial rmna@oiables can be chosen such that no molecular
population becomes negative over a step.

If some populations are driven negative due to a large saepvéth the Poisson tau-leaping method, then
the step is rejected. However, rejection of steps may biasstdtistics of the sample paths and so must be
handled carefully. Anderson [3] develops a new Poissondaping procedure which allows for performing of
post-leap checks to ensure that an accuracy requiremeattsed, but without biasing the statistics. It does so
by storing the information generated during one leap anaguisiis history information to preserve the correct
trajectory. First, the reaction times are represented e@diring times of some independent, unit-rate Poisson
processesk; with 1 < j < M so that we can write

X(t) = X(0) + ﬁpj (/Ot %‘(X(S))d8> Vi,

Then, the author proves that: H(¢) is a Poisson process with intensityand0 < s < u < ¢, then(P(u) —
P(s)) conditioned onP(s) has a binomial P(t) — P(s), «) distribution withae = (u — s)/(t — s). This
theoretical result is used to construct an adaptive stapsirategy which allows step rejections while ensuring
that the statistics of the sample paths are not skewed.

3.3 Methods for stochastic quasi-steady-state or partialguilibrium approximations

A different approach to dealing with stiffness in stochagtiochemical systems is due to Rao & Arkin [52]
and is based on the idea of elimination of the fast componeynta quasi-steady-state approximation. In
the deterministic setting, a quasi steady-state apprdidmassumes that, for the time-scale of interest, the
instantaneous rates of change for the intermediate spa@edmost zero. Thus for the deterministic kinetics,
the differential equations corresponding to the intermdspecies are eliminated, by equating their rate of
change to zero. For stochastic kinetics, the species atiigragd into primary species® and intermediate or
ephemeral specieg’. Thus the state vector can be writterxas (x*, x/)

Denote byP(x*,xf;t) the probability density of the system. This joint probapican be represented in
terms of conditional probabilities as

P(x,x/t) = P(XT|x%: 1) P(x*; 1) (18)

Moreover, we assume thaf conditional tox® is Markovian. So, for a fixeat®, the conditional probability
distribution P(xf |x*; t) approximately satisfies a (dynamic) master equation.

The quasi-steady-state assumptiimnthe stochastic kinetics setting assumes that the rathafge of the
conditional probability distributiorP(x/|x*; t) is almost zero

d
—P(x|x%t) =0.
P Xt) =0

Consequently, we derive that
P(x/|x*;t) = P(x/|x*) .

Therefore, we approximate the conditional probabilityriisition P(x/|x*) by a steady-state master equation.
Finally, an approximate Chemical Master Equation can bizelgin terms of the primary specias only. One
can then apply Gillespie’s algorithm to this reduced Chainlidaster Equation. Simulating a reduced system
will speed up the performance of Gillespie’s algorithm, pamed to simulating the whole system.

While the quasi-steady-state assumption deals with the gtaiables, the partial equilibrium assumption
deals with the reactions in the system. Nonetheless, theasgamptions are quite similar and sometimes
equivalent. The partial equilibrium approximation assartgat the fast reaction are in equilibrium. This
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assumption constitute the basis for tllew-scale stochastic simulation algorith(esSSA) [9]. A detailed
description of this method is given below.

First, the set of all reactions is partitioned into the seslofv reactionsR?® (with M, elements) and the
set of fast reaction®/ (with M elements) depending on the magnitude of their propensitgtions. Next,
the state vector is partitioned into the state vector of sipaciesX*(¢), and that of fast specieX/(¢), such
that X (¢) = (X*(t), X/ (t)). The following criteria for partitioning of species is usddst species are those
involved in fast reactions, while the remaining speciesstow.

A new virtual fast process is introduceX/ (¢). This process is obtained froi/(¢) by turning all the
slow reactions off. The slow species are set consiéft;) = x§. We define

P(x!txo, to) = Prob{X’ (1) = x/, given X(to) = xo}

The new procesX/ (¢) is Markovian and satisfies a Chemical Master Equation wighstbw reactions turned
off. Two conditions should be satisfied for the ssSSA to apfilyThe first condition is that the virtual fast
process must be stable. This reduces to requiring}ﬁ(\af,ﬂ Xp,to) — P(xf, 00| Xo, tg) ast — oo. (ii) The
second condition is that the relaxation of the virtual fasicessX/ (¢) to its stationary asymptotic limit occurs
much faster than the expected time to the next slow reaciibis. entails a separation of the time-scales of the
fast and slow reactions. The conditional probabiﬁﬁp(f , 00| Xo, to) satisfies a steady-state master equation

My
0= (PO —], 00| %0, to)a] (¢ = v],x5) = P(x! 00| x0, to)a] (X', x5)) (19)
j=1

Finally, the slow-scale approximation means that the feettions may be ignored and only the slow reactions
are simulated. The propensity functions of the slow reastiare approximated by an average with respect to
the asymptotic virtual fast process. Thus the propensity slow reactions?; can be approximated on the
time-scale of the slow reactions by

as(x) %) =" P(a!  oolxf, x*)as (2!, x°) . (20)
zf

Now the system dynamics can be simulated by applying Gikésplgorithm for the slow reactions only, while
using the approximate propensities (20). More details eafobnd in [9].

The slow-scale stochastic simulation algorithm The system is partitioned into fast and slow reactions and it
is initialized at timel = ¢, by X(to) = (xg , (). The virtual fast process is found and the stationary pritibab

A~

P(x/, 00| xg, t) is computed according to (19).

(1). At time t, calculate the approximate propensity functioﬁ;(xf ,X%), according to (20) for the cur-

rent state of the system. Also calculate the sum of all apprate slow propensitiesf;g(xf,xs) =
Ms ~s(yf s
e G (X, x%).

(2). Generate two independent unit-interval uniform randammbers- andr,.
(3). Calculate the time to the next slow reactiondy (1/ag(x/,x*)) In(1/r1) .

(4). Calculate the index of the next slow reaction as the integesatisfying

j—1

<

J
a (x!, x*) < raa(x],x%) <3 ag(x,x°)
1 k=1

B
Il
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(5). Update the state of the system to reflect that a slowicert; occurred X*(t + 7) = X*(¢) + v; and
X/ (t +7) = sample ofP(z, co|xf, x5). Sett = t + 7. Return to stef1) or stop.

The algorithms described in this section are applicablecife is a separation in time-scales in the dynamics
of the system. It is worth noting that important species &hbe simulated very accurately. If such species are
involved in fast reactions, then the above algorithms waaldbe appropriate.

3.4 Hybrid methods

Hybrid methods were developed in an attempt to speed-upitindations of systems with multiple scales in
the molecular population numbers and widely disparate-8oses. These numerical methods typically deal
with a combination of microscopic and macroscopic modelbe $ystem is partitioned in subsets: one set
consists of species with low molecular numbers which nede tsimulated with exact algorithms and other set
with species in large molecular numbers, which are simdlati¢h some approximate algorithms.

Discrete stochastic—continuous deterministic modelsKiehl et al. [36] partition the system into two regimes:
continuous and discrete. The discrete regime is reprasemit a stochastic model, while the continuous
regime is modeled with the reaction rate equations. Exasnpleeactions modeled with the Master equa-
tion include transcription, translation and moleculamsigng. However, a theoretically justified criteria for
automatically partitioning the system is needed. A simdlpproach was taken by Takahashi et al. [60], and
Vasudeva & Bhalla [64]. The deterministic model suppregisesntrinsic noise in the continuous variables and
this may impact on the overall behavior of the system.

Discrete exact—discrete approximate stochastic algoriths Rather than combining different mathematical
models of biochemical kinetics, Puchalka & Kierzek [51] eleped a hybrid method for simulating the Chem-
ical Master Equation. Their method, called timaximal time-step algorithmises the exact Gibson-Bruck
scheme, for the set of slow reactions and the (Poissonktgirlg method for the set of fast reactions. The sys-
tem is advanced with a time-step which is the minimum of thea reaction time and a user selected maximal
time-step. In addition, the method dynamically partitiths reactions set into slow and fast reactions. The
algorithm, while being capable of accurately capturinggygtems’ dynamics for small time-steps, may not be
practical for large systems with reaction rates varying oweltiple time-scales.

Discrete stochastic—continuous stochastic modelsAn improvement over the above hybrid models was orig-
inally proposed by Haseltine & Rawlings [27]. The authorstiianed the reactions into the set of slow and
the set of fast reactions, based on the magnitude of thepepsity functions and recommended at least two
orders of magnitude difference between the values of maréitl reaction probabilities. The slow reactions
are modeled with the Chemical Master Equation and are stetdllasing Gillespie’s Direct Method. The fast
reactions are modeled either with the Langevin equatiomnlsited using the Euler-Maruyama method, or with
the reaction rate equations. Since biochemical systemesftme stiff, an explicit simulation method such as
Euler-Maruyama could become quite expensive.

Starting from the approach of Haseltine & Rawlings, Salis &zKessis [56] proposed an improved, dy-
namic partitioning of the system into slow and fast reaciand a hybrid model which couples the discrete
stochastic and the Langevin regimes. The method they igegstl, called thaext reaction hybridemployed
the Next Reaction Method for the discrete model. The autheregnized the importance of employing ef-
ficient adaptive, higher-order and possibly implicit methdor solving the SDE [40], but they employed the
low-order Euler-Maruyama method for simulating the Larigewodel.

In the dynamic partitioning, a reactidi; is classifies as fast if it satisfies both

aj(t)At>X>1 (21)

13



and
X;(t) > e|v;;| with « = {reactant or product of th&,; reactior} . (22)

The suggested values for the parameters\ate10 ande = 100.

Next Reaction Hybrid Algorithm  We describe below a simplified version of the next reactiooriglyalgo-
rithm. First, the system is initialized at time= ¢, by X(¢) = Xo. Next, these steps are followed:

(1). Classify the reactions into fast and slow according2t énd (22). Calculate the propensities of the fast
and slow reactions;/ (t) anda®(t).

(2). Numerically approximate the solution of the Langevijuation overft, t + At) using onlya/ (t), and
obtain the path of integration.

(3). Based on®(t), decide if a slow reaction occurred duridg.

(). 1f no slow reaction occurred, update= t + At and approximate the fast variablés! (t + At).

(ii). If only one slow reaction,Rz;, occurred, find the next time; at which it occurred and update
t =t + 7. Integrate the continuous variables on the correct patescbanstep (2). Then set
X = X(t—l—Tj) +v;.

(iii). If more than one slow reaction occurred, reduseand return to step (2).

(4). Return to step (1) or stop.

4 Numerical experiments

Bi-stability The Schlogl model [43, 55] is a remarkable example of a r@aatetwork which exhibits bi-
stability. For the deterministic model represented by Fégliand the reactions in Table 1 a solution converges
to one of the two stable states, and stays in the neighborbidbdt solution after a finite time. However, for the
stochastic models, a trajectory of the Chemical Master toudFigure 2, left) or of the Chemical Langevin
Equation (Figure 2, right) may spontaneously switch betwide two stable states, due to the intrinsic noise
of the system. This spontaneous transition between the tiimesstates is not possible for the reaction rate
equations, motivating the need for stochastic modeling.

The set of reactions for the Schlogl reaction network amir tborresponding propensities are presented
in Table 1. The stochastic reaction rate parameters we exqblovhich lead to the bistable behavior, are
also given in Table 1. The molecular numbers for the spediesd B are kept at constant valued, = 10°
andB = 2 x 10°. In the stochastic models, the initial condition for the hu&mof molecules of species is
X (0) = 250. To obtain the two stable states in the deterministic ste¢epok the initial conditionX (0) = 248
for the lower stable state (represented in blue) &rid) = 249 for the upper stable state (represented in red).

The state vector iX = (X, A, B) and the state-change vectors for reactidhs Rz, Rs and R, are,
respectively,

1 -1 1 -1
vi=1|-1 , Vg = 1 , Vg = 0 , Uy = 0
0 0 -1 1

Other examples of interesting qualitative behavior inelndise-induced bistable systems which are mono-
stable in the deterministic setting [58] or noise-inducestiltations in systems which are otherwise non-
oscillatory [65].
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Table 1: The Schlogl model.

Reactions Propensities Reaction rates
R, A+2xH3x a1(X) = ki AX (X — 1)/2 k=3 x 1077
R, 3X B AL2X (X)) =X (X —1)(X —2)/6 ky=10""
R; B x as(X) = k3B ks = 1073
Ry x®p ay(X) = ks X ky =35
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Figure 1: The Schlogl model: Reaction rate equation model
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Table 2: The Vilar model.

Reactions Propensities Reaction rates
R Pa® Pa+mRNAa  a1(X) =k Pa ky = 50
Ry Pa_A™3 Pa_A+mRNAa  ax(X) = koPa_A ey = 500
Ry Pr' Pr+mRNAr  a3(X) = ksPr ks = 0.01
Ry PrA™ pr At mRNAr  ay(X) = kaPr_A ks = 50
Rs  mRNAa ™ mRNAa+ A as(X) = ksmRNAa ks = 500
Re  mRNAr ™ mRNAr + R ag(X) = kemRNAr kg = 100
R; A+R™ AR ar(X) = k- AR k7 = 20
Rs Pa+A™ Pa_A as(X) = ksPa A ks = 1
Ry Pr+ A% pra ag(X) = koPr A kg = 1
Ry AN aio(X) = koA k1o =1
R R™ g an(X) = kn R ki = 0.2
Ri»  mRNAa™30 a12(X) = kiomRNAa ki = 10
R  mRNAr™ a13(X) = kismRNAr ki3 = 0.5
R AR™ R a1a(X) = k14 AR kg = 10
Ris AR™ A+ R a15(X) = kisA_R krs = 0
Ry Pa_A™S Pa+ A a16(X) = kigPa A k16 = 50
Ry ProA® pr4 A a17(X) = kyr Pr_A ko7 = 100

Genetic oscillator Vilar et al. [65] proposed a circadian clock model. The bimwical system they described
has an interesting feature: while, for some values of thetldrparameters, the Chemical Master Equation
model describes a system with sustained oscillations ehetion rate equation model predicts no oscillations.
The set of reactions for the Vilar model, their propensitesl their corresponding stochastic reaction rate
parameters are given in Table 2. We used the following Irétaditions Pa(0) = Pr(0) = 1 and all the other
molecular numbers are set to zero [1]. In Figure 3, we showntblecular numbers of speciégsmodeled with
the Chemical Master Equation (left) and with the reactide exquations (right). The oscillations are induced
by the intrinsic noise.

5 Challenges
This research area is only at the initial stages and manyafuedtal open questions remain to be answered by
the numerical analysis and scientific computing community.

e Higher order tau-leaping methods. Finding higher-order stochastic discrete methods hasdtenpal
of improving the speed of computation for practical biotadiapplications, as it should permit larger
step-sizes while maintaining the accuracy of the simufatio

e Adaptive time-stepping schemesThe effect of adaptive step-size strategies on the conmeegef the
numerical approximation to the correct solution of stoticatiscrete models remains a key question.

e Hybrid methods. These methods seem very promising in dealing with the nielspales which are
ubiquitous in biochemical systems. Improved strategiesped-up the dynamic partitioning of the

16



9000 - 9000

8000 8000

~
3
8
s
~
3
5]
s

@
3
3
3
@
3
3
3

@
3
3
3

5000

IS
]
3
3

4000

3000

w
8
3
3

N
S
3
3

2000

Number of molecules of species R
Number of molecules of species R

1000 1000

. . . . f ) N I " " " " " 1
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time t Time t

Figure 3: The Vilar et al. [65] model: Chemical Master Eqoatmodel (left), reaction rate equation model
(right) .

system are needed. Better criteria for partitioning thetiea system is another important issue.

e Spatially inhomogeneous systemsThe assumption that the biochemical reacting system is gemo
neous is not always satisfied. Stochastic models for sjyatiaterogeneous systems are needed. Ef-
ficiency is critical for such models. Existing schemes forenalar-crowding conditions include [14]
(where a Monte Carlo method was adapted for the reactidusitih Chemical Master Equation), the
next volume method, [44] (where a binomial spatial tau-legymethod is developed) and [13] (where a
diffusive finite state projection method is introduced).

6 Conclusion

Stochastic modeling and simulation of biological procesa® problems of high interest today. The multitude
of research opportunities related to the development ettife and reliable simulation tools for these stochas-
tic models as well as for formulating the theoretical fouraato support them, makes this area particularly
attractive for numerical analysts. In this paper, we re@i@éwome of the key achievements in the efficient mod-
eling and simulation of well-stirred biochemical reactsystems and outlined some of the important directions
for future research.
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