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Abstract

Computation of Loss Distribution Based on the Structural Model for Credit Portfolios

Meng Han
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Graduate Department of Computer Science

University of Toronto

2018

Credit risk analysis and management at the portfolio level is a challenging issue for financial institutions

due to their portfolios’ large size, heterogeneity and complex correlation structure. In this thesis, we

propose several new asymptotic methods and exact methods to compute the distribution and VaR of

a loan portfolio’s loss in the CreditMatrics framework. For asymptotic methods, we give an approxi-

mation based on the Central Limit Theorem (CLT), which gives more accurate approximations to the

conditional portfolio loss probabilities compared with existing approximations. For exact methods, we

improve the efficiency by exploiting the sparsity that often arises in the obligors’ conditional losses. A

sparse convolution method and a sparse FFT method are proposed, which enjoy significant speedups

compared with the straightforward convolution method. We also construct truncated versions of the

sparse convolution method and the sparse FFT method to further improve their efficiency. To control

the aliasing errors and roundoff errors incurred in the truncated sparse FFT method, an optimal expo-

nential windowing approach is developed as well. For lumpy portfolios, we introduce hybrid methods

which combine an asymptotic approximation with Monte Carlo simulation or one of exact methods to

achieve a good balance between efficiency and accuracy.

ii



Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisors, Prof. Ken Jackson and Dr. Alex

Kreinin, for their continuous support of my Ph.D. study and research. Their patience, inspiration,

motivation, and immense knowledge helped me to conquer numerous challenges along the journey. I

could not imagine having better advisors and mentors for my Ph.D. study and research.

I would also like to thank the other members in my Ph.D. committee, Prof. Sebastian Jaimungal and

Prof. Rudi Mathon, not only for their time and effort to read my thesis and to help me to improve it, but

also for their challenging questions which encouraged me to widen and to deepen my research. Special

thanks to Prof. David Saunders for serving as the External Examiner for my Final Oral Exam and

for raising challenging questions and for making helpful recommendations. I would also like to thank

Prof. Christina Christara for agreeing to be a member of my Final Oral Committee and for making

constructive suggestions for improvements to my thesis.

I am also grateful to the following colleagues and friends in the Numerical Analysis Group in the

Computer Science Department at the University of Toronto: Dr. Wanhe Zhang, Dr. Xiaofang Ma,

Dr. Dongwoon Lee, Zhe (Robert) Wang, Zhenan (Eric) Fan, Yuehao (Josh) Qin, and Anton Braverman.

Discussions with them were fruitful, inspiring and encouraging. I am also thankful to comments and

suggestions I received from the audiences of my presentations at several scientific conferences.

I am very grateful for the generous financial support provided by Prof. Ken Jackson and Computer

Science Department at the University of Toronto which helped to fund my Ph.D. study and research.

This journey would not have been possible without the support of my family. To my parents, thank

you for your endless support and encouragement throughout my life. You taught me to pursue my goals

with heart and soul, and to push myself out of my comfort zone. To my uncle, thank you for the excellent

example you set, inspiring me to start and finish this journey. To my grandparents, thank you for your

unconditional love since I was born. I wish I could spend more time with you. Rest in peace, Grandpa.

I miss you. To my sons, Cody and Leo, thank you for your patience and understanding during Daddy’s

Ph.D. journey. Your smiles are always the source of my inner peace no matter what the crisis Daddy is

facing. Finally, I do not know how to start to thank my wonderful wife, Bin. You have been with me

through thick and thin with your love, understanding and support, and I think the biggest blessing in

my life is having you as my wife. Thank you for everyting.

iii



Contents

1 Introduction 1

2 Preliminaries 4

2.1 Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Credit Risk in Credit Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 General Model Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Multi-factor Structural Model 10

3.1 Structural Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Merton’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 CreditMetrics Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Multi-factor Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Computational Challenges for the Multi-factor Structural Model . . . . . . . . . . . . . . 17

4 Asymptotic Approximation 20

4.1 The LLN Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 The CLT Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 The Approximation and Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 Error Analysis of the CLT Approximation . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Numerical Results and Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Sample Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.2 The CLT Approximation and Confidence Intervals . . . . . . . . . . . . . . . . . . 29

4.3.3 Comparison: MC, CLT and LLN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Exact Methods 54

5.1 Sparse Convolution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

iv



5.1.1 Full Convolution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.2 Sparse Convolution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.3 Truncated Sparse Convolution Method . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Sparse FFT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Computation of the Conditional Loss Probability by the Fourier Transform . . . . 78

5.2.2 Full FFT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.3 Sparse FFT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.4 Truncated Sparse FFT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Numerical Results and Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.1 Best/Worst Cases: (Truncated) Sparse Convolution Methods . . . . . . . . . . . . 128

5.3.2 Best/Worst Cases: Sparse FFT Method . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3.3 Testing on Synthetic Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.3.4 Comparison: MC and Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . . 176

6 Hybrid Methods 199

6.1 Hybrid Method: MC+CLT/LLN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.2 Hybrid Method: EXACT+CLT/LLN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.3 Implementation of the Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.3.1 Implementation of the Hybrid Methods to Compute the Portfolio Loss Distribution203

6.3.2 Implementation of the Hybrid Methods to Compute VaR . . . . . . . . . . . . . . 208

6.4 Numerical Results and Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.4.1 Comparison for Computing the Loss Distribution . . . . . . . . . . . . . . . . . . 215

6.4.2 Comparison for Computing VaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

7 Conclusion and Future Work 238

A Proof of Theorem 4.1 243

B Proof of Theorem 4.2 251

C Proof of Theorem 4.3 253

D Proof of Theorem 5.4 256

Bibliography 271

v



List of Tables

2.1 Credit ratings offered by different rating companies . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Credit migration matrix (Source: S&P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Credit migration matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Parameters for non-lumpy portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Comparison of total CPU time for non-lumpy portfolios (in seconds) . . . . . . . . . . . . 39

5.1 Computational cost of Algorithm 5.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Computational cost of Algorithm 5.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Numerical results for testing N in the best case for the SCONV and TR SCONV methods 129

5.4 Numerical results for testing α in the best case for the SCONV and TR SCONV methods 132

5.5 Numerical results for testing C in the best case for the SCONV and TR SCONV methods 135

5.6 Numerical results for testing N in the worst case for the SCONV and TR SCONV methods138

5.7 Numerical results for testing α in the worst case for the SCONV and TR SCONV methods141

5.8 Numerical results for testing C in the worst case for the SCONV and TR SCONV methods144

5.9 Numerical results for testing N in the best case for the SFFT method . . . . . . . . . . . 148

5.10 Numerical results for testing K in the best case for the SFFT method . . . . . . . . . . . 150

5.11 Numerical results for testing C in the best case for the SFFT method . . . . . . . . . . . 153

5.12 Numerical results for testing N in the worst case for the SFFT method . . . . . . . . . . 155

5.13 Numerical results for testing K in the worst case for the SFFT method . . . . . . . . . . 157

5.14 Numerical results for testing C in the worst case for the SFFT method . . . . . . . . . . . 160

5.15 Testing portfolios for exact methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.16 Credit migration matrix for C = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.17 Credit migration matrix for C = 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.18 Relative difference in computing cumulative loss probabilities for the synthetic portfolios . 168

5.19 CPU time to compute the cumulative loss probabilities for the synthetic portfolios . . . . 169

vi



5.20 Speedup to compute the cumulative loss probabilities for the synthetic portfolios . . . . . 170

5.21 kγ and K̄ for (EW) TR SFFT method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.22 Ratio of CPU time for similar portfolios with C = 18 and C = 2 . . . . . . . . . . . . . . 173

5.23 Ratio of CPU time: heterogeneous over homogenous . . . . . . . . . . . . . . . . . . . . . 175

5.24 Testing portfolios for exact methods against MC method . . . . . . . . . . . . . . . . . . . 177

6.1 Testing portfolios for hybrids methods against exact/MC methods . . . . . . . . . . . . . 214

vii



List of Figures

2.1 Loss distribution of a credit portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Merton’s model: default vs. no default . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 CreditMetrics model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Loss distribution generated by the CLT approximation: Portfolios Π1 yellow: CLT, black:

MC, cyan: CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Loss distribution generated by the CLT approximation: Portfolios Π2 yellow: CLT, black:

MC, cyan: CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Loss distribution generated by the CLT approximation: Portfolios Π3 yellow: CLT, black:

MC, cyan: CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Loss distribution generated by the CLT approximation: Portfolios Π4 yellow: CLT, black:

MC, cyan: CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Loss distribution generated by the CLT approximation: Portfolios Π5 yellow: CLT, black:

MC, cyan: CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Loss distribution generated by the CLT approximation: Portfolios Π6 yellow: CLT, black:

MC, cyan: CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Comparison of the loss distribution for the MC, LLN and CLT approximations: Portfolios

Π1 blue: LLN, yellow: CLT, black: MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8 Comparison of the loss distribution for the MC, LLN and CLT approximations: Portfolios

Π2 blue: LLN, yellow: CLT, black: MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 Comparison of the loss distribution for the MC, LLN and CLT approximations: Portfolios

Π3 blue: LLN, yellow: CLT, black: MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.10 Comparison of the loss distribution for the MC, LLN and CLT approximations: Portfolios

Π4 blue: LLN, yellow: CLT, black: MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



4.11 Comparison of the loss distribution for the MC, LLN and CLT approximations: Portfolios

Π5 blue: LLN, yellow: CLT, black: MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.12 Comparison of the loss distribution for the MC, LLN and CLT approximations: Portfolios

Π6 blue: LLN, yellow: CLT, black: MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.13 Comparison of the errors for the LLN and CLT approximations: Portfolios Π1 . . . . . . 46

4.14 Comparison of the errors for the LLN and CLT approximations: Portfolios Π2 . . . . . . 47

4.15 Comparison of the errors for the LLN and CLT approximations: Portfolios Π3 . . . . . . 48

4.16 Comparison of the errors for the LLN and CLT approximations: Portfolios Π4 . . . . . . 49

4.17 Comparison of the errors for the LLN and CLT approximations: Portfolios Π5 . . . . . . 50

4.18 Comparison of the errors for the LLN and CLT approximations: Portfolios Π6 . . . . . . 51

5.1 The structure of pz0 and pz1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Concurrent computation of the linear convolution p̃z1 = pz0 ∗ pz1 (j = 0) . . . . . . . . . . . 63

5.3 Concurrent computation of the linear convolution p̃z1 = pz0 ∗ pz1 (j = 1) . . . . . . . . . . . 64

5.4 Concurrent computation of the linear convolution p̃z1 = pz0 ∗ pz1 (j = 2) . . . . . . . . . . . 64

5.5 Best case (C = 3, α = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6 Worst case (C = 3, α = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Small probability mass (n = 100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.8 Butterfly update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.9 Lower butterfly update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.10 Upper butterfly update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.11 Initial vector: x̂0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.12 Structure change of x̂q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.13 Sparse FFT method (t = 4, s = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.14 Fat-tailed distribution

Top: probability mass Bottom: 1-CDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.15 The impact of rounding errors on the computation of P {Lz = lk} . . . . . . . . . . . . . . 118

5.16 The impact of rounding errors on the computation of P {Lz ≤ lm} . . . . . . . . . . . . . 119

5.17 Comparison of actual errors in computing P {Lz ≤ lm} with different τ . . . . . . . . . . . 126

5.18 CPU time and speedup for testing N in the best case for the SCONV and TR SCONV

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.19 CPU time and speedup for testing α in the best case for the SCONV and TR SCONV

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

ix



5.20 Comparison of the fitted curves fSCONVbest,α (α) and f̃SCONVbest,α (α) to actual speedup for the

SCONV method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.21 CPU time and speedup for testing C in the best case for the SCONV and TR SCONV

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.22 CPU time and speedup for testing N in the worst case for the SCONV and TR SCONV

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.23 Comparison of the curves fSCONVworst,N (N) and f̃SCONVworst,N (N) to the actual speedup for the

SCONV method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.24 CPU time and speedup for testing α in the worst case for the SCONV and TR SCONV

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.25 Comparison of curves fSCONVworst,α (α) and f̃SCONVworst,α (α) to the actual speedup for the SCONV

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.26 CPU time and speedup for testing C in the worst case for the SCONV and TR SCONV

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.27 Comparison of the curves fSCONVworst,C (C) and f̃SCONVworst,C (C) to the actual SCONV speedup

for SCONV method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.28 CPU time and speedup for testing N in the best case for the SFFT method . . . . . . . . 149

5.29 CPU time and speedup for testing K in the best case for the SFFT method . . . . . . . . 151

5.30 Comparison of the curves fSFFTbest,K (K) and f̃SFFTbest,K (K) to the actual speedup for the SFFT

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.31 CPU time and speedup in testing C for the best case for the SFFT method . . . . . . . . 154

5.32 CPU time and speedup for testing N in the worst case for the SFFT method . . . . . . . 156

5.33 CPU time and speedup for testing K in the worst case for the SFFT method . . . . . . . 158

5.34 Comparison of the curves fSFFTworst,K(K) and f̃SFFTworst,K(K) to the actual speedup for the

SFFT method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.35 CPU time and speedup for testing C in the worst case for the SFFT method . . . . . . . 161

5.36 Comparison of the curves fSFFTworst,C(C) and f̃SFFTworst,C(C) to the actual speedup for the SFFT

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.37 Comparison of the CPU time for the synthetic portfolios upper: linear scale; lower: log

scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.38 Comparison of the speedups for the synthetic portfolios upper: linear scale; lower: log scale171

5.39 Histogram of EADs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

x



5.40 Comparison of the errors in the loss probability at VaR computed by the TR SCONV

and MC methods Portfolios in Group 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.41 Comparison of the errors in the loss probability at VaR computed by the TR SCONV

and MC methods Portfolios in Group 1 (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . 181

5.42 Comparison of the errors in the loss probability at VaR computed by the TR SCONV

and MC methods Portfolios in Group 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.43 Comparison of the errors in the loss probability at VaR computed by the TR SCONV

and MC methods Portfolios in Group 2 (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . 183

5.44 Comparison of the errors in the loss probability at VaR computed by the TR SCONV

and MC methods Portfolios in Group 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.45 Comparison of the errors in the loss probability at VaR computed by the TR SCONV

and MC methods Portfolios in Group 3 (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . 185

5.46 Comparison of the errors in the loss probability at VaR computed by the TR SCONV

and MC methods Portfolios in Group 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.47 Comparison of the errors in the loss probability at VaR computed by the TR SCONV

and MC methods Portfolios in Group 4 (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . 187

5.48 Comparison of the errors in VaR computed by the TR SCONV and MCmethods Portfolios

in Group 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.49 Comparison of the errors in VaR computed by the TR SCONV and MCmethods Portfolios

in Group 1 (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.50 Comparison of the errors in VaR computed by the TR SCONV and MCmethods Portfolios

in Group 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.51 Comparison of the errors in VaR computed by the TR SCONV and MCmethods Portfolios

in Group 2 (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.52 Comparison of the errors in VaR computed by the TR SCONV and MCmethods Portfolios

in Group 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

5.53 Comparison of the errors in VaR computed by the TR SCONV and MCmethods Portfolios

in Group 3 (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.54 Comparison of the errors in VaR computed by the TR SCONV and MCmethods Portfolios

in Group 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.55 Comparison of the errors in VaR computed by the TR SCONV and MCmethods Portfolios

in Group 4 (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

xi



5.56 Comparison of the CPU time to compute the loss distribution by SCONV, TR SCONV

and MC methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.57 Comparison of the CPU time to compute the loss distribution by SCONV, TR SCONV

and MC methods (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.1 Histogram of EADs for inhomogeneous portfolios . . . . . . . . . . . . . . . . . . . . . . . 215

6.2 Comparison of the loss distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.3 Comparison of the loss distribution (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.4 Comparison of the loss distribution (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . 219

6.5 Comparison of the loss distribution (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . 220

6.6 Comparison of the loss distribution (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.7 Comparison of the loss distribution (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . 222

6.8 Comparison of the loss distribution (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.9 Comparison of the loss distribution (Cont’d) . . . . . . . . . . . . . . . . . . . . . . . . . . 224

6.10 Comparison of the errors in the loss distribution . . . . . . . . . . . . . . . . . . . . . . . 225

6.11 Comparison of the errors in the loss distribution (Cont’d) . . . . . . . . . . . . . . . . . . 226

6.12 Comparison of the errors in the loss distribution . . . . . . . . . . . . . . . . . . . . . . . 227

6.13 Comparison of the errors in the loss distribution (Cont’d) . . . . . . . . . . . . . . . . . . 228

6.14 Comparison of efficiency in computing the loss distribution . . . . . . . . . . . . . . . . . 230

6.14 Comparison of the errors in computing VaR . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.14 Comparison of efficiency in computing VaR . . . . . . . . . . . . . . . . . . . . . . . . . . 236

xii



List of Algorithms

5.1 Sparse convolution method to compute the conditional loss probabilities p̃zN−1 . . . . . . 65

5.2 Improved sparse convolution method to compute the conditional loss probabilities p̃z
(u)

N−1 . 66

5.3 Truncated sparse convolution method to compute the conditional loss probabilities . . . . 77

5.4 Bit reversal to compute x̂0 = PT
Kx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Computation of the long weight vector wlong . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Butterfly update to compute x̂q = Aqx̂q−1 . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 Cooley-Tukey radix-2 FFT to compute F (x) . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.8 Full FFT method to compute the loss probability . . . . . . . . . . . . . . . . . . . . . . 89

5.9 Sparse bit reversal to compute x̂0 = PT
Kx . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.10 Sparse butterfly update to compute x̂q = Aqx̂q−1 . . . . . . . . . . . . . . . . . . . . . . . 97

5.11 Sparse FFT method to compute the conditional loss probabilities . . . . . . . . . . . . . 98

5.12 Truncated sparse FFT method with exponential window to compute P {Lz ≤ lm} . . . . 127

6.1 MC+LLN method to compute P {L ≤ lk}, k = 0, . . . ,K − 1 . . . . . . . . . . . . . . . . . 206

6.2 EXACT+LLN method to compute P {L ≤ lk}, k = 0, . . . ,K − 1 . . . . . . . . . . . . . . 206

6.3 MC+CLT method to compute P {L ≤ lk}, k = 0, . . . ,K − 1 . . . . . . . . . . . . . . . . . 207

6.4 EXACT+CLT method to compute P {L ≤ lk}, k = 0, . . . ,K − 1 . . . . . . . . . . . . . . 207

6.5 MC+CLT/LLN method to compute VaRγ(L) (Memory-intensive Scheme) . . . . . . . . . 209

6.6 EXACT+CLT/LLN method to compute VaRγ(L) (Memory-intensive Scheme) . . . . . . 210

6.7 MC+CLT/LLN method to compute VaRγ(L) (Memory-saving Scheme) . . . . . . . . . . 211

6.8 EXACT+CLT/LLN method to compute VaRγ(L) (Memory-saving Scheme) . . . . . . . . 212

xiii



Chapter 1

Introduction

In the current market environment, financial institutions are even more vulnerable than they have been

in the past to borrowers’ credit events, such as default or downgrading of the credit rating of instruments

in their portfolios by rating agencies. Therefore, credit risk analysis and management at the portfolio

level has become even more important. Since the implementation of Basel II, regulators have required

financial institutions to reserve credit-risk capital to absorb unexpected credit losses. The determination

of the amount of capital required involves a computation of the credit value-at-risk (credit VaR), which

is calculated by either a standardized approach or an internal ratings based (IRB) approach. However,

financial institutions do not have complete freedom to calculate the regulatory capital any way they want:

they must use some models and parameters which are specified by the Basel Committee. To realize and

manage their own risk, financial institutions tend to use their own internal model to compute credit VaR

for economic capital. In addition to credit VaR, to understand the risk involved in some complex credit

derivatives, such as collateralized debt obligations and basket credit derivatives, risk managers need to

compute the whole loss distribution. Therefore, the accurate and efficient calculation of the credit loss

probabilities for loan portfolios is an increasingly important problem.

For credit risk at the individual level, structural models are very popular in both industry and

academia. These models rely on the company’s capital structure, and a firm’s default is triggered when

its assets’ value fall below its debt level. Merton’s famous paper [44] gave birth to this class of models.

Based on Merton’s model, many industrial structural models have been developed, among which JP

Morgan’s CreditMetrics model [12, 22] and Moody KMV’s KMV model [11, 12] are the most famous. The

CreditMetrics model relies on rating agencies’ credit ratings, and assumes that the obligors within the

same rating class are homogeneous, while the KMV model computes the firm-specific default probability

1



with Merton’s option pricing approach and Moody KMV’s massive historic default database. At the

portfolio level, modeling the correlations between obligors plays a central role. To estimate correlations

more efficiently, both the CreditMetrics [22] and KMV [6, 12] models apply multi-factor decomposition

to the systematic risk factors. The main ideas underlying these correlation models are similar, but the

CreditMetrics model uses the correlation between equity returns as a proxy for calculating correlations of

asset returns, while the KMV model applies a more sophisticated procedure to calibrate asset correlations

using asset return data.

Under the CreditMetrics framework, the loss probability equals the expectation of the loss probabil-

ity conditional on the systematic risk factors. The most appropriate way to calculate the expectation

is by simulation-based methods, such as Monte Carlo (MC) simulation or Quasi Monte Carlo (QMC)

simulation. There are at least three classes of approaches used to compute conditional probability. The

first, and most commonly-used, is MC simulation. However, this leads to a two-level simulation for the

computation of the unconditional probability, which makes this simulation approach extremely compu-

tationally intensive. To accelerate the computation, Glasserman et al. [18, 19] developed importance

sampling techniques for both the inner-level and the outer-level MC simulations, but this method is

still computationally intensive, due to the nature of MC simulation. Moreover, the randomness of the

errors involved in the MC simulation is another disadvantage of this approach, especially for sensitivity

analysis. The second class of approaches exploits the conditional independence structure to approximate

the loss probabilities by the law of large numbers (LLN) [20, 21]. The advantage of the asymptotic

approximations lies in their efficiency: they use much less computational time than MC simulation. On

the other hand, they suffer from inaccuracy, to some extent, if the portfolio is not fine-grained enough.

To improve the accuracy of the LLN approximations, granularity adjustments have been studied by

Gordy [20, 21], Wilde [60], Martin and Wilde [40] for the single-factor setting, and by Pykhtin [51]

for the multi-factor setting. The last class of approaches computes loss probability exactly, although

these approaches are still subject to some roundoff errors and possibly aliasing errors. One subclass of

the exact methods computes the conditional loss probability directly or indirectly by a discrete linear

convolution [3, 13, 15, 41, 43]. The most straightforward approach is to compute the linear convolution

directly, which in general leads to an algorithm with complexity O
(
K2 +NK

)
, where K is the number

of points in the distribution of portfolio losses and N is number of obligors in the portfolio. Another

popular approach is to compute the linear convolution by fast Fourier transforms (FFTs), which reduces

the complexity to O (NK log2K).

In this thesis, we propose several new methods to compute conditional loss probabilities. First, we

introduce an asymptotic approximation based on the central limit theorem (CLT). We prove that both
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the conditional and unconditional loss distributions converge to our CLT limiting distribution under

conditions similar to those used by Gordy to prove the convergence of the LLN approximation. We

analyze the error incurred by the CLT approximation by using Berry-Esseen-type bounds. Secondly, we

improve the efficiency of the exact methods by exploiting the sparsity that often arises in the obligors’

conditional losses. We develop a sparse convolution method which enjoys a speedup between Ω
(
α2
)

and Ω
(
α2CN

)
compared with the straightforward convolution method, where C is the number of rating

classes in a credit rating system, and α is a spacing constant. To further accelerate the computation, we

introduce a truncated sparse convolution method, which is subject to some additional truncation error

to a user-specified level, but gives a significant speedup compared to the sparse convolution method.

Moreover, we develop a sparse FFT method which gives a speedup of Ω (K/N) in the best case and

Ω (K/ (N log2 C)) in the worst case. We also construct a truncated sparse FFT method to further

improve its efficiency, with an optimal exponential windowing approach used to balance aliasing errors

and roundoff errors. Lastly, for “lumpy” portfolios, composed of a fairly homogeneous sub-portfolio

and an inhomogeneous sub-portfolio having very large exposure to a few obligors, we propose a hybrid

method combining an asymptotic method with an exact method or MC simulation to achieve a good

balance between accuracy and efficiency to compute loss distribution and VaR.

The rest of this thesis is organized as follows. Chapter 2 discusses credit risk at the obligor’s level and

at the portfolio level, and introduces the general model setting. Chapter 3 outlines the structural models

and the multi-factor correlation model, and describes how to calculate the portfolio loss probability using

a two-level computation. In Chapter 4, we first review the LLN approximation and then we introduce the

CLT approximation. Chapter 5 discusses the (truncated) sparse convolution method and the (truncated)

sparse FFT method, and compares their performance to the traditional full convolution method and the

full FFT method. In Chapter 6, we introduce the hybrid method. Finally we present our conclusions

and discuss future work, including our new importance sampling approach, in Chapter 7.
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Chapter 2

Preliminaries

2.1 Credit Risk

When investors, either institutional or individual, purchase a financial instrument, such as a bond, issued

by a firm, an important point that they should consider is whether the firm will have the ability to pay

interest during the term of the bond, and to repay the principle at maturity. If for some reason the firm

defaults on a payment (coupon or principal), investors will suffer a financial loss. Although defaults are

not frequent events, if they take place, they often result in significant losses. The risk of loss due to

default is often called default risk, which is the most commonly considered credit risk.

To describe the credit worthiness of bonds, rating companies, such as Moody’s, Standard & Poor’s

(S&P) and Fitch, provide credit ratings for firms. In addition, some institutional investors also use their

own internal methods to rate firms. Though the credit rating is associated with the credit worthiness of

a bond, almost all bonds issued by a firm have the same rating, so the credit rating can be considered

as an attribute of a firm. Table 2.1 shows the credit ratings offered by different rating companies and

the risk worthiness corresponding to each rating class.

If a firm’s financial health deteriorates or the economy exhibits a downturn, a firm’s credit rating

might be downgraded to a lower rating class by rating companies, although the frequency of rating

migrations is relatively low. Once a rating downgrade happens, the value of this firm’s bonds and

associated derivatives, such as CDS, will likely drop, which usually results in the debt holders’ financial

loss. The risk associated with rating migrations is called migration risk, which is another aspect of credit

risk.

Quantifying the credit risk of a firm is not an easy task, since default or credit migration events occur
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Table 2.1: Credit ratings offered by different rating companies

Credit Ratings
Risk Worthiness

Moody’s S&P Fitch

Aaa AAA AAA Credit risk almost zero.

Aa1 AA+ AA+

Aa2 AA AA Safe investment, low risk of failure.

Aa3 AA- AA-

A1 A+ A+

Safe investment, unless unforeseen events should occur in the
economy at large or in that particular field of business.A2 A A

A3 A- A-

Baa1 BBB+ BBB+

Moderately safe investment. Problems may arise if the
economy deteriorates.Baa2 BBB BBB

Baa3 BBB- BBB-

Ba1 BB+ BB+
Speculative investment. Problems likely to arise if the
economy deteriorates. Usually difficult to predict future
developments.

Ba2 BB BB

Ba3 BB- BB-

B1 B+ B+

B2 B B Speculative investment. Deteriorating situation expected.

B3 B- B-

Caa1 CCC+

CCC Bankruptcy or other serious business problems very likely.
Caa2 CCC

Caa3 CCC-

Ca CC

DDD

Bankruptcy or lasting inability to make payments almost
certain.\ D DD

D
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Table 2.2: Credit migration matrix (Source: S&P)

AAA AA A BBB BB B CCC/C D

AAA 95.60% 2.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

AA 0.60% 91.37% 3.21% 0.00% 0.00% 0.00% 0.00% 0.00%

A 0.00% 2.90% 86.26% 2.75% 0.22% 0.30% 0.07% 0.00%

BBB 0.00% 0.26% 3.81% 83.69% 2.70% 0.66% 0.07% 0.00%

BB 0.00% 0.00% 0.00% 6.72% 75.26% 6.44% 0.09% 0.19%

B 0.00% 0.00% 0.00% 0.08% 7.43% 75.40% 2.56% 0.24%

CCC/C 0.00% 0.00% 0.00% 0.00% 0.00% 20.00% 45.45% 14.55%

D 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

unexpectedly. To help understand this randomness, a credit migration matrix, which gives probabilities

of migration from one rating class to another in a given period (usually one year), is calculated by rating

companies. For example, Table 2.2 shows S&P’s 2007 global migration matrix for a one-year period.

It shows, for example, that the probability that a BB firm will be downgraded to B within one year is

6.44%, while the probability that a BB firm will default on its bonds within one year is 0.19%.

Such credit migration matrices are calculated based on default models and huge proprietary databases.

Different rating companies use different default models, among which structural models are very pop-

ular in both industry and academia. The first structural model was proposed by Merton [44] in 1973,

and many industrial structural models have been developed, such as JP Morgan’s CreditMetrics model

[12, 22] and Moody KMV’s KMV model [11, 12]. In the next chapter, we discuss Merton’s model and

the CreditMetrics model.

2.2 Credit Risk in Credit Portfolios

At the portfolio level, credit risk is more complicated, since the distribution of credit portfolio losses

is highly skewed and fat-tailed (as shown in Figure 2.1). Therefore, the two statistical measures mean

and variance, which are frequently used to analyze market risk in equity portfolios, are not sufficient

to help us understand the credit risk. Instead, quantile-based risk measures, such as VaR and CVaR,

need to be used. Moreover, to understand the risk involved in some complex credit derivatives, such as

collateralized debt obligations and basket credit derivatives, risk managers need to compute the whole

loss distribution.

Handling credit quality correlations of obligors in the portfolio is another challenge. A credit portfolio

may consist of thousands of obligors, and the default correlation is embedded at different levels. First, all
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Figure 2.1: Loss distribution of a credit portfolio

obligors are more or less affected by the macro economic conditions. When the economy booms, obligors

are generally more financially healthy, and they are more likely to fulfill their obligations. On the other

hand, if the economy is in recession or even in depression, the chance that obligors will default is much

higher. Second, many obligors belong to the same industry sector. If the entire industry sector develops

significant financial difficulties, such as supply-demand problems or policy adjustment, all obligors in

this industry sector will suffer simultaneously. Moreover, there might be a direct relationship between

some obligors, such as a borrower-lender relationship. In this case, the default dependency between them

may be very high. To model the correlations between different obligors, a multi-factor decomposition is

often used. This is discussed in more detail in Section 3.2.

2.3 General Model Settings

In this thesis, we consider a portfolio consisting of N obligors. To avoid cumbersome notation, we assume

that each obligor has only one loan. This assumption does not result in a loss of any generality, at least

in the single period case. As mentioned above, in most cases, loans issued by the same obligor have the

same credit rating. Moreover, if a credit event happens to any of the loans of this obligor, all loans of

the obligor will experience the same credit migration. Therefore, we can consider all loans issued by

the same obligor as being merged into one new loan. Also, we restrict our model to consider one-period

[t0, t1], where t1 − t0 = 1. This means that credit events can happen only at t1. We build a portfolio at

t0, and keep the composition of the portfolio unchanged until t1. If at t1 no credit event happens, then

there is no loss or gain due to credit changes. On the other hand, if a credit event happens at t1, there

will likely be an associated portfolio loss or gain.

Since this paper aims to study how to compute the loss distribution at the portfolio level, risk
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attributes at the obligor level will be treated as input data to our model. One can consider this method-

ology as an analogy to an important principle in object-oriented programming (OOP): when viewing

programs at the “high level”, programmers concentrate on properties of objects and interactions between

objects; the mechanisms and data structures inside objects being encapsulated are not considered until

the programmer considers the “low level” implementation of the object.

These risk attributes are:

• c = 0, . . . , C − 1: Credit states, indicating risk ratings of obligors. c = 0 is associated with default,

while c = C − 1 represents the highest credit rating. If C = 2, then there are two credit states of

an obligor: default (c = 0) or not default (c = 1).

• P cc(n), n = 0, . . . , N − 1, c = 0, . . . , C − 1: Probability that the obligor n will migrate from its

current credit rating c(n) at time t0 to credit rating c at time t1, which is obtained from credit

migration matrices. Obligors with the same initial credit rating share the same probabilities of

credit migration. In particular, P 0
c(n) is the probability that obligor n will default at time t1.

• EADn, n = 0, . . . , N − 1: Exposure-at-default of obligor n is the value of obligor n’s loan at time

t1 given that this obligor’s credit status is unchanged at time t1;

• LGCcn, n = 0, . . . , N − 1, c = 0, . . . , C − 1: Loss-given-credit-event of obligor n, which is a

generalization of loss-given-default, indicating the percentage loss/gain of the loan value if obligor

n’s credit rating migrates from c(n) at time t0 to c at time t1. Different obligors’ LGCs may be

different, even though their current credit rating may be the same. In particular, LGC0
n represents

the loss-given-default of the obligor n, which equals 1 − Rn, where Rn is the recovery rate of

obligor n. In our model, LGCcn are assumed to be deterministic: they can be estimated by the

expectation of the percentage loss. Note that, if the credit rating of an obligor improves, then

its loss-given-credit-event is negative. For convenience, from now on we use only “loss” instead of

“loss/gain” with the understanding that a negative loss is a gain.

For obligor n, the loss associated with a credit event is a random variable:

L̃n = EADnLGCcn with probabilityP cc(n).

Equivalently, L̃n can be expressed as

L̃n = EADn

C−1∑
c=0

LGCcnIcn, (2.3.1)
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where

Icn =


1, if obligor n is in credit state c at time t1,

0, otherwise.

Note that, for each obligor, Ic1n and Ic2n are not independent. Rather, they are negatively correlated with

Corr [Ic1n , Ic2n ] = − 1√(
1

P
c1
c(n)

− 1

)(
1

P
c2
c(n)

− 1

) ,

since any obligor can end up in only one credit state. That is, if Ic∗n = 1, then Icn = 0,∀c = 0, . . . C − 1

for which c 6= c∗. Corr [Ic1n , Ic2n ] is within [−1, 1] since 0 ≤ P c1c(n) + P c2c(n) ≤ 1 implies

(
1

P c1c(n)

− 1

)(
1

P c2c(n)

− 1

)
=

1−
(
P c1c(n) + P c2c(n)

)
P c1c(n)P

c2
c(n)

+ 1 ≥ 1.

Given each obligor’s loss in (2.3.1), the portfolio loss is the sum of each loss:

L̃ =

N−1∑
n=0

L̃n.

Instead of modeling the dollar amount of the loss, it is often more useful to consider the rate of portfolio

loss:

L =

∑N−1
n=0 L̃n∑N−1

n=0 EADn

=

N−1∑
n=0

[(
EADn∑N−1
k=0 EADk

)
C−1∑
c=0

LGCcnIcn

]
.

Note that coefficient EADn/
∑N−1
k=0 EADk is the obligor’s weight in the total portfolio exposure. These

weights are the decision variables when we build a credit portfolio or perform risk analysis. Let ωn =

EADn/
∑N−1
k=0 EADk, and Ln =

∑C−1
c=0 LGCcnIcn, then the portfolio loss rate can be written as

L =

N−1∑
n=0

ωnLn. (2.3.2)
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Chapter 3

Multi-factor Structural Model

Structural models are used to analyze a firm’s credit events based on assumptions about the firm’s

capital structure. This class of models can be traced back to Merton’s paper [44], in which a firm is

assumed to be financed only by equity and zero coupon bonds. By further assuming the dynamics of

the firm’s asset value to be a geometric Brownian motion, the value of the firm’s equity and debt can

be treated as options on the firm’s assets. With this capital structure, a firm’s default occurs when

its asset value falls below its debt level, which can be modeled by a latent standard normal random

variable falling below a certain threshold. Consequently, the default probability of a firm is equal to the

probability that this latent variable falls below the threshold. Therefore, this class of models are also

called latent variable models. Based on Merton’s model, many industrial structural models have been

developed, among which JP Morgan’s CreditMetrics model is the most popular.

As mentioned in the previous chapter, when it comes to analyzing the credit risk of a portfolio

consisting of loans issued by different firms (obligors), the marginal default probabilities computed from

structural models are not enough to determine the joint loss probability of a portfolio, since the changes

in credit status of obligors are not independent. Therefore, it is crucial to estimate the correlations

of different obligors’ asset returns for portfolio credit risk analysis. However, it is very inefficient to

estimate the pairwise correlations directly. Consider a portfolio containing loans issued by N different

obligors, then there are N(N − 1)/2 parameters to estimate. It is common that a financial institution

holds a very large portfolio containing thousands of obligors in order to diversify risk, thus the total

number of correlations is staggering. Therefore, to estimate the correlations efficiently, a multi-factor

decomposition is usually applied.

In this chapter, we first discuss Merton’s model and the CreditMetrics model in Section 3.1, then
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we introduce the multi-factor decomposition in Section 3.2. Applying the multi-factor structural model,

we describe how to calculate the portfolio loss probability in a two-level computation and the challenges

faced by traditional MC simulation for such a computation in Section 3.3.

3.1 Structural Models

3.1.1 Merton’s Model

Merton’s model assumes that a firm is financed only by equity, S(t), and a single zero coupon bond,

D(t), with principle D and maturity T . Therefore, the asset value of a firm at any time t ∈[0, T ] is

A(t) = S(t) +D(t).

Further, the model assumes that the asset value can be described by a geometric Brownian motion with

drift µA and volatility σA

dA(t) = µAA(t)dt+ σAA(t)dB(t),

or equivalently

A(t) = A(0)e(µA−
1
2σ

2
A)t+σAB(t), (3.1.1)

where B(t) is a Brownian motion.

As shown in Fig. 3.1, two scenarios may happen at time T .

• Scenario 1: A(T ) ≥ D, the firm is able to pay the debt, and no default occurs (as shown by the blue

line in Figure 3.1). In this scenario, debt holders of the firm get their principle back D(T ) = D,

while shareholders of the firm receive the residual E(T ) = A(T )−D;

• Scenario 2: A(T ) < D, the firm is not able to pay the debt, and default takes place (as shown

by the green line in Figure 3.1). In this scenario, debt holders take over the firm, and receive the

firm’s total assets D(T ) = A(T ), while shareholders of the firm receive nothing.
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Figure 3.1: Merton’s model: default vs. no default
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Therefore, the payoff for the shareholders at the maturity T is max(A(T )−D, 0), which is the same

as the payoff of a European call option on the firm’s asset value A(t) with maturity T and strike price

D. Given the dynamics of A(t) in (3.1.1) and assuming a constant risk-free interest rate r, the value of

equity of the firm can be calculated by the Black-Scholes formula:

E(t) = fBS (A(t), σA, D, r, T ) (3.1.2)

= A(t)Φ (d1)−De−r(T−t)Φ (d2) ,

where

d1 =
ln(A(t)/D) +

(
r + σ2

A/2
)

(T − t)
σA
√
T − t ,

d2 = d1 − σA
√
T − t,

=
ln(A(t)/D) +

(
r − σ2

A/2
)

(T − t)
σA
√
T − t

(3.1.3)

and Φ(x) is the cumulative distribution function (CDF) of a standard normal distribution.

Similarly, the payoff to the debt holders at maturity T is

min(A(T ), D) = D −max(D −A(T ), 0),

which equals the payoff of a risk-free bond with face value D and maturity T plus a short position in

a European put option in the firm’s asset value A(t) with maturity T and strike price D. Therefore,

according to the Black-Scholes formula, the value of the debt at time t is

D(t) = De−r(T−t) −
[
De−r(T−t)Φ(−d2)−A(t)Φ(−d1)

]
.

12



We can also calculate a firm’s default probability. As discussed above, in Merton’s model, the event

that a firm defaults is equivalent to the event {A(T ) < D}, whence, if the dynamics of A(t) are given

by (3.1.1), then the default probability equals

P {A(T ) < D} = P {lnA(T ) < lnD}

= P
{
B(T ) <

lnD − lnA(0)− (µA − 1
2σ

2
A)T

σA

}
.

Define

Y := B(T )/
√
T , (3.1.4)

then Y is a standard normal random variable, since B(T ) ∼ N (0, T ). Therefore,

P {A(T ) < D} = P
{
Y < lnD − lnA(0)− (µA − 1

2σ
2
A)T

σA
√
T

}
= Φ

(
lnD − lnA(0)− (µA − 1

2σ
2
A)T

σA
√
T

)
= Φ

(
−d̃2

)
, (3.1.5)

where

d̃2 =
ln(A(0)/D) +

(
µA − σ2

A/2
)
T

σA
√
T

. (3.1.6)

Note the difference between d̃2 in (3.1.6) and d2 in (3.1.3). In (3.1.3), we price the option in the “risk-

neutral world”, so the risk-free rate r is used. On the other hand, since the default probability in (3.1.5)

is in the “real world”, we use µA instead of r. Also notice that the random variable Y also has an

economic interpretation. It is the normalized log-return of a firm’s assets, and it can be considered to

be the creditworthiness index of a firm. The creditworthiness is the only source of uncertainty in this

model. When the creditworthiness increases, the obligor becomes more credit-worthy. On the other

hand, if the creditworthiness decreases below a certain level, default takes place.

3.1.2 CreditMetrics Model

Although Merton’s model is conceptually quite appealing, it suffers from a significant disadvantage in

practice. It can handle only two credit states: default or no default. In practice, however, a firm’s loan

may have capital losses (gains) if the firm is downgraded (upgraded) by rating agencies. Merton’s model

ignores the migration risk. To address these issues, several industrial models have been developed to

extend Merton’s model. In this subsection, we review JP Morgan’s CreditMetrics model.

13



The CreditMetrics model relies on a rating agency’s credit rating system, as we discussed in the

previous chapter, which specifies the credit rating of a firm and the probabilities that a firm migrates

from one rating class to others in a given time interval. One strong assumption that the CreditMetrics

model makes is that firms with the same credit rating have the same migration probabilities. This

assumption is controversial. On the one hand, it simplifies the model, since financial institutions do

not need to compute every firm’s rating-migration probabilities. Instead, they can directly use rating-

migration probabilities of corresponding rating classes offered by the rating agencies to approximate

the firm’s rating-migration probabilities, which significantly reduces the computation. However, this

assumption ignores the heterogeneity of firms in the same rating class, and forces financial institutions

to rely purely on the rating agencies’ methodology and data. Crouhy et al. [12] mention that the rating

agencies are slow to change their ratings. That is, some firms which should be downgraded or upgraded

may remain in their current rating class for some time. Therefore, this assumption reduces the accuracy

of rating-migration probabilities.

To incorporate migration risk into Merton’s model, as shown in Figure 3.2 the CreditMetrics model

defines a series of thresholds for each rating class in such a way that the rating-migration probabilities

obtained from these thresholds match those in the credit migration matrix offered by a rating agency.

Specifically, let c = 0, . . . , C − 1 represent the credit ratings, where c = 0 is associated with default,

c = C − 1 represents the highest credit rating, and denote the event that the credit rating of a firm with

current rating c1 migrates to rating c2 at time T by Ac2
c1 . Define thresholds Hc2

c1 , c1, c2 = 0, . . . , C − 1,

such that

P
{

Ac2
c1

}
= P

{
Hc2−1
c1 ≤ Y < Hc2

c1

}
with H−1

c1 = −∞, (3.1.7)

where Y is the creditworthiness index introduced in (3.1.4). If we let P c2c1 be the probability that the

credit rating of a firm with current rating c1 will migrate to rating c2 at time T from the T -year credit-

migration probability matrix in Table 2.2, then

P
{
Hc2−1
c1 ≤ Y < Hc2

c1

}
= P c2c1 . (3.1.8)

Since Y ∼ N (0, 1), it follows that

Hc2
c1 = Φ−1

∑
ζ≤c2

P ζc1

 .
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Figure 3.2: CreditMetrics model

3.2 Multi-factor Decomposition

To incorporate correlations between obligors, Vasicek [58] suggested a decomposition of the individual

credit worthiness index into an affine combination of the systematic risk factor Z and the idiosyncratic

risk factor En:

Yn = βnZ +
√

1− β2
nEn (3.2.1)

where Z and En are independent standard normal random variables.

The decomposition (3.2.1) is also known as the single-factor model. It divides the credit risk into

two sources:

• Systematic risk Z: This is a common risk to all obligors. It reflects the overall economic climate,

and captures the impact of the macroeconomic environment on individuals.

• Idiosyncratic risk En: This is obligor n’s specific risk, which is neither dependent on the macroe-

conomic environment nor on other obligors’ credit status.

The coefficient βn is obligor-specific: it represents the sensitivity of obligor n to the macroeconomic

environment. Also, to keep Yn standard normal, the coefficients of the idiosyncratic risk factors are

defined to be
√

1− β2
n. In this model, βn functions as a controller to adjust the proportions of risk

coming from the systematic factor and from the idiosyncratic factor. Higher βn implies more exposure

to the systematic factor and less exposure to the idiosyncratic factor. Moreover, βn is related to the

correlation between obligors, since different obligors are correlated through the common systematic risk

factor Z:

Corr [Yi,Yj ] = Corr [βiZ, βjZ]

= βiβj . (3.2.2)

The single-factor model is often used to model correlations, but it has several severe shortcomings.
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As we mentioned in Section 2.2, obligors may belong to different industrial/regional sectors, and each

sector has its own risk structure. Therefore, a model with a common systematic factor is too simplistic

to capture the characteristics of losses in portfolios with an unequal distribution of risks from different

sectors. As a remedy, assume that there are K sectors in the portfolio, and that obligor n belongs to

one sector k(n) only, then one can apply a finer decomposition to the creditworthiness index:

Yn = αnXk(n) +
√

1− α2
nEn,

Xk =

S−1∑
s=0

γk,sZs, k = 0, . . . ,K − 1, (3.2.3)

where
∑S−1
s=0 γ

2
k,s = 1, and the components of the vector [Z,E]T = [Z1, . . . ,ZS , E1, . . . , EN ]T are inde-

pendent standard normal random variables.

In this multi-factor model, there are K sectorial credit drivers {Xk} , created by taking affine com-

binations of S systematic risk factors {Zs}. Note that Xk ∼ N(0, 1) since it is an affine combination

of independent standard normal random variables {Zs} with weights γk,s satisfying
∑S−1
s=0 γ

2
k,s = 1.

The sectorial drivers are characterized by the factor loadings, {γ·,s}, and they represent sector-specific

sensitivities to systematic risk factors. Therefore, each sector has its unique credit driver, and different

credit risk profiles across sectors can be handled.

Within the same sector k, an obligor’s credit worthiness index depends only on the sector’s risk

driver, Xk, and the obligor’s idiosyncratic risk factor, En. Thus, a multi-factor model creates a new

sectorial level between the portfolio level and the obligor level. At the portfolio level, there are several

systematic risk factors {Zs}, but at each sectorial level, it is just a single-factor model with different

sector risk factors Xk. Since each sector has its own sector-specific risk driver, sectorial credit drivers

are a better choice than the common risk factor in the single-factor model.

The correlations embedded in the multi-factor model are more complicated than in the single-factor

model. Unlike a single-factor model, a multi-factor model correlates obligors through multiple systematic

factors {Zs}:

Corr [Yi,Yj ] = Corr
[
αiXk(i), αjXk(j)

]
= αiαjCorr

[
S−1∑
s=0

γk(i),sZs,
S−1∑
s=0

γk(j),sZs
]

= αiαj

S−1∑
s=0

γk(i),sγk(j),s. (3.2.4)

Comparing (3.2.2) and (3.2.4), we see that the multi-factor model can accommodate a more complex
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correlation structure than the single-factor model.

Several industry multi-factor correlation models have been developed based on the multi-factor model

(3.2.3), among which CreditMetrics Multi-factor Correlation Model [22] and KMV’s Global Correlation

ModelTM [6, 12] are the most popular. The two methods differ mainly in their calibration. Since the

asset value of a company is not observable in the market, the calibration is not straightforward. The

CreditMetrics model uses the correlation between equity returns as a proxy for calculating correlations

of asset returns, while the KMV model applies a more sophisticated iterative procedure to calibrate asset

correlations using asset return data. More details on the calibration of multi-factor models can be found

in [6, 12, 22, 24].

3.3 Computational Challenges for the Multi-factor Structural

Model

If we apply the CreditMetrics model, then the individual loss Ln =
∑C−1
c=0 LGCcnIcn in (2.3.2) changes to

Ln =

C−1∑
c=0

LGCcnI{Hc−1
c(n)
≤Yn<Hcc(n)

}, (3.3.1)

where Hc
c(n) = Φ−1

(∑
γ≤c P

γ
c(n)

)
. The multi-factor decomposition in (3.2.3) can be written as

Yn = βTnZ +

√
1− βTnβnEn, (3.3.2)

where βn = (β1n, . . . , βSn)
T and βsn = αnγk(n),s is obligor n’s sensitivity to the systematic risk factor

s. Substituting (3.3.2) into (3.3.1) and re-arranging terms gives

Ln =

C−1∑
c=0

LGCcnI{H
c−1
c(n)
−βTnZ√

1−βTnβn
≤En<

Hc
c(n)
−βTnZ√

1−βTnβn

},

and the portfolio loss rate (2.3.2) is extended to

L = L(N)(Z,E) =

N−1∑
n=0

L̃n(Z,E),
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where

L̃n(Z,E) = ωnLn(Z,E),

Ln(Z,E) = Ln =

C−1∑
c=0

LGCcnI{H
c−1
c(n)
−βTnZ√

1−βTnβn
≤En<

Hc
c(n)
−βTnZ√

1−βTnβn

}, (3.3.3)

with H−1
c(n) = −∞.

Given a quantile l, the loss probability of a portfolio can be computed as

P
{
L(N)(Z,E) ≤ l

}
= E

[
P
{
L(N)(Z,E) ≤ l

∣∣∣Z}]
=

ˆ
RS

P
{
L(N)(z,E) ≤ l

}
dΦS(z). (3.3.4)

The computation of (3.3.4) can be divided into two levels: an outer-level integration and an inner-

level conditional loss probability calculation. For the outer-level integration, if there are a few (e.g. one

to three) systematic risk factors only, then we can use a quadrature method to approximate the integral.

If the number of systematic risk factors, S, is more than a few but not many (e.g. four or five), then

possibly sparse grid integration techniques may be effective. However, S is usually large. Hence, standard

quadrature techniques (and possibly even sparse-grid methods) would require too much computation.

In practice, Quasi Monte Carlo (QMC) simulation is usually applied to generate U realizations of the

systematic risk factor Z(u), u = 1, . . . , U , and the loss probability is approximated by

P
{
L(N)(Z,E) ≤ l

}
= E

[
P
{
L(N)(Z,E) ≤ l

∣∣∣Z}]
≈ 1

U

U∑
u=1

P
{
L(N) (Z,E) ≤ l

∣∣∣Z = Z(u)
}
. (3.3.5)

For the inner-level, we must compute the conditional probability

P
{
L(N) (z,E) ≤ l

}
= P

{
L(N) (Z,E) ≤ l

∣∣∣Z = z
}
.

In practice, a MC simulation is often used. For each realization of Z = Z(u), one samples from the

multivariate normal distribution N (0, I) to obtain observations of the individual risk drivers E(u,v), v =
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1, . . . , V , then the conditional loss probability can be estimated by

P
{
L(N)

(
Z(u),E

)
≤ l
}

= E
[
I{L(N)(Z(u),E)≤l}

]
≈ 1

V

V∑
v=1

I{L(N)(Z(u),E(u,v))≤l}, (3.3.6)

where

L(N)
(
Z(u),E(u,v)

)
=

N−1∑
n=0

ωn

C−1∑
c=0

LGCcnI{H
c−1
c(n)
−βTnZ(u)

√
1−βTnβn

≤E(u.v)
n <

Hc
c(n)
−βTnZ(u)

√
1−βTnβn

}
 . (3.3.7)

Substituting (3.3.6) into (3.3.5), the unconditional loss probability is estimated by the unbiased estimator

P
{
L(N)(Z,E) ≤ l

}
≈ 1

UV

U∑
u=1

V∑
v=1

I{L(N)(Z(u),E(u,v))≤l}. (3.3.8)

The simulation-based approximation is based on MC simulation, which is very computationally

intensive. Since this is a two-level simulation, we need to generate U · V scenarios. For each realization

of the systematic risk factor Z = Z(u), V · N independent random numbers must be generated to

approximate one conditional loss probability, whence U · (V ·N + S) independent random numbers are

required to approximate one unconditional loss probability. Also, to satisfy the accuracy requirement,

we must either let both U and V be very large or solve an optimization problem to choose appropriate U

and V . (See [25] for a discussion of the sample-size allocating problem.) Meanwhile, given realizations of

random numbers, the computational cost of calculating the portfolio loss L(N)
(
Z(u),E(u,v)

)
increases

with the portfolio size N . When the number of obligors in the portfolio is very large, MC simulation

could be very computationally intensive. To accelerate the computation, Glasserman et al. [18, 19]

developed an importance sampling technique for both the inner-level and outer-level simulations to

capture rare large losses more efficiently. However, even with this acceleration, MC simulation is still

very computationally intensive.
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Chapter 4

Asymptotic Approximation

One intriguing feature of the multi-factor structural model is that, conditional on the sectorial (sys-

tematic) risk factors, the losses from the individual obligors’ loans are independent since the obligors’

individual risk factors En are independent. Together with the huge size of some portfolios, this condi-

tional independence gives rise to a class of approximations to the conditional portfolio loss probabilities,

based on the asymptotic behavior of the conditional losses of large portfolios. In this chapter, we first

review the existing asymptotic approximation based on the law of large number (LLN) in Section 4.1,

then we introduce a new asymptotic approximation based on the central limit theorem (CLT) in Section

4.2. For a special class of portfolios, which we call “lumpy portfolios”, we develop a hybrid approximation

which combines the asymptotic approximation (CLT or LLN) and the MC approximation in Section 6.1.

Numerical results which compare these different approximations are presented in Section 4.3.

To begin, we make the following realistic assumptions on our model parameters:

1. ∃ LGCmax <∞ such that ∀ n ∈ {0, . . . , N − 1}, ∀ c ∈ {0, . . . , C − 1}, |LGCcn| ≤ LGCmax ;

2. ∃ EADmax <∞ such that ∀ n ∈ {0, . . . , N − 1}, |EADn| ≤ EADmax ;

3. ∀ n ∈ {0, . . . , N − 1},
∣∣LGCin − LGCjn

∣∣ ≥ ξ > 0 if i 6= j, and LGCcn satisfy


LGCcn > 0, c(n) > c,

LGCcn = 0, c(n) = c,

LGCcn < 0, c(n) < c;

4. ∀ n ∈ {0, . . . , N − 1}, c(n) 6= 0;
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5. ∃ Pmax ∈ [0, 1) such that ∀ n ∈ {0, . . . , N − 1}, ∀ c(n) ∈ {1, . . . , C − 1}, ∀ c ∈ {0, . . . , C − 1},

0 ≤ P cc(n) ≤ Pmax;

6. ∃ βmax ∈ [0, 1) such that ∀ n ∈ {0, . . . , N − 1}, βTnβn ≤ βmax;

7.
∑N−1
n=0 EADn 6= 0.

Assumptions 1 and 2 are required to prove some of the mathematical results we state later; they are

always satisfied in practice. The third assumption guarantees that a change of credit rating will impact

the value of a loan. More specifically, downgrading (upgrading) will decrease (increase) a loan’s value.

The fourth condition indicates that each obligor is not in the default state at time t = t0. The fifth

assumption ensures that any non-default obligor that is in credit state c(n) 6= 0 at time t = t0 will not be

in a certain credit state c at time t = t1 almost surely (i.e. P cc(n) 6= 1 for any c ∈ {0, 1, . . . C− 1}). If this

were not the case, the loss to this obligor at t1 would be deterministic, whence we would not need this

probabilistic model to calculate it. The sixth condition guarantees the validity of the decomposition of

the creditworthiness index Yn in (3.3.2). Moreover, the assumption that βmax < 1 is reasonable since no

obligor can be perfectly correlated to one systematic risk factor or a combination of several systematic

risk factors. The last condition ensures that the weights ωn = EADn/
∑N−1
n=0 EADn are meaningful.

4.1 The LLN Approximation

In 2003, Gordy wrote a seminal paper [20], in which he studied the asymptotic behavior of portfolio

losses conditional on the systematic risk factors. He proved that, if the portfolio is infinitely fine-grained,

that is, no obligor’s exposure exceeds an arbitrarily small portion of the total portfolio exposure, then,

conditional on the sectorial risk factors, the portfolio loss converges to its expectation. Specifically,

Gordy proves that, under the following assumptions

1. ∃ δ > 0 such that supn {|ωn|} = O
(
N−(1/2+δ)

)
,

2.
∑N−1
n=0 EADn →∞ as N →∞,

the LLN can be applied, and that the conditional portfolio loss converges to its expectation as N tends

to infinity:

L(N) (z,E)
a.s.−→ E

[
L(N)(z,E)

]
, asN →∞.

Therefore, denoting E
[
L(N)(z,E)

]
by µ(N)(z), the conditional loss probability can be approximated by

P
{
L(N) (z,E) ≤ l

}
≈ I{µ(N)(z)≤l}, (4.1.1)
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and the unconditional loss probability can be approximated by

P
{
L(N)(Z,E) ≤ l

}
≈ 1

U

U∑
u=1

I{µ(N)(Z(u))≤l}.

The beauty of the LLN approximation lies in its simplicity. Compared with the MC approximation,

the computational work is substantially reduced. Only U scenarios and U · S random numbers need

to be generated, and the inner-level simulation is simply replaced by the evaluation of a Heaviside step

function. Numerical results show that the LLN approximation works well for fine-grained homogeneous

portfolios. However, the difference between the LLN limiting distribution and the true distribution can

be significant if the portfolio is either coarse-grained or heterogeneous (see Han [23]). To improve the

LLN approximation, granularity adjustments for portfolio VaR and ES have been studied by Gordy

[20, 21], Wilde [60], Martin and Wilde [40] for the single-factor setting, and by Pykhtin [51] for the

multi-factor setting. However, a significant amount of extra computation is required by all of these

granularity adjustments, especially for the multi-factor setting.

4.2 The CLT Approximation

To achieve better accuracy than the LLN approximation, without increasing the computational work

significantly, several researchers [36, 52] have mentioned that the central limit theorem (CLT) can be

applied to approximate the conditional loss, but the convergence of this asymptotic approximation has

not been established. In this section, we prove the convergence based on the Linderberg’s version of

CLT. Also, the error incurred in this approximation is examined.

4.2.1 The Approximation and Convergence

Like Gordy [20], we utilize the fact that, conditional on the realization of the systematic risk factorZ = z,

the individual risk factors, En, n = 0, . . . , N − 1, are mutually independent. Hence the conditional loss

is the sum of N independent random variables L̃n (z,E):

L(N) (z,E) =

N−1∑
n=0

L̃n (z,E) .

If L̃n (z,E) were identically distributed, the classic CLT would be enough to show that

L(N)(z,E)− µ(N)(z)

σ(N)(z)

d→ N (0, 1).
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However, a difficulty here is that the L̃n (z,E) are not identically distributed. Nevertheless, we are

able to show that, under conditions similar to those used by Gordy [20], Linderberg’s version of the

CLT guarantees that the normalized conditional loss converges to a standard normal random variable

in distribution. This result is stated more precisely in the following theorem.

Theorem 4.1. Conditional on Z = z <∞, if ∃ δ > 0 such that supn {|ωn|} = O
(
N−(1/2+δ)

)
, then the

normalized conditional portfolio loss converges in distribution to a standard normal random variable:

L(N)(z,E)− µ(N)(z)

σ(N)(z)

d→ N (0, 1),

as N →∞, where µ(N)(z) = E
[
L(N)(z,E)

]
and σ(N)(z) =

√
V
[
L(N)(z,E)

]
.

A proof of this theorem, based on Linderberg’s version of the CLT, is given in Appendix A. As a

consequence of this theorem, given any loss quantile l, the loss probability conditional on Z = z satisfies

P
{
L(N)(z,E) ≤ l

}
− Φ

(
l − µ(N)(z)

σ(N)(z)

)
= P

{
L(N)(z,E)− µ(N)(z)

σ(N)(z)
≤ l − µ(N)(z)

σ(N)(z)

}
− Φ

(
l − µ(N)(z)

σ(N)(z)

)
→ 0

for all z ∈ DS as N →∞.

The condition supn {|ωn|} = O
(
N−(1/2+δ)

)
in Theorem 4.1 on the weights ωn is the same as condition

1 for Gordy’s LLN approximation. This condition can be considered as a granularity condition: it

guarantees that the largest weight vanishes with a rate of O
(
N−(1/2+δ)

)
as N → +∞. This condition

also implies that the portfolio’s Herfindahl-Hirschman Index (HHI), defined by HHI =
∑N−1
n=0 ω

2
n, which

is the most commonly used empirical measure for the name concentration of a portfolio, tends to zero

with at least a rate of O
(
N−2δ

)
. In practice, this is not a very strong restriction for large financial

institutions, since portfolios held by most large financial institutions are well-diversified.

Consequently, the following theorem shows that, as the condition in Theorem 4.1 is satisfied, then

the unconditional loss probability converges to the CLT limiting unconditional probability.

Theorem 4.2. If ∃ δ > 0 such that supn {|ωn|} = O
(
N−(1/2+δ)

)
, then

P
{
L(N)(Z,E) < l

}
−
ˆ
RS

Φ

(
l − µ(N)(z)

σ(N)(z)

)
dΦS(z)→ 0
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for all l ∈ R as N → ∞, where ΦS(z) is the cumulative probability function of the S−dimensional

multivariate normal distribution.

A proof of this theorem, based on the Dominated Convergence Theorem, is given in Appendix B.

As a consequence of Theorem 4.2, given any loss quantile l, the loss probability can be approximated

by

P
{
L(N)(Z,E) ≤ l

}
≈
ˆ
RS

Φ

(
l − µ(N)(z)

σ(N)(z)

)
dΦS(z), (4.2.1)

and, if MC simulation is applied to estimate the integral above, then

P
{
L(N)(Z,E) ≤ l

}
≈ 1

U

U∑
u=1

Φ

 l − µ(N)
(
Z(u)

)
σ(N)

(
Z(u)

)
 . (4.2.2)

Theorems 4.1 and 4.2 reveal some interesting points about the asymptotic behavior of the portfolio

loss. The LLN approximation assumes that all idiosyncratic risks are diversified away. However, the

CLT approximation

P
{
L(N)(Z,E) ≤ l

∣∣∣Z = z
}
≈ Φ

(
l − µ(N)(z)

σ(N)(z)

)
(4.2.3)

does not ignore all idiosyncratic risks. The conditional variance σ(N)(z) is matched exactly in the CLT

limiting distribution, therefore, both systematic risk factors and idiosyncratic risk factors are taken into

consideration, which leads to a more accurate approximation. On the other hand, the computational

work required by the CLT approximation is comparable to that required by the LLN approximation:

only U scenarios and U · S random numbers in total need to be generated. The only significant extra

computational work required by the CLT approximation, compared to the LLN approximation, is to

calculate the conditional variance
(
σ(N) (z)

)2
and the normal CDF Φ

(
l−µ(N)(z)
σ(N)(z)

)
; both the LLN and

CLT approximations require the computation of µ(N)(z).

4.2.2 Error Analysis of the CLT Approximation

The CLT approximation (4.2.3) is a limiting probability, while in reality a financial institution’s portfolio

consists of finitely many obligors. Therefore, there is an asymptotic error associated with (4.2.1). More

precisely,

P
{
L(N)(Z,E) ≤ l

}
=

ˆ
RS

Φ

(
l − µ(N)(z)

σ(N)(z)

)
dΦS(z) + ∆(l),
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where

∆(l) =

ˆ
RS
δ (l,z) dΦS(z),

δ (l,z) = P
{
L(N)(z,E) ≤ l

}
− Φ

(
l − µ(N)(z)

σ(N)(z)

)
. (4.2.4)

The key to analyze the difference, ∆(l), between the CLT limiting loss probability and the true

loss probability is the difference between their conditional probabilities, δ (l,z). Many researchers have

worked on bounds for the difference between the CLT limiting distribution function and the true distri-

bution function for a sum of independent random variables. We briefly review some of that work.

Let X1, . . . ,XN be independent random variables with zero means and finite variance. Define

S(N) =

N−1∑
n=0

Xn,

and assume

V
[
S(N)

]
=

N−1∑
n=0

E
[
X 2
n

]
= 1.

Let F (N)(x) be the CDF of S(N). Then the CLT states that

F (N)(x)→ Φ(x), as N →∞.

Assume E
[
|Xn|3

]
<∞ for all n = 1, 2, . . . , N , and let

ρ(N) =

N−1∑
n=0

E
[
|Xn|3

]
.

Berry [4] and Esseen [14] showed that, if Xn are identically distributed, then there is a uniform bound:

∣∣∣F (N)(x)− Φ(x)
∣∣∣ ≤ C0ρ

(N), (4.2.5)

where C0 is some positive constant. In 1986, Siganov [55] showed that the constant C0 can be taken to be

0.7655; this was improved to 0.7164 by Chen [9] in 2002. Without the assumption that Xn are identically

distributed, (4.2.5) still holds, but the constant C0 may be larger. In 1972, von Beek [59] showed that

C0 is at most 0.7975; Siganov [55] improved this to 0.7915 in 1986. Also, there is a non-uniform version
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of (4.2.5), ∣∣∣F (N)(x)− Φ(x)
∣∣∣ ≤ C1

ρ(N)

1 + |x|3
, (4.2.6)

which was first proved by Nagaev [46] in 1965 for identically distributed {Xn}. This bound was gener-

alized to the non-identical case by Bikelis [5] in 1966. Michel [45] showed that C1 can be taken to be

30.84 for the identical case, while, for the non-identical case, Paditz [48, 49] first calculated C1 to be at

most 114.7 in 1977 and improved C1 to 31.395 in 1989.

There are similar bounds under less restrictive assumptions than E
[
|Xn|3

]
< ∞. However, this

assumption always holds for our problem. Hence we do not review these more general bounds in this

paper.

In our problem,

Xn =
L̃n(z,E)− µ̃n(z)

σ(N)(z)
,

and

S(N) =

N−1∑
n=0

Xn =
L(N)(z,E)− µ(N)(z)

σ(N)(z)
,

where µ̃n(z) = ωnE [Ln (z,E)] . Therefore,

|δ (l,z)| ≤ B

(
l − µ(N)(z)

σ(N)(z)

)
, (4.2.7)

where B(x) is the left side of (4.2.5) or (4.2.6). To make the bound tighter, one can even choose B(x)

to be the minimum of (4.2.5) and (4.2.6). Consequently, the difference between the CLT limiting loss

probability and the true loss probability, ∆(l), satisfies:

∆(l) ≤
ˆ
RS
B

(
l − µ(N)(z)

σ(N)(z)

)
dΦS(z). (4.2.8)

However, if the simulation-based method is used to approximate the integral in (4.2.1), as in (4.2.2),

the error structure is more complicated. First, there is a sampling error due to the simulation, which

can be written as

ˆ
RS

P
{
L(N) (z,E) ≤ l

}
dΦS(z)− 1

U

U∑
u=1

P
{
L(N)

(
Z(u),E

)
≤ l
}
.

This type of error is usually monitored by computing the associated confidence interval. Secondly,

there is an asymptotic error due to the CLT approximation, δ (l,z), which is discussed above. The next

theorem combines these two types of errors to construct a confidence interval for this two-level approach.
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The proof of this theorem is in Appendix C.

Theorem 4.3. In the approach in which the conditional probabilities are approximated by CLT and the

outer-level expectation is computed by MC simulation, given a confidence level α, there is a confidence

interval [uα(X ), vα(X )] defined by

uα(X ) = X− − tU−1,1−α/2
√
S2
X−/U,

vα(X ) = X+ + tU−1,1−α/2
√
S2
X+/U,

X± =
[
X±

(
Z(1)

)
, . . . , X±

(
Z(U)

)]T
,

X±
(
Z(u)

)
= Φ

 l − µ(N)
(
Z(u)

)
σ(N)

(
Z(u)

)
±B

 l − µ(N)
(
Z(u)

)
σ(N)

(
Z(u)

)
 ,

X± =
1

U

U∑
u=1

X±
(
Z(u)

)
,

S2
X± =

1

U − 1

U∑
u=1

(
X±

(
Z(u)

)
−X±

)2

,

such that the true loss probability P (l) = P
{
L(N) (Z,E) < l

}
satisfies

P {P (l) ∈ [uα(X ), vα(X )]} ≥ 1− α.

4.3 Numerical Results and Comparisons

In this section, we present numerical results for MC simulation, the LLN and CLT asymptotic approxi-

mations. All methods are implemented in MATLAB R2010b and the computation was performed on a

workstation with a 2.8GHz Intel Core 2 Duo CPU and 6GB 667 MHz DDR2 SDRAM. The methods are

applied to a variety of portfolios to assess accuracy and efficiency. Since we do not know the closed-form

solution for the portfolio loss probabilities, we use the two-level MC approximation with sample size

U = 5000 and V = 5000 as a benchmark. Also, we consider a single systematic factor only (i.e. S = 1)

because multi-factor models take too long to compute the benchmark on a standard sequential machine.

We consider 4 credit rating classes (C = 4): A, B, C and D, corresponding to c = 3, 2, 1, and 0,

respectively. The credit rating “A” is the highest rating, while the credit rating “D” represents default.

The unconditional credit migrating probabilities, P c2c1 , are shown in Table 4.1.
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Table 4.1: Credit migration matrix

c1\c2 A (3) B (2) C (1) D (0)

A (3) 0.9796 0.0202 0.0000 0.0002

B (2) 0.0208 0.9398 0.0125 0.0270

C (1) 0.0000 0.0649 0.6801 0.2550

D (0) 0.0000 0.0000 0.0000 1.0000

4.3.1 Sample Portfolios

We consider two classes of portfolios: non-lumpy portfolios and lumpy portfolios. Obligors in a non-

lumpy portfolio have about the same EAD. We further divide this class of portfolios into two subclasses:

homogeneous portfolios and heterogeneous portfolios. All obligors in a homogeneous portfolio have

an “A” credit rating, share the same parameters EADn, LGCcn, and βn, while, in a heterogeneous

portfolio, the parameters, EADn, LGCcn, and βn, are randomly generated. For each subclass, we build

three portfolios with different numbers of obligors: namely, fine-grained (N = 5000), medium-grained

(N=500) and coarse-grained (N=50). Details of each portfolio are presented in Table 4.2.

Table 4.2: Parameters for non-lumpy portfolios

Portfolio Label EADn LGCcn βn c(n) N HHI of ω’s

Homo-

geneous

Coarse-grained Π1 50 2.00 × 10−2

Medium-grained Π2 1 LGCcn 0.5 3 500 2.00 × 10−3

Fine-grained Π3 5000 2.00 × 10−4

Hetero-

geneous

Coarse-grained Π4 50 2.20 × 10−2

Medium-grained Π5 Unif(0.5, 1.5) L̃GC
c
n Unif(−0.9, 0.9) Unif{1, 2, 3} 500 2.18 × 10−3

Fine-grained Π6 5000 2.17 × 10−4
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The loss-given-credit-event, LGCcn, given in Table 4.2 are set to be

LGC
c

n =



0.8, c = 0

0.5, c = 1

0.3, c = 2

0.0, c = 3

, L̃GC
c

n =



LGDn, if c = 0

Unif
(

0, L̃GC
c−1

n

)
, if 0 < c < c(n)

0, if 0 < c = c(n)

Unif
(
Rn, L̃GC

c−1

n

)
, if c > c(n)

, (4.3.1)

for homogeneous portfolios and for heterogeneous portfolios respectively. In the latter case, obligor

n’s loss-given-default, LGDn, is randomly generated with distribution Unif(0, 0.8), and Rn is a negative

number representing the return of obligor n, which is randomly generated with distribution Unif(−0.5, 0).

The choice of LGCcn in (4.3.1) for heterogeneous portfolios ensures that the following conditions hold:

• If an obligor defaults, the LGC of this obligor equals its LGD;

• If an obligor is downgraded, the LGC of this obligor is positive, but no greater than its LGD;

• If an obligor’s credit state remains unchanged, the LGC of this obligor is zero;

• If an obligor is upgraded, the LGC of this obligor will be negative, but no less than its market

return;

• Obligor n’s LGC is decreasing with respect to c.

The last column in Table 4.2 shows the HHI index of each portfolio, where the HHI index equals
∑N
n=1 ω

2
n.

The HHI index is no less than 1/N , and the closer to zero it is, the less concentrated the portfolio is.

Meanwhile, for the purpose of comparison, we let positions in Π4 be contained in Π5, and positions in

Π5 be contained in Π6, and set
∑N
n=1 EADn in Π4, Π5, Π6 to be 50, 500, 5000, respectively.

4.3.2 The CLT Approximation and Confidence Intervals

First we check the CLT approximation and its confidence intervals constructed based on the discussion

in Subsection 4.2.2. For confidence intervals for the CLT approximation, we choose the bound on the

asymptotic errors to be

B(x) = min

(
C0ρ

(N), C1
ρ(N)

1 + |x|3

)
, (4.3.2)

since we know E
[∣∣∣ L̃n(z,E)−µ̃n(z)

σ(N)(z)

∣∣∣3] is finite.

29



We test the CLT approximation on the non-lumpy portfolios Π1 to Π6. For each portfolio, we

choose an interval [lmin, lmax] and then compute 200 equally spaced quantiles satisfying lk = lmin +

k−1
199 (lmax − lmin), k = 1, . . . , 200. To check the performance of the approximation at both tails of the

distribution, lmin and lmax are chosen to satisfy

P {L ≤ lmin} < 10−4, P {L ≤ l2} ≥ 10−4,

and

P {L > lmax} < 10−4, P {L > l199} ≥ 10−4.

Since risk managers are more interested in the tail risk, for example, 95% value-at-risk or expected

shortfall, we focus on the high probability tail by examining P {L > l}. Since the tail is very close to

zero and very flat, we plot P {L > l} on a semi-log scale. The graphs also show the 95% confidence

intervals associated with the CLT approximation. Figures 4.1 - 4.6 present the results for portfolio Π1 -

Π6, respectively.
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Figure 4.1: Loss distribution generated by the CLT approximation:
Portfolios Π1

yellow: CLT, black: MC, cyan: CI

(a) P {L ≤ l}: Portfolio Π1
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Figure 4.2: Loss distribution generated by the CLT approximation:
Portfolios Π2

yellow: CLT, black: MC, cyan: CI

(a) P {L ≤ l}: Portfolio Π2
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Figure 4.3: Loss distribution generated by the CLT approximation:
Portfolios Π3

yellow: CLT, black: MC, cyan: CI

(a) P {L ≤ l}: Portfolio Π3
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−1.0e0

−1.0e−1

−1.0e−2

−1.0e−3

−1.0e−4

−1.0e−5

0

1.0e−5

1.0e−4

1.0e−3

1.0e−2

1.0e−1

1.0e0
Fine−grained, homogeneous portfolio

l

P
{L

>
l}

33



Figure 4.4: Loss distribution generated by the CLT approximation:
Portfolios Π4

yellow: CLT, black: MC, cyan: CI

(a) P {L ≤ l}: Portfolio Π4
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Figure 4.5: Loss distribution generated by the CLT approximation:
Portfolios Π5

yellow: CLT, black: MC, cyan: CI

(a) P {L ≤ l}: Portfolio Π5
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Figure 4.6: Loss distribution generated by the CLT approximation:
Portfolios Π6

yellow: CLT, black: MC, cyan: CI

(a) P {L ≤ l}: Portfolio Π6
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From Figures 4.1 - 4.6, we make the following observations.

1. The loss probabilities generated by the CLT approximation agree well with those computed by

the two-level MC benchmark, especially in the tail. The CLT approximation is more accurate for

more fine-grained portfolios, since unsystematic risk is diversified away in large portfolios, and it

has more impact for small portfolios.

2. By comparing Figure 4.1a and Figure 4.4a we find that, for the same portfolio size, the CLT

approximation is more accurate for the heterogeneous portfolio than for the homogeneous one.

Since the true portfolio losses are discrete rather than continuous, for small homogeneous portfolios,

the two-level MC benchmark distribution has obvious jumps. However, the CLT approximation

is continuous. Thus part of the error in Figure 4.1a and Figure 4.4a comes from approximating a

discrete distribution by a continuous one. The jumps in the two-level MC benchmark are much

smaller for the corresponding heterogeneous portfolio. Moreover, as the portfolio size increases, the

two-level MC benchmark becomes smoother, and the accuracy of the CLT approximation improves.

3. Confidence intervals shown in Figures 4.1 - 4.6 become tighter as the portfolio size increases, and,

for the same portfolio, confidence intervals are narrower in the tails and wider in the middle. By

comparing with probabilities calculated by a Quadrature+CLT approximation, where the outer-

level integration is calculated by a quadrature and conditional probabilities are estimated by the

CLT approximation, the length of the confidence intervals depends mainly on the bound on the

asymptotic errors (4.3.2). More specifically, it is proportional to

B

(
l − µ(N) (z)

σ(N) (z)

)
= min

C0ρ
(N) (z) ,

C1ρ
(N) (z)

1 +
∣∣∣ l−µ(N)(z)
σ(N)(z)

∣∣∣3
 , (4.3.3)

where

ρ(N) (z) =

N∑
n=1

E

∣∣∣∣∣ L̃n (z,E)− µ̃n (z)

σ(N) (z)

∣∣∣∣∣
3
 .

If we keep the portfolio and z unchanged, then ρ(N) (z), µ(N) (z) and σ(N) (z) are fixed. As l

moves towards either tail, it moves away from µ(N) (z), whence
∣∣∣ l−µ(N)(z)
σ(N)(z)

∣∣∣3 becomes larger. Hence

the bound in (4.3.3) gets smaller, which explains why confidence intervals are narrower in the tails

and wider in the middle. If we fix l and z, and increase the size of a homogeneous portfolio, then
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ρ(N) (z) decreases, since

ρ(N) (z) =

∑N
n=1 |ωn|

3 E
[
|Ln (z,E)− µn (z)|3

]
√∑N

n=1 ω
2
nσ

2
n (z)

≤
∑N
n=1 |ωn|

3√∑N
n=1 ω

2
n

A (z)

=

∑N
n=1

1
N3√∑N

n=1
1
N2

A (z)

= N−3/2A (z)

decreases with N , where A (z) = E
[
|Ln (z,E)− µn (z)|3

]
/σn (z),1 and

∣∣∣∣ l − µ(N) (z)

σ(N) (z)

∣∣∣∣3 =

∣∣∣∣∣∣ l −
∑N
n=1 ωnµn (z)√∑N
n=1 ω

2
nσ

2
n (z)

∣∣∣∣∣∣
3

=

∣∣∣∣∣∣ l −
∑N
n=1

1
N µ (z)√∑N

n=1
1
N2σ (z)

∣∣∣∣∣∣
3

= N3/2

∣∣∣∣ l − µ (z)

σ (z)

∣∣∣∣3

increases with N . This partly explains why confidence intervals are narrower for larger portfolios.

4. Confidence intervals are too wide for practical use for small portfolios, but they are acceptable for

large portfolios with large quantiles, because the Berry-Esseen-type bound in (4.3.2) is not tight

enough for a small number of random variables, but becomes tighter as the number of random

variables increases. Although one can narrow the confidence intervals by further bounding them by

[0, 1], since the estimator is a probability which is within [0, 1], this will not improve the confidence

intervals very much.

4.3.3 Comparison: MC, CLT and LLN

In this subsection we compare the accuracy and efficiency of the MC, CLT and LLN approximations for

the non-lumpy portfolios Π1-Π6. Table 4.3 shows the CPU time in seconds used to generate the loss

distribution and the speedup (numbers in parentheses) relative to the MC approximation (CPU time

over MC CPU time). From Table 4.3, it is clear that the MC approximation is extremely time-consuming

1Notice that, for a homogenous portfolio, A (z) = E
[
|Ln (z,E)− µn (z)|3

]
/σn (z) is identical and not dependent on

N for each obligor n.
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compared to the LLN and CLT approximations, and that the CLT approximation uses only slightly more

CPU time than the LLN approximation.

Table 4.3: Comparison of total CPU time for non-lumpy portfolios (in seconds)

Homogeneous

Coarse-grained Medium-grained Fine-grained

MC 1.090× 103 (–) 6.980×103 (–) 6.368×104 (–)

LLN 4.263× 100
(
2.556× 102

)
6.463× 100

(
1.080× 103

)
2.633× 101

(
2.419× 103

)

CLT 4.645× 100
(
2.347× 102

)
7.028× 100

(
9.932× 102

)
2.646× 101

(
2.406× 103

)

Heterogeneous

Coarse-grained Medium-grained Fine-grained

MC 1.121× 103 (–) 7.022× 103 (–) 6.438×104 (–)

LLN 4.220× 100
(
2.656× 102

)
6.439×100

(
1.091× 103

)
2.581× 101

(
2.494× 103

)

CLT 4.606× 100
(
2.434× 102

)
7.002×100

(
1.003× 103

)
2.637× 101

(
2.441× 103

)

To compare the accuracy of the methods, we first plot the loss distributions generated by the three

different approximations, using plots similar to those used in the preceding subsection. The results for

portfolios Π1 - Π6 are presented in Figures 4.7 - 4.12, respectively. Using probabilities generated by the

MC approximation as a benchmark, we compute the errors associated with the probabilities generated

by the CLT and LLN approximations:

elln(l) = PLLN {L ≤ l} − PMC {L ≤ l} ,

eclt(l) = PCLT {L ≤ l} − PMC {L ≤ l} .

We also compute the difference of the absolute errors associated with the CLT and LLN approximations:

∆e(l) = |eclt(l)| − |elln(l)|. These errors are plotted in Figures 4.13 - 4.18.
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Figure 4.7: Comparison of the loss distribution for the MC, LLN
and CLT approximations: Portfolios Π1

blue: LLN, yellow: CLT, black: MC

(a) P {L ≤ l}: Portfolio Π1
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(b) P {L > l}: Portfolio Π1
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Figure 4.8: Comparison of the loss distribution for the MC, LLN
and CLT approximations: Portfolios Π2

blue: LLN, yellow: CLT, black: MC

(a) P {L ≤ l}: Portfolio Π2
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(b) P {L > l}: Portfolio Π2
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Figure 4.9: Comparison of the loss distribution for the MC, LLN
and CLT approximations: Portfolios Π3

blue: LLN, yellow: CLT, black: MC

(a) P {L ≤ l}: Portfolio Π3
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(b) P {L > l}: Portfolio Π3
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Figure 4.10: Comparison of the loss distribution for the MC, LLN
and CLT approximations: Portfolios Π4

blue: LLN, yellow: CLT, black: MC

(a) P {L ≤ l}: Portfolio Π4
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(b) P {L > l}: Portfolio Π4
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Figure 4.11: Comparison of the loss distribution for the MC, LLN
and CLT approximations: Portfolios Π5

blue: LLN, yellow: CLT, black: MC

(a) P {L ≤ l}: Portfolio Π5
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(b) P {L > l}: Portfolio Π5
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Figure 4.12: Comparison of the loss distribution for the MC, LLN
and CLT approximations: Portfolios Π6

blue: LLN, yellow: CLT, black: MC

(a) P {L ≤ l}: Portfolio Π6
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(b) P {L > l}: Portfolio Π6
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Figure 4.13: Comparison of the errors for the LLN and CLT approximations:
Portfolios Π1

(a) Errors: Portfolio Π1, blue: elln(l), yellow: eclt(l)
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(b) Difference in errors: Portfolio Π1, cyan: |eclt(l)| − |elln(l)|
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Figure 4.14: Comparison of the errors for the LLN and CLT approximations:
Portfolios Π2

(a) Errors: Portfolio Π2, blue: elln(l), yellow: eclt(l)
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(b) Difference in errors: Portfolio Π2, cyan: |eclt(l)| − |elln(l)|
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Figure 4.15: Comparison of the errors for the LLN and CLT approximations:
Portfolios Π3

(a) Errors: Portfolio Π3, blue: elln(l), yellow: eclt(l)
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(b) Difference in errors: Portfolio Π3, cyan: |eclt(l)| − |elln(l)|
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Figure 4.16: Comparison of the errors for the LLN and CLT approximations:
Portfolios Π4

(a) Errors: Portfolio Π4, blue: elln(l), yellow: eclt(l)
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(b) Difference in errors: Portfolio Π4, cyan: |eclt(l)| − |elln(l)|
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Figure 4.17: Comparison of the errors for the LLN and CLT approximations:
Portfolios Π5

(a) Errors: Portfolio Π5, blue: elln(l), yellow: eclt(l)
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(b) Difference in errors: Portfolio Π5, cyan: |eclt(l)| − |elln(l)|
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Figure 4.18: Comparison of the errors for the LLN and CLT approximations:
Portfolios Π6

(a) Errors: Portfolio Π6, blue: elln(l), yellow: eclt(l)
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(b) Difference in errors: Portfolio Π6, cyan: |eclt(l)| − |elln(l)|
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We make the following observations about the numerical results in Figures 4.7 - 4.18.

1. The LLN and CLT approximations both work better as the portfolios become more homogeneous

and more fine-grained. This is due to the asymptotic nature of both approximations.

2. The top subplots of Figures 4.13 - 4.18 show that the error associated with the CLT approximation

(eCLT(l)) is usually closer to zero than the error associated with the LLN approximation (eLLN(l)).

Equivalently, ∆e(l) is mostly below zero in the bottom subplots of Figures 4.13 - 4.18. That

is, our numerical results support our belief that the CLT approximation is more accurate than

the LLN approximation in most cases. In particular, the big gap between the LLN and CLT

loss probabilities in Figure 4.10a, and the large negative values for ∆e(l) in Figure 4.16b suggest

that the LLN approximation is not accurate for small heterogeneous portfolios. On the other

hand, the CLT approximation produces usable results in these cases. Also, when the quantile

l is large, the CLT approximation produces accurate probabilities
(
|eCLT| < 10−4

)
. Moreover,

the CLT approximation usually produces better results than the LLN approximation in the high

probability tail. All of these observations make the CLT approximation more attractive than

the LLN approximation for downside risk measures, such as VaR and ES. The only exception

is in the left tail of the distribution, where the CLT approximation is less accurate than the

LLN approximation. However, the left tail is less important than the right tail in practice. For

homogeneous portfolios, in the top subplots of Figures 4.13 - 4.18, eCLT(l) is scattered on both

sides of zero, which implies the error comes mainly from approximating a discrete distribution

by a continuous one. For heterogeneous portfolios, the LLN approximation outperforms the CLT

approximation for the small loss probabilities for the portfolios Π4 and Π5, but the difference is

very small, as can be seen in Figure 4.16b and Figure 4.17b.

3. The error associated with the CLT approximation, eCLT(l), in Figures 4.13 - 4.15 is scattered with

jumps between positive and negative values. This is most pronounced in Figure 4.15a. The plots of

eCLT(l) appear more “continuous” in the top subplots of Figures 4.16 - 4.18. As explained earlier,

this is because the loss distribution for the MC approximation has large jumps for the homogeneous

portfolios, while the loss distribution for the MC approximation for heterogeneous portfolios have

smaller jumps. The distribution generated by the CLT approximation is continuous, therefore the

graph of the errors for the CLT distribution is more “jagged” for homogeneous portfolios than for

heterogeneous portfolios.

4. From the top subplots of Figures 4.16 - 4.18, we see that eLLN(l) and eCLT(l) are often above
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zero for the large values of the quantile l plotted. This shows that both approximations tend

to underestimate the risk. However, eCLT(l) is below eLLN(l) for most of the large values of the

quantile l plotted, which verifies once again that the CLT approximation is more accurate than

the LLN approximation.
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Chapter 5

Exact Methods

Since the conditional portfolio loss is the sum of independent individual losses, the conditional portfolio

loss probability can be computed by anN−fold discrete linear convolution, which leads to another class of

approaches to compute the conditional portfolio loss probability: exact methods [3, 13, 15, 41, 43]. Unlike

the asymptotic methods, which suffer asymptotic errors due to the LLN or CLT approximations, and the

MC simulation, which endures sampling errors, the exact methods do not produce any approximation

error, although they are still subject to roundoff errors and possibly aliasing errors. However, the existing

exact methods are very computationally intensive. To improve the efficiency of the exact methods, we

exploit the sparsity that often arises in the obligors’ conditional losses to accelerate the computation.

In Section 5.1.2, we first review the standard full convolution method, then we develop a sparse

convolution method, and further improve its efficiency by extending it to a truncated sparse convolution

method. Similarly, in Section 5.2, we first discuss the full FFT algorithm, then propose a sparse FFT

method and a truncated sparse FFT method with exponential windowing to reduce the aliasing error.

Finally we present some numerical results and compare different methods in Section 5.3.

5.1 Sparse Convolution Method

5.1.1 Full Convolution Method

Let Lcn
.
= ωnLGCcn, then (3.3.3) shows that the conditional loss from obligor n, denoted by Lzn, is a

discrete random variable with support Sn =
{
L0
n, . . . , L

C−1
n

}
and probability mass function (PMF)
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P zn (x) =



Φ

(
H0
c(n)−βTnz√
1−βTnβn

)
, if x = L0

n,

Φ

(
H1
c(n)−βTnz√
1−βTnβn

)
− Φ

(
H0
c(n)−βTnz√
1−βTnβn

)
, if x = L1

n,

...
...

Φ

(
HC−1
c(n)
−βTnz√

1−βTnβn

)
− Φ

(
HC−2
c(n)
−βTnz√

1−βTnβn

)
, if x = LC−1

n ,

0, otherwise.

(5.1.1)

Thus, the conditional portfolio loss, Lz, is a sum of independent discrete random variables Lzn: Lz =∑N−1
n=0 Lzn. Elementary probability theory shows that the sum of two independent discrete random vari-

ables is a discrete random variable with PMF given by the linear convolution of the PMFs of the two

summands. That is,

P {Lz0 + Lz1 = x} = P z0 ∗ P z1 (x)
.
=
∑
x0∈S0

P z0 (x0)P z1 (x− x0). (5.1.2)

Consequently, for N independent discrete random variables Lz0 , . . . ,LzN−1, the PMF of their sum is the

N -fold linear convolution of the PMFs of each Lzn:

P {Lz = x} =

(
N−1

~
n=0

P zn

)
(x), (5.1.3)

where the N -fold linear convolution is defined recursively by


(
N−1

~
n=0

P zn

)
(x) =

((
N−2

~
n=0

P zn

)
∗ P zN−1

)
(x)(

1

~
n=0

P zn

)
(x) = (P z0 ∗ P z1 ) (x).

Therefore, the conditional portfolio loss probability can be computed by

P {Lz ≤ l} =
∑
x≤l

(
N−1

~
n=0

P zn

)
(x). (5.1.4)
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To compute (5.1.4), we must discretize the portfolio losses. Let

Lmin
.
=

N−1∑
n=0

LC−1
n , (5.1.5)

Lmax
.
=

N−1∑
n=0

L0
n, (5.1.6)

be the minimum and maximum portfolio loss, respectively. Then choose δ,Kmax andKmin to construct a

“perfect” discretization grid. That is, for every possible choice of Lcn, n = 0, . . . , N−1 and c = 0, . . . , C−1,

N−1∑
n=0

Lcn = kδ, (5.1.7)

for some k ∈ {Kmin, . . . ,Kmax}, where

Lmin = Kminδ,

Lmax = Kmaxδ.

To obtain the perfect discretization grid, we can find the optimal δ = δ∗ such that

δ∗ = max{δ |kcn=̇Lcn/δ ∈ N, ∀n ∈ {0, . . . , N − 1},∀c ∈ {0, . . . , C − 1}}.

Therefore, Kmin =
∑N−1
n=0 k

C−1
n and Kmax =

∑N−1
n=0 k

0
n, and the number of points on this grid is

K =
Lmax − Lmin

δ
+ 1

= Kmax −Kmin + 1

=

N−1∑
n=0

(
k0
n − kC−1

n

)
+ 1.

Note that all Lcn and their sums are on the grid. Therefore, there is no discretization error in computing

(5.1.4).1

It is worth mentioning that, subject to certain level of discretization error, one could round some of

the values of lk in (5.1.8) below to a coarser grid, lk ≈ kδ̂ for δ̂ > δ, to reduce the total number of points,

K, on the grid and consequently to accelerate the computation. Though we do not pursue this option

in this thesis, one could combine this coarsening approach with the other techniques described in this
1The discretization error we are referring to is the error resulting from some Lcn, or their sums, not being included on

the discretization grid for the portfolio losses. For example, if the gird is [0, 0.01, 0.02, . . . , 0.05], but one of Lcn has the
value 0.012, then we must round Lcn to some point on the grid. This leads to a discretization error in representing Lcn.
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thesis to achieve a more efficient, but less accurate, approximation to the conditional portfolio loss.

Based on this discretization scheme, the portfolio losses are restricted to the values

lk = kδ, (5.1.8)

for k = Kmin, . . . ,Kmax, and the distribution of the conditional loss from each obligor can be discretized

by

pzn =
[
pzn[Kmin], . . . , pzn[Kmax]

]T
,

where pzn[k] = P zn (lk) represents the probability that the loss from obligor n is lk conditional on Z = z.

The conditional portfolio loss (5.1.3) can be computed by an N -fold linear convolution of the vectors

pzn:

P {Lz = lk} =

(
N−1

~
n=0

pzn

)
[k], (5.1.9)

where the linear convolution of two real vectors x = [x[0], . . . , x[Kx − 1]]
T and y = [y[0], . . . , y[Ky − 1]]

T

is a mapping from RKx × RKy to RKx+Ky−1 defined by

x ∗ y[k]
.
=

∑
u+v=k

x[u]y[v], (5.1.10)

for k = 0, . . . ,Kx +Ky − 2 with the understanding that the indices u and v do not go out of range (i.e.,

0 ≤ u ≤ Kx− 1 and 0 ≤ v ≤ Ky − 1). Therefore, the conditional portfolio loss probability in (5.1.4) can

be written as

P {Lz ≤ lj} =
∑
k≤j

(
N−1

~
n=0

pzn

)
[k]. (5.1.11)

As we mentioned in Section 2.3, LGCcn can be negative if obligor n is upgraded, which results in

negative Lcn. If we use the discretization scheme (5.1.8), then some negative indices k will be encountered,

which complicates an implementation of this scheme. To solve this problem, first notice that

P

{
N−1∑
n=0

Lzn = lk

}
= P

{
N−1∑
n=0

(
Lzn − LC−1

n

)
= lk −

N−1∑
n=0

LC−1
n

}

for k = Kmin,Kmin + 1 . . . ,Kmax − 1,Kmax. Define shifted conditional individual losses by

Lzn =̇ Lzn − LC−1
n ,
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then 0 ≤ Lzn ≤ L0
n − LC−1

n , since LC−1
n is the minimum of the possible values of Lzn. Therefore, the

discretized distribution of Lzn on the grid is pz
n
=̇
[
pz
n
[0], . . . , pz

n
[k0
n − kC−1

n ]
]T
. Hence,

P

{
N−1∑
n=0

Lzn = lk

}
= P

{
N−1∑
n=0

Lzn = lk −
N−1∑
n=0

LC−1
n

}
,

= P

{
N−1∑
n=0

Lzn = (k −Kmin) δ

}

=

(
n

~
j=0
pz
j

)
[k −Kmin] . (5.1.12)

To compute (5.1.12), we can apply the convolution methods described earlier in this subsections, since

the indices of pz
n
are all nonnegative.

Without loss of generality, we assume from now on that Lmin = 0. Therefore,

lk = kδ, k = 0, . . . ,K − 1, (5.1.13)

δ = Lmax/(K − 1), (5.1.14)

and pzn =
[
pzn[0], . . . , pzn[K − 1]

]T . However, from (5.1.12), we see that our approach easily extends to

handle the case that Lmin < 0.

One way to analyze the complexity of the computation in (5.1.10) is to view the discrete linear

convolution (5.1.10) as a Toepliz matrix2 generated by the vector y multiplying the other vector x. For

example, the linear convolution of two vectors x = [x0, x1, x2, x3, x4, x5]T and y = [y0, y1, y2, y3]T can

be computed as
2A Toepliz matrix is a matrix whose negative-sloping diagonals are constant. For example,

A =



a e f g h

b a e f g

c b a e f

d c b a e


.
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x ∗ y = Tyx =



y0 0 0 0 0 0

y1 y0 0 0 0 0

y2 y1 y0 0 0 0

y3 y2 y1 y0 0 0

0 y3 y2 y1 y0 0

0 0 y3 y2 y1 y0

0 0 0 y3 y2 y1

0 0 0 0 y3 y2

0 0 0 0 0 y3





x0

x1

x2

x3

x4

x5


.

The floating-point operations (FLOPs) required to compute x ∗ y are the FLOPs associated with the

nonzero elements in this matrix-vector product. So, assuming that all xk in x and yk in y are nonzero,

it is clear that the computation of x ∗ y[k] requires

• k + 1 multiplications and k additions for each k = 0, 1, . . . ,Ky − 1;

• Ky multiplications and Ky − 1 additions for k = Ky, . . . ,Kx − 2;

• (Kx +Ky − 1)−k multiplications and (Kx +Ky − 1)−k−1 additions for each k = Kx−1, . . . ,Kx+

Ky − 2.

Therefore,
Ky−1∑
k=0

(k + 1) +

Kx−2∑
k=Ky

Ky +

Kx+Ky−2∑
k=Kx−1

(Kx +Ky − 1)− k = KxKy

multiplications and KxKy− (Kx +Ky − 1) additions, which is 2KxKy− (Kx +Ky − 1) FLOPs in total,

are required to compute x ∗ y.

Since the maximum portfolio loss is Lmax = lK−1, and there are no negative losses, the sum of the

conditional losses from two obligors can not exceed lK−1, which implies pz0 ∗pz1 [k] = 0 for k ≥ K. Thus,

it is not necessary to compute pz0 ∗pz1 [k] = 0 for k ≥ K. Therefore, to compute pz0 ∗pz1 [k] in (5.1.10) for

k = 0, . . . ,K − 1, where Kx = Ky = K, we need a total of
∑K−1
k=0 (k + 1) = K(K + 1)/2 multiplications

and
∑K−1
k=0 k = (K − 1)K/2 additions, for a total of K2 FLOPs. The same argument can be applied

to the computation of all linear convolutions in the N -fold linear convolution in (5.1.9). Therefore, the

total number of FLOPs to compute the whole distribution of the conditional portfolio loss, P {Lz = lk} ,

k = 0, . . . ,K − 1, is

(N − 1)K2 = O
(
NK2

)
. (5.1.15)

One obvious improvement over the straightforward convolution method described above is to take

advantage of the trailing zeros in pzn. Notice that pzn[k] = 0 for k > k0
n, whence we can avoid all
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multiplications and additions involving with pzn[k] for k > k0
n. Therefore, define pzn = pzn

[
0 : k0

n

]
,3 and

note that, for k = 0, . . .K − 1, we have
(
N−1

~
j=0

p̄zj

)
[k] =

(
N−1

~
j=0

pzj

)
[k]. To analyze the number of FLOPs

to compute
(
N−1

~
j=0

p̄zj

)
[k], we denote the length of p̄zn and

n

~
j=0
p̄zj to be Kn and K̃n respectively for

n = 0, . . . N − 1, then K̃0 = K0, and K̃n = K̃n−1 + Kn − 1 for n = 1, . . . N − 1. The total number of

FLOPs to compute
N−1

~
j=0

p̄zj is

N−1∑
n=1

2K̃n−1Kn −
(
K̃n−1 +Kn − 1

)
. (5.1.16)

If all p̄zj have the same length K̄, then for n = 0, . . . N − 1,

Kn = K̄ (5.1.17)

K̃n = K̃n−1 + K̄ − 1 = (n+ 1)K̄ − n, (5.1.18)

and

K = K̃N−1 = NK̄ − (N − 1). (5.1.19)

Substituting (5.1.17) and (5.1.18) into (5.1.16), the total number of FLOPs becomes

(
2K̄ − 1

) (
K̄ − 1

)
N(N − 1)

2
+ (N − 1)K̄. (5.1.20)

From (5.1.19) we know

K̄ =
K − 1

N
+ 1. (5.1.21)

Substituting (5.1.21) into (5.1.20), the total number of FLOPs in (5.1.16) is

(
1− 1

N

)
K2 +

(
N − 3

2
+

1

N

)
K +

N − 1

2
, (5.1.22)

which is O
(
K2 +NK

)
.

The number of points on the grid, K, can be very large, since a fine grid may be needed to re-

duce or to eliminate the discretization error. Also, the number of obligors in the portfolio, N , can be

thousands for large financial institutions. What’s worse, from (3.3.5), we see that we need to compute
3We adapt the notation in MATLAB to represent the indices of a vector. The notation m : k : n means to access

every kth element in the subvector, starting with the mth element of the original vector and ending at (or before) the nth
element of the original vector. If k = 1, we leave out the step value k and use m : n instead of m : 1 : n. For example, if
x = [x0, x1, x2, x3, x4, x5]T , then x[0 : 2 : 5] = [x0, x2, x4]T and x[1 : 3] = [x1, x2, x3]T . This notation is used throughout
this thesis.
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the conditional loss distribution U times for different realizations of systematic risk factors. Therefore,

this straightforward convolution method and its obvious improvements may be very computationally

expensive.

5.1.2 Sparse Convolution Method

To improve the efficiency of the convolution method, we take a closer look at the conditional probability

vectors pzn =
[
pzn[0], . . . , pzn[K − 1]

]T
. Notice that, from the PMF in (5.1.1), Lzn is a discrete random

variable with C possible values. The number of rating classes, C, is much less than the length of pzn

(or p̄zn). For example, for long-term corporate bonds, S&P’s rating system has 10 rating classes: AAA,

AA, A, BBB, BB, B, CCC, CC, C, and D.4 Other rating agencies’ rating systems, as well as financial

institutions’ internal rating systems, have a similar structure. The number of rating classes for short-

term bonds is even smaller. Therefore, all pzn (or p̄zn) are highly sparse vectors with C � K (or C � K̄ )

nonzero elements. From (5.1.9) and (5.1.10), it is not difficult to see that the convolution method wastes

many FLOPs on multiplying zeros and adding zeros. Hence, it is a natural step to develop a method to

speed up the convolution method by taking advantage of the sparsity of pzn.

5.1.2.1 Sequential Sparse Convolution Method

Let p̃z0
.
= pz0 and p̃zn

.
=

n

~
j=0
pzj for n = 1, . . . , N−1. Then P {Lz = lk} = p̃zN−1[k] and p̃zn can be computed

recursively by p̃zn+1 = p̃zn ∗ pzn+1 for n = 0, . . . , N − 2. For each obligor n, define a C-element vector

dn =
[
dn[0], . . . , dn[C − 1]

]T
, where dn[c] represents the index of Lcn on the grid. That is,

dn[c]
.
= Lcn/δ, (5.1.23)

for c = 0, . . . , C − 1. Also, define another C-element vector qzn =
[
qzn[0], . . . , qzn[C − 1]

]T , where qzn[c]

is the probability that obligor n’s loss is Lcn: qzn[c]
.
= pzn[dn[c]], for c = 0, . . . , C − 1. In other words, qzn

contains all the nonzero conditional loss probabilities for obligor n. Similarly, we can define d̃n to be

the vector of indices of the nonzero elements in p̃zn.5

4As presented in Table 2.1, S&P has a finer rating system, in which rating class AA is divided into AA+, AA and AA-,
rating class A is divided into A+, A and A-, rating class BBB is divided into BBB+, BBB and BBB, rating class BB is
divided into BB+, BB and BB-, rating class B is divided into B+, B and B- and rating class CCC is divided into CCC+,
CCC and CCC-. Therefore, there are 22 rating classes in this finer system.

5Though qzn contains all the nonzero conditional loss probabilities for obligor n, it does not mean that all elements in
qzn are nonzero since some qzn[c] are allowed to be zero. However, these zero elements in qzn are treated as structurally
nonzero in our algorithm. Therefore, dn is actually the vector of indices of the structurally nonzero elements pzn. A similar
argument applies to p̃zn and d̃n. From now on, for convolution methods, the term “nonzero elements” refer to “structurally
nonzero elements” described in this footnote.
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If we use the formula in (5.1.10) to compute p̃z1 , then

p̃z1 [k] =
∑
i+j=k

pz0 [i]pz1 [j] (5.1.24)

=
∑

(i,j)∈Dk
qz0 [i]qz1 [j], (5.1.25)

where Dk = { (i, j)| d0[i] + d1[j] = k}. If we ignore for now the FLOPs required to determine Dk,

the computation in (5.1.25) requires at most 2C − 1 FLOPs (at most C multiplications and C − 1

additions), while, as discussed in the previous subsection, a naive implementation of (5.1.24) requires

k + 1 multiplications and k additions for k = 0, . . . ,K − 1. Therefore, (5.1.25) requires much fewer

FLOPs than (5.1.24) for most k. However, the computational overhead in determining Dk can not be

ignored. Since there is no special pattern for dn, for each k, we need to search in d0 and d1 to find the

pairs (i, j) such that d0[i]+d1[j] = k. This overhead is not heavy in computing p̃z1 , since both d0 and d1

have only C elements. However, to compute p̃zn for n > 1, we need to search in d̃n−1 (rather than dn−1)

and dn to find such pairs (i, j). The length of d̃n increases as n increases since the number of nonzero

probabilities in p̃zn increases after each convolution. Therefore, the overhead to find pairs (i, j) becomes

more and more significant as n increases. Moreover, for many values of k, p̃z1 [k] is zero, so there is no

pair (i, j) such that d0[i] + d1[j] = k. Hence some computation is wasted in determining that Dk = ∅ for

many values of k.

5.1.2.2 Concurrent Sparse Convolution Method

A better way to compute the linear convolution p̃zn+1 = p̃zn∗pzn+1 is to compute d̃n and p̃zn+1 concurrently,

rather than computing them sequentially as described above. The main idea of computing all elements

of p̃zn+1 concurrently is to compute the product of nonzero elements of p̃zn and pzn+1, and assign it to,

or add it to, the appropriate element of p̃zn+1. We consider p̃z1 = pz0 ∗ pz1 as an example to demonstrate

how to compute elements of p̃zn concurrently.

Consider the example, illustrated in Figure 5.1, for which pz0 is a vector with three nonzero elements

at positions d0[0], d0[1], and d0[2], with values qz0 [0], qz0 [1] and qz0 [2], respectively, and pz1 has a similar

structure.

First, we initialize all K elements in p̃z1 to −εM, where εM is the smallest positive normalized floating-

point number in the implementation environment, then for j = 0, we compute

d0[i] + d1[0] and qz0 [i]qz1 [0]
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and assign d0[i] + d1[0] to d̃1[i] and assign qz0 [i]qz1 [0] to p̃z1
[
d̃1[i]

]
for i = 0, . . . , C − 1. This is illustrated

in Figure 5.2.

Figure 5.1: The structure of pz0 and pz1

Figure 5.2: Concurrent computation of the linear convolution p̃z1 = pz0 ∗ pz1 (j = 0)

Next, for j = 1, we compute

d0[i] + d1[1] and qz0 [i]qz1 [1]

for i = 0, . . . , C − 1. However, the way that we put d0[i] + d1[1] into d̃1 and qz0 [i]qz1 [1] into p̃z1 is a little

more complex for j = 1 than for j = 0, since there might exist a and b such that

d0[a] + d1[0] = d0[b] + d1[1]. (5.1.26)

That is, there might exist some k such that the set Dk in (5.1.25) has more than one pair (i, j). For

instance, as shown in Figure 5.3, for k = 4, we have d0[2] + d1[0] = d0[1] + d1[1] = k. In this case, we

should not add an additional element with value d0[1] + d1[1] into the vector d̃1, since this value already

exists in d̃1. Also, we should add the value of qz0 [1]qz1 [1] to p̃1 [d0[1] + d1[1]], rather than assigning the

value of qz0 [1]qz1 [1] to p̃1 [d0[1] + d1[1]]. By the construction of p̃z1 and d̃1, to check whether an index, k,

is in d̃1, we only need to check whether p̃z1 [k] ≥ 0. Therefore, for j = 1, the vectors p̃z1 and d̃1 can be
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updated concurrently as follows for all i = 0, . . . , C − 1.

if p̃z1 [d0[i] + d1[1]] < 0 then
d̃1[end + 1]← d0[i] + d1[1];

p̃z1 [d0[i] + d1[1]]← qz0 [i]qz1 [1];

else
p̃z1 [d0[i] + d1[1]]← qz0 [i]qz1 [1] + p̃z1 [d0[i] + d1[1]] ;

end if

The computation of the linear convolution p̃z1 = pz0 ∗ pz1 for j = 1 is illustrated in Figure 5.3. For

j > 1, the computation is similar to that for j = 1. Figure 5.4 shows the computation for j = 2 in our

example. As we can see, the final result of p̃z1 calculated concurrently is the same as that computed

sequentially.

Figure 5.3: Concurrent computation of the linear convolution p̃z1 = pz0 ∗ pz1 (j = 1)

Figure 5.4: Concurrent computation of the linear convolution p̃z1 = pz0 ∗ pz1 (j = 2)
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We can apply the method discussed above to compute the N−fold linear convolution recursively. At

the (n+ 1)st step, we compute the two-fold linear convolution

p̃zn+1 = p̃zn ∗ pzn+1

concurrently using p̃zn and d̃n, which are computed in the previous step. Notice that, though we do not

store the vector, q̃zn, which holds all nonzero elements of p̃zn, each element of q̃zn can be obtained easily

from vector p̃zn, since q̃
z
n[i] = p̃zn

[
d̃n[i]

]
. Also, we do not need to store p̃zn and d̃n for all n: we only

need to store the p̃zn and d̃n calculated in the previous step. This iterative procedure to compute the

N−fold linear convolution is summarized in Algorithm 5.1.

Algorithm 5.1 Sparse convolution method to compute the conditional loss probabilities p̃zN−1

Input: qzn, dn for n = 0, . . . , N − 1;
Output: p̃ = p̃zN−1, d̃ = d̃N−1;

1: p← −εM;
2: d← d0;

3: for c = 0 : C − 1 do
4: p [d[c]]← qz0 [c];

5: end for
6: p̃← p;
7: d̃← d;
8: for n = 1 : N − 1 do
9: p̃← −εM;

10: d̃← NULL;

11: for j = 0 : C − 1 do
12: for i = 0 : length(d)− 1 do
13: k ← d[i] + dn[j];

14: if p̃[k] < 0 then
15: d̃[end + 1]← k;

16: p̃[k]← p[d[i]]× qzn[j];

17: else
18: p̃[k]← p̃[k] + p[d[i]]× qzn[j];

19: end if
20: end for
21: end for
22: p← p̃;
23: d← d̃;
24: end for
25: return p̃, d̃;

By (3.3.5), we need to compute p̃zN−1 for each z = z(u), u = 1, . . . , U . If we apply Algorithm 5.1 U
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times to compute p̃z
(u)

N−1, u = 1, . . . , U , then we recompute d̃n, n = 0, . . . , N −1, U times. However, from

Line 11 and Line 13 in Algorithm 5.1, we see that d̃n is updated from dn, and (5.1.23) shows that dn

does not depend on z. Hence d̃n does not depend on z either. Therefore, we need to compute d̃n once

only (not U times) to compute (3.3.5). Based on these observations, instead of applying Algorithm 5.1 U

times sequently to compute p̃z
(u)

N−1 for u = 1, . . . , U , we give an algorithm to calculate p̃z
(u)

N−1 concurrently,

where d̃n is computed only once. The algorithm is presented in Algorithm 5.2.

Algorithm 5.2 Improved sparse convolution method to compute the conditional loss probabilities p̃z
(u)

N−1

Input: q(u)
n = qz

(u)

n , dn for n = 0, . . . , N − 1, u = 1, . . . , U ;
Output: p̃(u) = p̃z

(u)

N−1, d̃ = d̃N−1, for u = 1, . . . , U ;

1: p(u) ← −εM, for u = 1, . . . , U ;
2: d← d0;

3: for c = 0 : C − 1 do
4: p(u) [d[c]]← q

(u)
0 [c], for u = 1, . . . , U ;

5: end for
6: p̃(u) ← p(u);
7: d̃← d;
8: for n = 1 : N − 1 do
9: p̃(u) ← −εM, for u = 1, . . . , U ;

10: d̃← NULL;

11: for j = 0 : C − 1 do
12: for i = 0 : length(d)− 1 do
13: k ← d[i] + dn[j];

14: if p̃(u)[k] < 0 then
15: d̃[end + 1]← k;

16: p̃(u)[k]← p(u)[d[i]]× q(u)
n [j], for u = 1, . . . , U ;

17: else
18: p̃(u)[k]← p̃(u)[k] + p(u)[d[i]]× q(u)

n [j], for u = 1, . . . , U ;
19: end if
20: end for
21: end for
22: p(u) ← p̃(u), for u = 1, . . . , U ;
23: d← d̃;
24: end for
25: return p̃(u), d̃;

5.1.2.3 Complexity of Concurrent Sparse Convolution Method

Compared with the full convolution method, the speedup of the concurrent sparse convolution method

comes from avoiding unnecessary multiplications and additions involving zeros. Consequently, the ef-
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ficiency of the concurrent sparse convolution method depends on the sparsity of the vectors p̃zn. The

following theorem gives the relationship between the complexity of this method and the sparsity of p̃zn.

Theorem 5.1. Let Hn be the number of nonzero elements in p̃zn for all z = z(u), u = 1, . . . , U , and

assume that the vectors qzn are of length C, for n = 0, . . . , N − 1 and all z. Then the total number of

FLOPs for the concurrent sparse convolution method (Algorithm 5.2) to compute p̃zN−1 =
N−1

~
j=0

pzj is

N−1∑
n=1

((
2 +

1

U

)
CHn−1 −Hn

)
≈
N−1∑
n=1

(2CHn−1 −Hn) . (5.1.27)

Proof. At each iteration n, the FLOPs needed are as follows:

1. Additions to compute d̃n−1[i] + dn[j] (Line 13 in Algorithm 5.1), for i = 0, . . . ,Hn−1 − 1, j =

0, . . . , C−1. Hence, there are CHn−1 additions in total. However, if we use Algorithm 5.2, as mentioned,

d̃n does not depend on z; hence d̃n needs to be computed only once for different z(u), u = 1, . . . , U .

Therefore, for each z(u), the amount of computation required to calculate d̃n is CHn−1/U .

2. Multiplications to compute p̃zn−1

[
d̃n−1[i] + dn[j]

]
× qzn[j] (Line 16 or Line 18 in Algorithm 5.1),

for i = 0, . . . ,Hn−1 − 1, j = 0, . . . , C − 1. Hence there are CHn−1 multiplications in total.

3. Additions to compute the summation of p[k] and p̃zn−1

[
d̃n−1[i] + dn[j]

]
× qzn[j] (Line 18 in Al-

gorithm 5.1) if needed. If the additions were performed no matter whether p̃[d[i] + dn[j]] is nega-

tive or not, then there would be CHn−1 additions. However, the additions are performed only when

p̃zn

[
d̃n−1[i] + dn[j]

]
≥ 0, and from Line 15 it is clear that once the number of nonzero elements in p̃zn

is increased by one, then one addition in Line 18 is skipped. Therefore, the number of additions that

are skipped (because Line 16 is executed, rather than Line 18) is Hn. Hence, the number of additions is

CHn−1 −Hn.

Summing the FLOPs above, there are
(
2 + 1

U

)
CHn−1 − Hn FLOPs at each step n = 1, . . . , N −

1. Hence, the total number of FLOPs to compute the N -fold linear convolution p̃zN−1 =
N−1

~
j=0

pzj is∑N−1
n=1

((
2 + 1

U

)
CHn−1 −Hn

)
. Since U is the sample size for the systematic risk factors, which is

usually very large, 2 + 1/U ≈ 2, whence
∑N−1
n=1

((
2 + 1

U

)
CHn−1 −Hn

)
≈∑N−1

n=1 (2CHn−1 −Hn) .

Recall that, in our problem, dn is related to the conditional individual loss rate by dn[c]
.
= Lcn/δ,

c = 0, . . . , C − 1. Therefore, there is no particular pattern to the elements of dn. Hence there is no

general rule to determine Hn at each step. However, Theorem 5.1 allows us to analyze the complexity

of the concurrent sparse method for fixed N and C in the best case and in the worse case. All analysis

below is based on Algorithm 5.2, and the FLOP counts are for each u.

Notice that Hn ≤ CHn−1, since Hn equals the number of times Line 15 is executed, which can be at
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most CHn−1 (i.e. at most once for each i and j in the nested loop). On the other hand, Hn ≥ Hn−1,

therefore, Hn ∈ [Hn−1, CHn−1]. This indicates that the minimum/maximum number of FLOPs at each

step n is an increasing function of Hn−1. Therefore, to find the best case, Hn−1 should be minimized in

each step n, while, to find the worst case, Hn−1 should be maximized.

Best case Minimizing Hn requires all dn to have the form

dn = [0, α, 2α, . . . , (C − 1)α]T , (5.1.28)

for some α ∈ N+. In this case, after each iteration, Hn has C − 1 more elements than Hn−1:

Hn = Hn−1 + (C − 1). (5.1.29)

To illustrate this, we consider C = 3 and d0 = d1 = [0, α, 2α]T . Define a matrix A with elements

Aij = d0[i] + d1[j], for i = 0, 1, 2 and j = 0, 1, 2, then

A =

 0 α 2α

α 2α 3α

2α 3α 4α

 .
Then it is easy to see that

d̃1 = [0, α, 2α, 3α, 4α]T .

It is clear that the positive diagonals of A are the same, and compared with d̃0 = d0, only C − 1 = 2

extra elements, 3α and 4α, are added into d̃1. This can be seen more clearly in Figure 5.5. From (5.1.29)

Figure 5.5: Best case (C = 3, α = 2)
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and H0 = C, we have

Hn = C + n(C − 1). (5.1.30)

Substitute (5.1.30) into (5.1.27), the total number of FLOPs in the best case is

Ψb
sconv =

1

2

(
2C2 − 3C + 1

)
N2 − 1

2

(
2C2 − 5C + 1

)
N − C. (5.1.31)

Worst case To maximize Hn, consider the pattern:

dn[k] = αkCn, (5.1.32)

for some α ∈ N+, k = 0, . . . , C − 1 and n = 0, . . . , N − 1. In this case, Line 16 is never executed, and

Hn and Hn−1 have the relationship

Hn = CHn−1. (5.1.33)

To illustrate this, let C = 3, then d0 = [0, α, 2α]T , d1 = [0, 3α, 6α]T . Again, define the matrix A with

elements Aij = d0[i] + d1[j] for i = 0, 1, 2, and j = 0, 1, 2. That is,

A =

 0 α 2α

3α 4α 5α

6α 7α 8α

 .
Then it is easy to see that

d̃1 = [0, α, 2α, 3α, 4α, 5α, 6α, 7α, 8α]T .

Notice that all elements in A are different, hence (C − 1)C extra elements are added into d̃1. This is

illustrated in Figure 5.6. From (5.1.33) and H0 = C, we have

Hn = Cn+1. (5.1.34)

Substituting (5.1.34) into (5.1.27), we see that the total number of FLOPs in the worst case is

Ψw
sconv =

C2(CN−1 − 1)

C − 1
. (5.1.35)
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Figure 5.6: Worst case (C = 3, α = 2)

Recall that the number of FLOPs required by the convolution method discussed in Subsection 5.1.1

is

Ψconv =

N−1∑
n=1

2K̃n−1Kn +
(
K̃n−1 +Kn − 1

)
, (5.1.36)

where Kn and K̃n are the length of p̄zn and
n

~
j=0
p̄zj respectively. In the best case,

Kn = (C − 1)α+ 1 (5.1.37)

for n = 0, . . . , N − 1, then by (5.1.20),

Ψb
conv =

(
2K̄ − 1

) (
K̄ − 1

)
N(N − 1)

2
+ (N − 1)K̄

=

(
α2(C − 1)2 +

1

2
α(C − 1)

)
N2 +

(
−(C − 1)2α2 +

1

2
(C − 1)α

)
N − ((C − 1)α+ 1) .

Consequently, the speedup of the concurrent sparse convolution method compared with the full convo-

lution method in the best case is

Ψb
conv

Ψb
sconv

=

(
α2(C − 1)2 + 1

2α(C − 1)
)
N2 +

(
−(C − 1)2α2 + 1

2 (C − 1)α
)
N − ((C − 1)α+ 1)

1
2 (2C2 − 3C + 1)N2 − 1

2 (2C2 − 5C + 1)N − C

=
(C − 1)2α2N2

((
1 + 1

2(C−1)α

)
+
(

1
2(C−1)α − 1

)
1
N −

(
1

(C−1)α + 1
(C−1)2α2

)
1
N2

)
(C − 1)N2

(
2C−1

2 −
(

2C2−5C+1
2(C−1)

)
1
N − C

C−1
1
N2

)
≈ (C − 1)2α2N2

(C − 1)2N2

(
1 +

1

2(C − 1)α

)
= α2

(
1 +

1

2(C − 1)α

)
∼ Ω(α2). (5.1.38)
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In the worst case, since K̃n = K̃n−1 +Kn − 1, for n = 1, . . . , N − 1, and

Kn = α (C − 1)Cn + 1, (5.1.39)

for n = 0, . . . , N − 1, then K̃n − K̃n−1 = Kn − 1 = α (C − 1)Cn, which implies

K̃n = 1 +

n∑
j=0

α (C − 1)Cj = αCn+1 − (α− 1), (5.1.40)

for n = 0, . . . , N − 1. Hence, substituting (5.1.39) and (5.1.40) into (5.1.36), we have

Ψw
conv =

N−1∑
n=1

2K̃n−1Kn +
(
K̃n−1 +Kn − 1

)
= 2α2(C − 1)

N−1∑
n=1

C2n + (2(α+ C)− αC)

N−1∑
n=1

Cn − 3(α− 1)(N − 1)

=
2α2

(
C2N − C2

)
C + 1

+
(2(α+ C)− αC)

(
CN − C

)
C − 1

− 3(α− 1)(N − 1). (5.1.41)

Consequently, the speedup of the concurrent sparse convolution method compared with the full convo-

lution method in the worst case is

Ψw
conv

Ψw
sconv

=

2α2(C2N−C2)
C+1 +

(2(α+C)−αC)(CN−C)
C−1 − 3(α− 1)(N − 1)

C2(CN−1−1)
C−1

=

α2C2N

(
2− C2

α2C2N

C+1 +
(2(α+C)−αC) C

N−C
α2C2N

C−1 − 3(α−1)(N−1)
α2C2N

)
CN+1(1− 1

CN−1 )
C−1

≈
2α2C2N

C+1

CN+1

C−1

≈ 2α2CN−1 ∼ Ω
(
α2CN

)
. (5.1.42)

Comparing (5.1.38) and (5.1.42), we can see that the speedup in the worst case is much higher than

that in the best case. The reason is that the vectors p̄zn are much longer in the worst case than in the

best case, which follows from comparing (5.1.37) and (5.1.39). This implies that the vectors p̄zn in the

worst case are much more sparse than those in the best case, since the number of nonzero elements in

p̄zn , which is C, is fixed. Therefore, in the worst case, the full convolution method wastes more FLOPs

in computing multiplications and additions where at least one of the arguments is zero. Although the

sparse convolution method is slower in the worst case than it is in the best case, the full convolution

method is much slower in the worst case than it is in the best case; hence the speedup in the worst case

is much higher than that in the best case.
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5.1.3 Truncated Sparse Convolution Method

For the sparse convolution method described in the last subsection, we compute every nonzero p̃zn−1[i]pzn[j]

when computing p̃zn at each step n. However, as shown in Figure 5.7, when n is large, many elements in

p̃zn become very small, since we multiply p̃zn−1[i], which is less than 1, by pzn[j], which is also less than

1. In our sparse convolution method, we treat those extremely small p̃zn−1[i]pzn[j] as nonzero. Some of

these very small values may create a new nonzero element (See Line 16 of Algorithm 5.1 or 5.2). This

increases Hn and slows down the computation. However, financial institutions do not require extremely

high accuracy. Therefore, it is reasonable to ignore extremely small p̃zn−1[i]pzn[j]. That is, instead of

computing p̃zn by

p̃zn[k] =
∑

u+v=k

p̃zn−1[i]pzn[j], (5.1.43)

we approximate p̃zn by its truncated version ̂̃pzn, where
̂̃pz0 [k] = p̃z0 [k],

̂̃pzn[k] =
∑
i+j=k

I{̂̃pzn−1[i]pzn[j]>ε}̂̃p
z
n−1[i]pzn[j], for n > 0, (5.1.44)

where

I{x>ε} =


1 if x > ε,

0 if x ≤ ε.

The truncation error incurred in approximating p̃zn by ̂̃pzn can be estimated; Theorem 5.2 gives a

bound of the total truncation error incurred in the N -fold linear convolution.

Theorem 5.2. Assume p̃zn[k] is defined by (5.1.43) and ̂̃pzn[k] is defined by (5.1.44), and let

n̂ = min{n
∣∣∃i, j ∈ {0, . . . ,K − 1}, p̃zn−1[i]pzn[j] ≤ ε}, (5.1.45)

then

0 ≤ p̃zN−1[k]− ̂̃pzN−1[k] ≤ (N − n̂)Cε.

Proof. Since p̃zn[k] = ̂̃pzn[k] for n < n̂, it is sufficient to prove

0 ≤ p̃zn̂+t[k]− ̂̃pzn̂+t[k] ≤ (t+ 1)Cε, (5.1.46)
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Figure 5.7: Small probability mass (n = 100)
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for all t ∈ N. We prove (5.1.46) by induction on t. For t = 0, given the definition of p̃zn[k] and ̂̃pzn[k] in

(5.1.43) and (5.1.44), we have

p̃zn̂[k]− ̂̃pzn̂[k] =
∑
i+j=k

(
p̃zn̂−1[i]pzn̂[j]− I{̂̃pzn̂−1[i]pzn̂[j]>ε}̂̃p

z
n̂−1[i]pzn̂[j]

)
=
∑
i+j=k

(
p̃zn̂−1[i]pzn̂[j]− I{p̃zn̂−1[i]pzn̂[j]>ε}p̃

z
n̂−1[i]pzn̂[j]

)
=
∑
i+j=k

(
1− I{p̃zn̂−1[i]pzn̂[j]>ε}

)
p̃zn̂−1[i]pzn̂[j].

Let f(x, ε) =
(
1− I{x>ε}

)
x, then

f(x, ε) =


0 if x > ε,

x if x ≤ ε.

Hence, 0 ≤ f(x, ε) ≤ ε and

0 ≤ p̃zn̂[k]− ̂̃pzn̂[k] =
∑
i+j=k

f
(
p̃zn̂−1[i]pzn̂[j], ε

)
≤
∑
i+j=k

ε ≤ Cε,

where the rightmost inequality in the line above follows from the observation that the vector pzn̂ has only
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C nonzero elements. For the induction step, assume

0 ≤ p̃zn̂+t[k]− ̂̃pzn̂+t[k] ≤ (t+ 1)Cε (5.1.47)

for some t ≥ 0, and consider

p̃zn̂+(t+1)[k]− ̂p̃zn̂+(t+1)[k]

=
∑
i+j=k

(
p̃zn̂+t[i]p

z
n̂+(t+1)[j]− I{ ̂̃pzn̂+t[i]p

z
n̂+(t+1)

[j]>ε
} ̂̃pzn̂+t[i]p

z
n̂+(t+1)[j]

)
. (5.1.48)

First note that p̃zn̂+(t+1)[k] − ̂p̃zn̂+(t+1)[k] ≥ 0 since (5.1.47) implies that each term in the sum on the

right side of (5.1.48) is nonnegative. To prove the upper bound on p̃zn̂+(t+1)[k] − ̂p̃zn̂+(t+1)[k], note that

p̃zn̂+t[i] ≤ ̂̃pzn̂+t[i] + (t+ 1)Cε, whence from (5.1.48)

p̃zn̂+(t+1)[k]− ̂p̃zn̂+(t+1)[k] ≤
∑
i+j=k

(( ̂̃pzn̂+t[i] + (t+ 1)Cε
)
pzn̂+(t+1)[j]

−I{ ̂̃pzn̂+t[i]p
z
n̂+(t+1)

[j]>ε
} ̂̃pzn̂+t[i]p

z
n̂+(t+1)[j]

)
=
∑
i+j=k

(
1− I{ ̂̃pzn̂+t[i]p

z
n̂+(t+1)

[j]>ε
}) ̂̃pzn̂+t[i]p

z
n̂+(t+1)[j]

+(t+ 1)Cε
∑
i+j=k

pzn̂+(t+1)[j]

=
∑
i+j=k

f
( ̂̃pzn̂+t[i]p

z
n̂+(t+1)[j], ε

)
+ (t+ 1)Cε

∑
i+j=k

pzn̂+(t+1)[j]

≤ Cε+ (t+ 1)Cε

= ((t+ 1) + 1)Cε.

Therefore, (5.1.46) is true for all t ∈ N. Consequently, 0 ≤ p̃zN−1[k]− ̂̃pzN−1[k] ≤ (N − n̂)Cε.

We can apply Theorem 5.2 to obtain an error bound for the truncated sparse convolution method

when computing the conditional cumulative probabilities. This result is presented in the following

corollary.

Corollary 5.3. Let p̃zn[k], ̂̃pzn[k] and n̂ be defined as in Theorem 5.2. Then

P {Lz ≤ lj}sconv − P {Lz ≤ lj}ŝconv ≤ j(N − n̂)Cε.
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Proof. From (5.1.11), we have

P {Lz ≤ lj}sconv =
∑
k≤j

p̃zN−1[k],

P {Lz ≤ lj}ŝconv =
∑
k≤j

̂̃pzN−1[k].

Therefore, from Theorem 5.2,

P {Lz ≤ lj}sconv − P {Lz ≤ lj}ŝconv =
∑
k≤j

(
p̃zN−1[k]−̂̃pzN−1[k]

)
≤ j(N − n̂)Cε.

In practice, we wish to pre-define a threshold Tol such that

p̃zN−1[k]− ̂̃pzN−1[k] ≤ Tol,

or

P {Lz ≤ lj}sconv − P {Lz ≤ lj}ŝconv ≤ Tol,

and based on this threshold to determine ε in (5.1.44). Theorem 5.2 shows that if we set

ε =
Tol

(N − n̂)C
, (5.1.49)

then

p̃zN−1[k]− ̂̃pzN−1[k] ≤ (N − n̂)Cε = Tol.

However, from (5.1.45), we know that n̂ is determined during the computation, so ε can not be determined

before computation by (5.1.49). To solve this problem, notice that

p̃zN−1[k]− ̂̃pzN−1[k] ≤ (N − n̂)Cε ≤ NCε.

Hence, for the truncated version of sparse convolution, if we can set

ε =
Tol

NC
, (5.1.50)
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then

p̃zN−1[k]− ̂̃pzN−1[k] ≤ NCε = Tol.

Since N and C are known before computation, ε obtained by (5.1.50) can be determined before compu-

tation.

Similarly, we can let

ε =
Tol

jNC
, (5.1.51)

so that for any pre-defined Tol, we have

P {Lz ≤ lj}sconv − P {Lz ≤ lj}ŝconv ≤ Tol.

It is trivial to modify Algorithm 5.1 to incorporate the truncation. The only change required is to add

an if statement to test the condition p̃zn−1[i]pzn[j] > ε. If the condition is satisfied, then Line 13 to Line

19 in Algorithm 5.1 are executed. Otherwise, the new algorithm jumps to Line 20 in Algorithm 5.1. The

algorithm for the truncated sparse convolution method is listed in Algorithm 5.3. However, Algorithm

5.2 can not be modified to accommodate this feature, since the if statement to test the condition

p̃zn−1[i]pzn[j] > ε makes d̃n dependent on z. Therefore, d̃n may be different for different realizations of

the risk factors. Hence, we have to compute d̃n U times (once for each z(u)) rather than just once.
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Algorithm 5.3 Truncated sparse convolution method to compute the conditional loss probabilities
Input: qzn, dn for n = 0, . . . , N − 1, ε;
Output: p̃ = p̃zN−1, d̃ = d̃N−1;

1: p← −εM;
2: d← d0

3: for c = 0 : C − 1 do
4: p [d[c]]← qz0 [c];

5: end for
6: p̃← p;
7: d̃← d;
8: for n = 1 : N − 1 do
9: p̃← −εM;

10: d̃← NULL;

11: for j = 0 : C − 1 do
12: for i = 0 : length(d)− 1 do
13: a← p[d[i]]× qn[j];

14: if a > ε then
15: k ← d[i] + dn[j];

16: if p̃[k] < 0 then
17: d̃[end + 1]← k;

18: p̃[k]← a;

19: else
20: p̃[k]← p̃[k] + a;

21: end if
22: end if
23: end for
24: end for
25: p← p̃;
26: d← d̃;
27: end for
28: return p̃, d̃;
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5.2 Sparse FFT Method

Another efficient way to compute the N -fold linear convolution in (5.1.9) is to use the fast Fourier

transform (FFT). In this section, we first describe how to apply the full FFT algorithm to compute

the N -fold linear convolution. Then we develop a sparse FFT algorithm and a truncated sparse FFT

algorithm.

5.2.1 Computation of the Conditional Loss Probability by the Fourier Trans-

form

We begin by introducing the discrete circular convolution and the discrete Fourier transform. The

circular convolution of two real vectors x and y, both of length K, is a mapping from RK × RK to RK

defined by

x ? y[k]
.
=

K−1∑
j=0

x[j]y [(k − j)mod K] (5.2.1)

for k = 0, . . . ,K − 1. Like the discrete linear convolution, the discrete circular convolution can be

represented in matrix form using a circulant matrix Cy. For example, suppose that both x and y have

four elements, then

x ? y = Cyx

=


y0 y3 y2 y1

y1 y0 y3 y2

y2 y1 y0 y3

y3 y2 y1 y0



x0

x1

x2

x3

 .

The discrete Fourier transform of a complex vector x of length K is a mapping from CK to CK defined

by

F (x) [k] =

K−1∑
j=0

x[j]wjk,

for k = 0, . . . ,K − 1, where w = e
−2πi
K and i =

√
−1. In matrix form, the discrete Fourier transform

(DFT) of a K-element vector x can be written as the product of a DFT matrix F and the vector x:

F (x) = Fx =


w0·0 w0·1 · · · w0·(K−1)

w1·0 w1·1 · · · w1·(K−1)

...
...

. . .
...

w(K−1)·0 w(K−1)·1 · · · w(K−1)·(K−1)




x0

x1

...
xK−1

 . (5.2.2)
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Similarly, the inverse discrete Fourier transform (iDFT) is defined by

F−1 (x) [k] =
1

K

K−1∑
j=0

x[j]w−jk,

for k = 0, . . . ,K − 1, and the matrix form of the iDFT is

F−1(x) = F−1x =
1

K


w−0·0 w−0·1 · · · w−0·(K−1)

w−1·0 w−1·1 · · · w−1·(K−1)

...
...

. . .
...

w−(K−1)·0 w−(K−1)·1 · · · w−(K−1)·(K−1)




x0

x1

...
xK−1

 . (5.2.3)

Notice that (
F−1F

)
[m,n] =

1

K

K−1∑
k=0

w−m·kwk·n =
1

K

K−1∑
k=0

w(n−m)k.

• If m 6= n,
∑K−1
k=0 w(n−m)k is a geometric series. Hence,

(
F−1F

)
[m,n] =

1

K
· w

(n−m)K − 1

w(n−m) − 1
.

Since w = e
−2πi
K is a primitive Kth root of unity, which implies wK = 1, whence, w(n−m)K = 1.

However, w(n−m) 6= 1. Therefore, (
F−1F

)
[m,n] = 0

for m 6= n.

• If m = n, then w(n−m)K = w0 = 1. Hence,

(
F−1F

)
[m,n] = 1.

Therefore, we have F−1F = I, where I is an identity matrix. This implies F−1 (F (x)) = x.

The circular convolution theorem [8] links the discrete circular convolution and the DFT:

x ? y = F−1 (F (x)�F (y)) ,

where � is the component-wise product. Moreover, the circular convolution theorem can be extended

to an N -fold discrete circular convolution:

N−1
?
n=0

xn = F−1

(
N−1�
n=0
F (xn)

)
. (5.2.4)
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The conditional loss probabilities we need to compute in (5.1.9) are given by an N -fold discrete linear

convolution rather than an N -fold discrete circular convolution. However, Theorem 5.4 below gives the

relationship between an N -fold discrete linear convolution and the corresponding N -fold discrete circular

convolution.

Theorem 5.4. Let N ≥ 2 and {xn}N−1
n=0 be a sequence of vectors, each of length K. Then

(
N−1
?
n=0

xn

)
[k] =

UN−1
k∑
u=0

(
N−1

~
n=0

xn

)
[uK + k] (5.2.5)

for k = 0, . . . ,K − 1, where

UN−1
k = max {u ∈ N |0 ≤ uK + k ≤ N(K − 1)} .

A proof of this theorem is given in Appendix D. Note that the upper and lower bounds in the sum

on the right side of (5.2.5) make indices uK + k, for k = 0, . . . ,K − 1, range from the first index of
N−1

~
n=0

xn, 0, to the last index of
N−1

~
n=0

xn, N(K − 1). Theorem 5.4 shows that the N -fold discrete circular

convolution is the “wrapped” version of the N -fold discrete linear convolution, and the N -fold discrete

circular convolution at k can be obtained by summing the N -fold discrete linear convolution at the

points uK + k, which can be “wrapped around” to k. An immediate consequence of this theorem is the

following corollary, which shows that, due to the way that we construct the length, K, of the vectors, pzn,

the N -fold linear convolution agrees with the N -fold discrete circular convolution when each are used to

compute P {Lz = lk}.

Corollary 5.5. Assume the perfect discretization scheme discussed in Section 5.1.1 is applied, where

lk = kδ, pzn[k] = P {Lzn = lk} , k = 0, . . . ,K − 1, and lK−1 =
∑N−1
n=0 L

0
n, then

P {Lz = lk} =

(
N−1

~
n=0

pzn

)
[k] =

(
N−1
?
n=0

pzn

)
[k],

for k = 0, . . . ,K − 1.

Proof. We have shown P {Lz = lk} =

(
N−1

~
n=0

pzn

)
[k] in Subsection 5.1.1. By Theorem 5.4,

(
N−1
?
n=0

pzn

)
[k] =

(
N−1

~
n=0

pzn

)
[k] +

UN−1
k∑
u=1

(
N−1

~
n=0

pzn

)
[uK + k], (5.2.6)

for k = 0, . . . ,K−1. Notice that lK−1 =
∑N−1
n=0 L

0
n, is the maximum portfolio loss. Thus, P {Lz = lk} = 0
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for k ≥ K. Hence,

P {Lz = luK+k} =

(
N−1

~
n=0

pzn

)
[uK + k] = 0

for u ≥ 1 and k = 0, . . . ,K − 1. Therefore, equation (5.2.6) reduces to

(
N−1

~
n=0

pzn

)
[k] =

(
N−1
?
n=0

pzn

)
[k],

which completes the proof. �

According to Corollary 5.5, the conditional loss probabilities can be computed by an N -fold circular

convolution. So, by (5.2.4), we have

P {Lz = lk} =

(
N−1
?
n=0

pzn

)
[k] =

(
F−1

(
N−1�
n=0
F (pzn)

))
[k] (5.2.7)

for k = 0, . . . ,K − 1.

If we implement the DFT as a matrix-vector multiply, as shown in (5.2.2), we need K2 complex

multiplications (or 4K2 real multiplications and 2K2 real additions) and K(K − 1) complex additions

(or 2K(K − 1) real additions) to compute one DFT. Hence, if assuming we have the Fourier matrix F,

then the FLOPs required to compute the loss probability by (5.2.7) are:

• NK2 complex multiplications and NK(K − 1) complex additions to compute N DFTs, which is

equivalent to 4NK2 real multiplications and 2NK2 + 2NK(K − 1) real additions;

• (N−1)K complex multiplications to compute N−1 component-wise products, which is equivalent

to 4(N − 1)K real multiplications and 2(N − 1)K real additions;

• K2 +K complex multiplications and K(K − 1) complex additions to compute one iDFT, which is

equivalent to 4(K2 +K) real multiplications and 2(K2 +K) + 2K(K − 1) real additions.

Therefore, we need 8(N + 1)K2 + 2(2N − 1)K FLOPs in total, which is even more than the number of

FLOPs required by the full convolution method (as shown in (5.1.15)).

5.2.2 Full FFT Method

Rather than computing (5.2.7) by matrix-vector multiplies, we can accelerate the computation by us-

ing the fast Fourier transform (FFT) instead. This brings down the cost of computing each Fourier

transform from O(K2) to O(K log2K). There are many different FFT algorithms. We briefly review
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the commonly-used Cooley-Tukey radix-2 FFT algorithm to compute F (x). Readers can find a more

complete discussion in [57].

The Cooley-Tukey radix-2 FFT algorithm assumes K = 2t for some integer t. This leads to the

following factorization of the DFT matrix F:

F = At · · ·A1P
T
K ,

where

Aq =


BLq 0 · · · 0

0 BLq · · · 0
...

...
. . .

...
0 0 · · · BLq

 , Lq = 2q,

BLq =

[
IL∗q ΩL∗q

IL∗q −ΩL∗q

]
, L∗q = Lq/2,

ΩL∗q
= diag

(
w0
Lq
, w1

Lq
, . . . , w

L∗q−1

Lq

)
, wLq = e

− 2πi
Lq ,

IL∗q = diag (1, 1, . . . , 1) .

(5.2.8)

Note Aq is a K × K matrix, where K = 2t, consisting of 2t−q diagonal blocks BLq , where BLq is an

Lq × Lq matrix and Lq = 2q. ΩL∗q
is a diagonal L∗q × L∗q matrix and IL∗q is the L∗q × L∗q identity matrix

where L∗q = Lq/2 = 2q−1. PT
K is a bit-reversal permutation matrix which permutes a vector x by

reversing the order of the bits in the binary expansion of its indices:

x̂0
.
= PT

Kx, x̂0 [(bt−1 · · · b1b0)2] = x [(b0 · · · bt−2bt−1)2] . (5.2.9)

Based on this factorization, the Fourier transform, F (x), can be computed as follows.

S1. Permute x: x̂0 = PT
Kx, which is also called “bit reversal”;

S2. Compute the weight vectors wL∗q
=
[
w0
Lq
, w1

Lq
, . . . , w

L∗q−1

Lq

]T
, L∗q = 20, 21, . . . , 2t−1;

S3. Compute the matrix-vector products x̂q = Aqx̂q−1 for q = 1, . . . , t. Due to the special structure of

Aq, the matrix-vector product Aqx̂q−1 can be implemented efficiently as a series of computations

called “butterfly updates”, discussed later in this section.
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5.2.2.1 Bit Reversal

Let k = (b0 · · · bt−2bt−1)2 and denote rt(k)
.
= (bt−1 · · · b1b0)2. Then the permutation (5.2.9) can be

implemented efficiently as

x̂0[rt(k)] = x[k]. (5.2.10)

Thus, we need to map k to rt(k). Notice that

k = b0 + b1 · 2 + · · ·+ bt−1 · 2t−1,

rt(k) = b0 · 2t−1 + b1 · 2t−2 + · · ·+ bt−1.

If we let

rqt (k)
.
= b0 · 2q−1 + b1 · 2q−2 + · · ·+ bq−1,

then rt(k) = rtt(k) and

r1
t (k) = b0,

r2
t (k) = 2b0 + b1 = 2r1

t (k) + b1,

r3
t (k) = 2(2b0 + b1) + b2 = 2r2

t (k) + b2,

r4
t (k) = 2(2(2b0 + b1) + b2) + b3 = 2r3

t (k) + b3,

...

rtt(k) = 2rt−1
t (k) + bt−1.

Therefore, given k, once bq, q = 0, . . . , t− 1, are determined, we can use the iteration above to compute

rt(k). To determine bq, bq, q = 0, . . . , t− 1, denote

hqt (k)
.
= bq + bq+1 · 2 + · · ·+ bt−1 · 2t−1−q,

for q = 0, . . . , t− 1. Then k = h0
t (k) and

bq = hqt (k)− 2hq+1
t (k), q = 0, . . . , t− 1.

Also, notice that ⌊
hqt (k)

2

⌋
= hq+1

t (k).
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Hence, we can use the following iteration to determine bq, q = 0, . . . t− 1:

h0
t (k) = k,

h1
t (k) =

⌊
h0
t (k)

2

⌋
, b0 = h0

t (k)− 2h1
t (k),

h2
t (k) =

⌊
h1
t (k)

2

⌋
, b1 = h1

t (k)− 2h2
t (k),

...

htt(k) =

⌊
ht−1
t (k)

2

⌋
= 0, bt−1 = ht−1

t (k)− 2htt(k).

Moreover, since rt (rt(k)) = k,

x̂0[k] = x[rt(k)]. (5.2.11)

From (5.2.10) and (5.2.11) we see that we only need to swap x[k] and x[rt(k)] for k = 0, . . . ,K − 1 to

obtain x̂0. Based on the analysis above, an algorithm to perform the bit reversal permutation, with

number of integer operations (INOPs) at each line, is presented in Algorithm 5.4 . It is clear that this

algorithm requires 5K log2K INOPs to compute x̂0 = PT
Kx.

6

Algorithm 5.4 Bit reversal to compute x̂0 = PT
Kx

Input: x, K;
Output: x = x̂0;

1: for k = 0 : K − 1 do
2: r ← 0; h← k;

3: for q = 0 : t− 1 do
4: h∗ ← floor(h/2); # Klog2(K) INOPs

5: r ← 2r + (h− 2h∗); # 4Klog2(K) INOPs

6: h← h∗;

7: end for
8: if r > k then
9: x[r]↔ x[k];

10: end if
11: end for
12: return x;

5.2.2.2 Computation of Weights

Since

wL∗q [j] = e
− 2πji

Lq = e
− 2π(2j)i

2Lq = wLq [2j],

6We assume that floor(h/2) can be computed using the equivalent of one integer arithmetic operation.
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wL∗q
= wLq [0 : 2 : Lq − 1] , which indicates that it is sufficient to compute wK/2 only to obtain all wL∗q

,

L∗q = 20, 21, . . . , 2t−1. However, as noted in [57], a straightforward implementation of this method leads

to a power-of-two stride access to wK/2. That is, during the qth update x̂q = Aqx̂q−1, we need to

reference consecutively elements of wK/2 separated by r = K/2
L∗q

= 2t−q, since

wL∗q [j] = wK/2[rj].

This may result in consecutive accesses to noncontiguous memory blocks, which may severely degrade

the performance of the method, especially for small L∗q , for which the stride r is very large. One way to

avoid this deficiency is to compute the following long weight vector with K − 1 components,7

wlong =


w20

w21

...
w2t−1

 .

Therefore, at the qth update, the weight vector is

wL∗q
= wlong

[
L∗q − 1 : Lq − 1

]
,

with elements

wL∗q [j] = wlong[L
∗
q + j − 1] (5.2.12)

accessed from contiguous memory.

There are many methods to compute the elements of wL∗q
. We apply the direct computation

wL∗q [j] = cos

(
−2πj

Lq

)
+ i sin

(
−2πj

Lq

)
.

Chu [10] has shown that this direct method is stable and gives the most accurate result compared with

other methods. An algorithm based on this direct method to compute the long weight vector, with

number of INOPs and trigonometric operations (TROPs) at each line is presented in Algorithm 5.5. In

total we need 2(K − 1) TROPs, K + 2 log2K − 1 INOPs and K + 2 log2K − 1 FLOPs. 8

7Notice that, for q = 0, . . . , t− 1, each vector w2q has 2q components .
8We assume that 2q can be computed using the equivalent of one integer arithmetic operation.
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Algorithm 5.5 Computation of the long weight vector wlong

Input: t;
Output: wlong;

1: for q = 1 : t do
2: Lq ← 2q; L∗q ← Lq/2; # 2log2(K) INOPs

3: θ0 ← 2π/Lq; # 2log2(K) FLOPs

4: for j = 0 : L∗q − 1 do
5: θ ← jθ0; # K-1 FLOPs

6: wL∗q [j] = cos(θ)− i sin(θ); # 2(K-1) TROPs, K-1 INOPs

7: end for
8: end for
9: return wlong;

5.2.2.3 Butterfly Update

Given the form of Aq in (5.2.8), it is helpful to write the matrix-vector products x̂q = Aqx̂q−1 as

[
x̂k,Hq
x̂k,Tq

]
=

[
IL∗q ΩL∗q

IL∗q −ΩL∗q

][
x̂k,Hq−1

x̂k,Tq−1

]
,

where

x̂k,Hq = x̂q
[
kLq : kLq + L∗q − 1

]
,

x̂k,Tq = x̂q
[
kLq + L∗q : kLq + Lq − 1

]
,

for k = 0, . . . ,K/Lq − 1. Therefore, we can compute x̂q by

x̂q [kLq + j] = x̂q−1 [kLq + j] + wL∗q [j]x̂q−1

[
kLq + L∗q + j

]
, (5.2.13)

x̂q
[
kLq + L∗q + j

]
= x̂q−1 [kLq + j]− wL∗q [j]x̂q−1

[
kLq + L∗q + j

]
, (5.2.14)

for k = 0, . . . ,K/Lq−1, j = 0, . . . , L∗q−1, implying the computation of x̂q reduces to a series of butterfly

updates shown in Figure 5.8, where a solid line indicates that both data and FLOPs are required, and

a dashed line indicates that data are required, but no FLOPs are needed.
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Figure 5.8: Butterfly update

An algorithm based on the butterfly update to compute x̂q = Aqx̂q−1, with number of INOPs and

FLOPs indicated at each line, is presented in Algorithm 5.6. The weights, wL∗q [j], are accessed from the

long weight vector wlong by (5.2.12). In total, 3K/Lq + 3K/2 + 3 INOPs and 5K FLOPs are needed to

compute x̂q = Aqx̂q−1 for each q.

Algorithm 5.6 Butterfly update to compute x̂q = Aqx̂q−1

Input: x, K, q, wlong;
Output: x;

1: Lq = 2q; L∗q ← Lq/2; r ← K/Lq; # 3 INOPs

2: for k = 0 : r − 1 do
3: ix0 ← kLq; ix1 ← ix0 + L∗q ; iw ← L∗q − 1; # 3K/Lq INOPs

4: for j = 0 : L∗q − 1 do
5: y0 ← x[ix0];

6: τ ← x[ix1]wlong[iw]; # 6K/2 FLOPs

7: x[ix1]← y0 − τ ; # 2K/2 FLOPs

8: x[ix0]← y0 + τ ; # 2K/2 FLOPs

9: ix0 ← ix0 + 1; ix1 ← ix1 + 1; # 2K/2 INOPs

10: iw ← iw + 1; # K/2 INOPs

11: end for
12: end for
13: return x;
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Combining Algorithm 5.4, 5.5 and 5.6, we present in Algorithm 5.7 a complete version of the Cooley-

Tukey radix-2 FFT algorithm to compute F (x).

Algorithm 5.7 Cooley-Tukey radix-2 FFT to compute F (x)

Input: x, K, t;
Output: x;

1: x← PT
Kx by Algorithm 5.4;

2: Compute wlong by Algorithm 5.5;
3: for q = 1 : t do
4: x← Aqx by Algorithm 5.6;
5: end for
6: return x;

It is clear that, in Algorithm 5.7, the number of TROPs is 2(K − 1) , the number of INOPs is

5K log2K + (K + 2 log2K − 1) +

t∑
q=1

(
3
K

Lq
+

3

2
K + 3

)

= 5K log2K + (K + 2 log2K − 1) +

(
3

t∑
q=1

2t−q +
3

2
K log2K + 3 log2K

)

=
13

2
K log2K + 4K + 5 log2K − 4.

and the number of FLOPs is

(K + 2 log2K − 1) +

t∑
q=1

5K = 5K log2K +K + 2 log2K − 1.
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5.2.2.4 Computation of Loss Probability Based on the Full FFT

We can apply Algorithm 5.7 to compute F (pzn) in (5.2.7) for n = 0, . . . , N − 1. Since the weight vector

depends only on the length of the vector pzn, and all pzn have the same length K, we need to compute the

weight vector once only. The inverse Fourier transform can be computed similarly, except that we need

to negate the imaginary part of the weight vector and scale the result by 1/K. Algorithm 5.8 shows how

to apply the FFT to compute the loss probability.

Algorithm 5.8 Full FFT method to compute the loss probability
Input: pzn, K, t;
Output: p̃ = p̃zN−1;

1: Compute wlong by Algorithm 5.5;
2: p̃← [1, 1, . . . , 1]T ;

3:

4: for n = 0 : N − 1 do
5: pzn ← PT

Kp
z
n by Algorithm 5.4;

6: for q = 1 : t do
7: pzn ← Aqp

z
n by Algorithm 5.6;

8: end for
9: p̃← p̃� pzn;

10: end for
11:

12: wlong ← wlong;

13: p̃← PT
K p̃ by Algorithm 5.4;

14: for q = 1 : t do
15: p̃← Aqp̃ by Algorithm 5.6; 9

16: end for
17: p̃← p̃/K;

18: return p̃;

9The matrix Aq is the conjugate matrix of the matrix Aq , which is defined by

Aq =


BLq 0 · · · 0

0 BLq · · · 0

...
...

. . .
...

0 0 · · · BLq

 , BLq =

[
IL∗q ΩL∗q

IL∗q −ΩL∗q

]
,

ΩL∗q = diag
(
w0
Lq
, w1

Lq
, . . . , w

L∗q−1

Lq

)
, IL∗q = diag (1, 1, . . . , 1), and wLq = e

2πi
Lq .
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5.2.2.5 Complexity of the Full FFT Method

The computational cost of Algorithm 5.8 is listed in Table 5.1:

Table 5.1: Computational cost of Algorithm 5.8

Line Number of TROPs Number of INOPs Number of FLOPs

1 2(K − 1) K + 2 log2K − 1 K + 2 log2K − 1

5 0 5NK log2K 0

7 0 N
∑t
q=1

(
3 K
Lq

+ 3
2K + 3

)
5NK log2K

9 0 0 6(N − 1)K

12 0 0 K − 1

13 0 5K log2K 0

15 0
∑t
q=1

(
3 K
Lq

+ 3
2K + 3

)
5K log2K

17 0 0 K

Therefore, the total computational cost is:

• ΨTROP
fft = 2(K − 1) TROPs;

• ΨINOP
fft = 13

2 (N + 1)K log2K + (3N + 4)K + (3N + 5) log2K − (3N + 4) INOPs;

• ΨFLOP
fft = 5(N + 1)K log2K + 2(3N − 1)K + 2 log2K − 2 FLOPs,

which is Ω(NK log2K).

Denote the computational cost of one TROP (INOP, FLOP) by ΓTROP (ΓINOP , ΓFLOP ) , and

assume that on average,

ΓTROP = βΓFLOP , ΓINOP ≈ ΓFLOP ,

with β ∼ 10, and that all pzn have the same length K̄ = K−1
N + 1, then by (5.1.36), the speedup of the

full FFT method over the full convolution method is
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Ψconv

Ψfft
=

(
1− 1

N

)
K2 +

(
N−3

2 + 1
N

)
K + N−1

2

βΨTROP
fft + ΨINOP

fft + ΨFLOP
fft

=

(
1− 1

N

)
K2 +

(
N−3

2 + 1
N

)
K + N−1

2
23
2 (N + 1)K log2K + (9N + 2β + 2)K + (3N + 7) log2K − (3N + 2β + 6)

=
K2
((

1− 1
N

)
+
(
N−3

2 + 1
N

)
1
K +

(
N−1

2

)
1
K2

)
NK log2K

(
23
2 (1 + 1

N ) +
(

9 + 2β+2
N

)
1

log2 K
+
(
3 + 7

N

)
1
K −

(
3 + 2β+6

N

)
1

K log2 K

)
K�N≈ K

23
2 N log2K

= Ω (K/ (N log2K)) (5.2.15)

Therefore, if K � N , then the full FFT method outperforms the full convolution method in terms of

computational cost. The speedup decreases as the number of obligors, N , increases, but with a slow

rate, since K̄ = K−1
N + 1, then K = NK̄ −N + 1, which indicates

Ω

(
K

N log2K

)
= Ω

(
K̄

log2 K̄ + log2N

)
.

5.2.3 Sparse FFT Method

As mentioned in Subsection 5.1.2, in the computation of conditional loss probabilities, the vectors pzn

are very sparse. Therefore, there is some potential to improve the full FFT algorithm described above

by utilizing the sparsity. Recall the three steps involved in the full FFT algorithm. The improvements

mainly come from the bit reversal and from the butterfly updates. We can also improve the performance

of the weights computation, but unlike the bit reversal and the butterfly updates, which must be com-

puted once for each obligor, the weight vector must be computed once only for all obligors. Therefore,

the speedup gained from improving the weight vector computation is not significant.

5.2.3.1 Sparse Bit Reversal

As before, we let d = [d[0], . . . , d[C − 1]]T be the vector of indices of nonzero elements of the vector x.

We need to compute the index bit reversal for the nonzero elements of x only. Therefore, rather than

performing swaps of all elements of x, as we did in the full bit reversal algorithm, we assign x[d[k]] to

x̂0[rt(d[k])] for k = 0, . . . , C − 1. The computation of rt(d[k]) is the same as that described earlier for

the full bit reversal. In addition, we need only to assign the computed indices to a new vector d̂ by

d̂[k] = rt(d[k]). Our sparse bit reversal algorithm is presented in Algorithm 5.9. Compared with the full
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bit reversal algorithm in Algorithm 5.4, the computational cost is reduced from 5K log2K to 5C log2K.

Algorithm 5.9 Sparse bit reversal to compute x̂0 = PT
Kx

Input: x, d, C;
Output: x̂, d̂;

1: x̂← 0;

2: for k = 0 : C − 1 do
3: r ← 0; h← d[k];

4: for q = 0 : t− 1 do
5: h∗ ← floor(h/2); # Clog2(K) INOPs

6: r ← 2r + (h− 2h∗); # 4Clog2(K) INOPs

7: h← h∗;

8: end for
9: x̂[r]← x[d[k]];

10: d̂[k]← r;
11: end for
12: return x̂, d̂;

5.2.3.2 Sparse Butterfly Update

As described in the previous subsection, for each q = 1, . . . , t, the full FFT algorithm computes the

matrix-vector multiplication Aqx̂q−1 by performingK/2 butterfly updates shown in (5.2.13) and (5.2.14).

Due to the sparsity of x̂q−1 , one or both of x̂q−1 [kLq + j] and x̂q−1

[
kLq + L∗q + j

]
may be zero.

• If both of them are zero, then no update is needed.

• If only x̂q−1 [kLq + j] is zero, then the full butterfly update (FBU) reduces to the following lower

butterfly update (LBU)

x̂q [kLq + j] = wL∗q [j]x̂q−1

[
kLq + L∗q + j

]
, (5.2.16)

x̂q
[
kLq + L∗q + j

]
= −wL∗q [j]x̂q−1

[
kLq + L∗q + j

]
, (5.2.17)

which is illustrated in Figure 5.9. Comparing with the FBU, which needs one complex multi-

plication and two complex additions (10 FLOPs in total), one LBU consumes only one complex

multiplication and one complex addition for the sign change in (5.2.17) (8 FLOPs in total).
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Figure 5.9: Lower butterfly update

• If only x̂q−1

[
kLq + L∗q + j

]
is zero, the FBU reduces to the following upper butterfly update (UBU)

x̂q [kLq + j] = x̂q−1 [kLq + j] , (5.2.18)

x̂q
[
kLq + L∗q + j

]
= x̂q−1 [kLq + j] , (5.2.19)

which does not require any FLOPs. The UBU is depicted in Figure 5.10.

Figure 5.10: Upper butterfly update

• If neither x̂q−1 [kLq + j] nor x̂q−1

[
kLq + L∗q + j

]
are zero, then the FBU remains unchanged.

5.2.3.3 Sparse FFT Method

As noted above, there are only C nonzero elements in the initial vector x. Since bit reversal only

permutes the vector, the vector x̂0 has only C nonzero elements as well. In addition, from (5.2.13) and

(5.2.14), it is clear that an FBU does not generate any new nonzero elements.10 However, LBUs and

UBUs do produce new nonzero elements. Therefore, the number of nonzero elements of x̂q may increase

with q. To apply the sparse butterfly updates in Aqx̂q−1 for each q, we need to develop an appropriate

10In fact, after an FBU, it is possible that x̂q [kLq + j] or x̂q
[
kLq + L∗q + j

]
could be zero even though x̂q−1 [kLq + j]

and x̂q−1

[
kLq + L∗q + j

]
are nonzero, but this happens so rarely that it is not worth spending the computational effort

to check for it. Instead, from now on, once x̂q∗ [j] is nonzero for some q∗, we assume x̂q [j] is nonzero for all q > q∗. The
same argument applies to LBUs and UBUs as well.
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way to keep track of nonzero elements and to identify which type of butterfly update (FBU, LBU or

UBU) to perform.

To this end, we first give an example to illustrate how the structure of the vector changes after each

matrix-vector product, Aqx̂q−1. Consider the 16-element vector after the bit reversal, x̂0, shown in the

Figure 5.11, where there are 4 nonzero elements depicted by black dots.

Figure 5.11: Initial vector: x̂0

Figure 5.12: Structure change of x̂q

(a) x̂1 = A1x̂0

(b) x̂2 = A2x̂1

(c) x̂3 = A3x̂2

(d) x̂4 = A4x̂3

For q = 1, Lq = 2, and the elements of x̂0

are evenly distributed into 8 blocks. As explained

above, each element in an upper half block is used,

together with a corresponding element in the lower

half within the same block, to compute a butterfly

update. For the first block, a UBU is performed

since x̂0[0] 6= 0 and x̂0[1] = 0. After the UBU,

both elements in this block are nonzero. An LBU

is performed in the 4th block, since x̂0[6] = 0 but

x̂0[7] 6= 0. After the LBU, both elements in this

block are nonzero as well. Similarly, an LBU is

performed in the 5th block and a UBU is per-

formed in the 6th block. No operations are re-

quired for the second, third, seventh and eighth

blocks. As a result, the number of nonzero ele-

ments is doubled from 4 to 8. This process is il-

lustrated in Figure 5.12a, where green, yellow and

red dots represent nonzero elements involved in

UBUs, LBUs and FBUs, respectively.

For q = 2, Lq = 4 and the elements of x̂1

are evenly distributed into 4 blocks. Two UBUs

are performed in the first block, and two LBUs

are performed in the 2nd block. The number of

nonzero elements in these two blocks are doubled.

94



Elements in the third block of x̂1 are all nonzero, thus, two FBUs are performed in this block and the

number of nonzero elements in this block remains unchanged. No operations are required for the fourth

block. As a result, the number of nonzero elements of x̂2 is increased from 8 to 12. This process is

illustrated in Figure 5.12b.

For q = 3, Lq = 8 and the elements of x̂2 are evenly distributed into 2 blocks. Four FBUs are

performed in the first block, and four UBUs are performed in the second block. The number of nonzero

elements of x̂3 is increased from 12 to 16. This process is illustrated in Figure 5.12c.

Finally, for q = 4, Lq = 16 and all elements of x̂3 are merged into 1 block, and 8 FBUs are performed.

The number of nonzero elements of x̂4 remains unchanged. This is illustrated in Figure 5.12d.

This example shows that, at each iteration q, the nonzero elements within the same block are all

involved in the same type of butterfly update. Moreover, each LBU or UBU generates a new nonzero

element, and at the end of the iteration, the blocks where the butterfly updates are performed, which we

call the “active blocks”, are filled with nonzero elements. Therefore, to keep track of active blocks in the

qth iteration, at the end of (q − 1)st iteration, we put the index of the first element in each active block

into an index vector d̂q−1, and store the length of d̂q−1 in Ĉq−1. In our example, d̂0 = [0, 7, 9, 10]T ,

d̂1 = [0, 6, 8, 10]T , d̂2 = [0, 4, 8]T and d̂3 = [0, 8]T . Then at the qth iteration, we can use the following

criteria to decide which type of butterfly updates should be used in each active block.

• If d̂q−1[k] mod Lq = 0 and d̂q−1[k + 1] − d̂q−1[k] = Lq−1, then we perform FBUs on all elements

in the active block beginning with x̂q−1

[
d̂q−1[k]

]
, and the number of active blocks, Ĉq is reduced

by 1. For example, as shown in Figure 5.12b, at the second iteration, q = 2, L2 = 4, L1 = 2,

d̂1[2] mod L2 = 8 mod 4 = 0,

d̂1[3]− d̂1[2] = 10− 8 = 2 = L1,

and FBUs are performed on the third block (from x̂1[8] to x̂1[11]);

• If d̂q−1[k] mod Lq = 0 and d̂q−1[k + 1] − d̂q−1[k] 6= Lq−1, then we perform UBUs on all elements

in the active block beginning with x̂q−1

[
d̂q−1[k]

]
, and the number of active blocks, Ĉq, remains

unchanged. For example, as shown in Figure 5.12b, at the second iteration, q = 2, L2 = 4, L1 = 2,

d̂1[0] mod L2 = 0 mod 4 = 0,

d̂1[1]− d̂1[0] = 6− 0 = 6 6= L1,
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and UBUs are performed on the first block (from x̂1[0] to x̂1[3]);

• If d̂q−1[k] mod Lq 6= 0, then we perform LBUs on all elements in the active block beginning with

x̂q−1

[
d̂q−1[k]

]
, and the number of active blocks, Ĉq, remains unchanged. For example, as shown

in Figure 5.12b, at the second iteration, q = 2, L2 = 4, L1 = 2,

d̂1[1] mod L2 = 6 mod 4 6= 0,

and LBUs are performed on the second block (from x̂1[4] to x̂1[7]).

We are now able to specify the sparse FFT algorithm. To begin, Algorithm 5.10 presents the sparse

butterfly updates to compute x̂q = Aqx̂q−1, where we let Ĉq, ĈFq , ĈLq and ĈUq be the number of

active blocks, FBU blocks, LBU blocks and UBU blocks in the qth iteration respectively.11 In total,

5Ĉq+3(L∗q+1)ĈFq +(3L∗q+2)ĈLq +2L∗qĈ
U
q +3 INOPs and 10L∗qĈ

F
q +8L∗qĈ

L
q FLOPs are required for each

x̂q = Aqx̂q−1. Then Algorithm 5.11 uses Algorithms 5.5, 5.9 and 5.10 to compute the loss probability.

It is worth mentioning that, we still apply the full FFT method to compute the inverse FFT, since each

F(pzn) is normally not sparse, which should be obvious from our example above.

11We assume that ix0 mod Lq can be computed using the equivalent of one integer arithmetic operation.

96



Algorithm 5.10 Sparse butterfly update to compute x̂q = Aqx̂q−1

Input: x, K, q, wlong, d̂, Ĉ;
Output: x, d̂, Ĉ;

1: Lq = 2q; L∗q ← Lq/2; r ← K/Lq; k∗ ← 0; Ĉ∗ ← Ĉ; # 3 INOPs

2: for k = 0 : Ĉ − 1 do
3: ix0 ← d̂[k]; ix1 ← ix0 + L∗q ; # Ĉq INOPs

4: if ix0 mod Lq == 0 then # Ĉq INOPs

5: d̂[k∗]← ix0;

6: if d̂[k + 1]− ix0 == L∗q then # FBU # 2Ĉq INOPs

7: iw ← L∗q − 1; # Ĉ
F
q INOPs

8: for j = 0 : L∗q − 1 do
9: y0 ← x[ix0];

10: τ ← x[ix1]wlong[iw]; # 6L∗q Ĉ
F
q FLOPs

11: x[ix1]← y0 − τ ; x[ix0]← y0 + τ ; # 4L∗q Ĉ
F
q FLOPs

12: ix0 ← ix0 + 1; ix1 ← ix1 + 1; iw ← iw + 1; # 3L∗q Ĉ
F
q INOPs

13: end for
14: k ← k + 1; # Ĉ

F
q INOPs

15: Ĉ∗ ← Ĉ∗ − 1; # Ĉ
F
q INOPs

16: else # UBU

17: for j = 0 : L∗q − 1 do
18: x[ix1]← x[ix1]; x[ix0]← x[ix0];

19: ix0 ← ix0 + 1; ix1 ← ix1 + 1; # 2L∗q Ĉ
U
q INOPs

20: end for
21: end if
22: else # LBU

23: d̂[k∗]← ix0 − L∗q ; # Ĉ
L
q INOPs

24: iw ← L∗q − 1; # Ĉ
L
q INOPs

25: for j = 0 : L∗q − 1 do
26: τ ← x[ix1]wlong[iw]; # 6L∗q Ĉ

L
q FLOPs

27: x[ix1]← −τ ; x[ix0]← τ ; # 2L∗q Ĉ
L
q FLOPs

28: ix0 ← ix0 + 1; ix1 ← ix1 + 1; iw ← iw + 1; # 3L∗q Ĉ
L
q INOPs

29: end for
30: end if
31: k∗ ← k∗ + 1; # Ĉq INOPs

32: end for
33: Ĉ ← Ĉ∗;

34: return x, d̂, Ĉ;
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Algorithm 5.11 Sparse FFT method to compute the conditional loss probabilities
Input: pzn, K, t;
Output: p̃;

1: Compute wlong by Algorithm 5.5;
2: p̃← [1, 1, . . . , 1]T ;

3:

4: for n = 0 : N − 1 do
5: pzn ← PT

Kp
z
n and d̂ by Algorithm 5.9;

6: sort(d̂);
7: for q = 1 : t do
8: pzn ← Aqp

z
n by Algorithm 5.10;

9: end for
10: p̃← p̃� pzn;

11: end for
12:

13: wlong ← wlong;

14: p̃← PT
K p̃ by Algorithm 5.4;

15: for q = 1 : t do
16: p̃← Aqp̃ by Algorithm 5.6;
17: end for
18: p̃← p̃/K;

19: return p̃;

It should be mentioned that, the sparse FFT method proposed in this subsection is different from

the sparse FFT methods in the existing literatures [1, 7, 16, 27, 28, 29, 30, 35, 37, 38, 50, 54, 2, 42]. The

fundamental difference lies in that, our sparse FFT method utilizes the sparsity of the input vector x,

while the existing sparse FFT methods apply to the cases where the output vector F(x) is sparse.
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5.2.3.4 Complexity of Sparse FFT Method

The computational cost of Algorithm 5.11 is presented in Table 5.2.

Table 5.2: Computational cost of Algorithm 5.11

Line Number of TROPs Number of INOPs Number of FLOPs

1 2(K − 1) K + 2 log2K − 1 K + 2 log2K − 1

5 0 5NC log2K 0

6 0 O(C log2 C) 12 0

8 0

∑N−1
n=0

∑t
q=1

(
5Ĉn,q + 3(L∗q + 1)ĈFn,q ∑N−1

n=0

∑t
q=1

(
10L∗qĈ

F
n,q + 8L∗qĈ

L
n,q

)
+(3L∗q + 2)ĈLn,q + 2L∗qĈ

U
n,q + 3

)
13

10 0 0 6(N − 1)K

13 0 0 K − 1

14 0 5K log2K 0

16 0
∑t
q=1

(
3 K
Lq

+ 3
2K + 3

)
5K log2K

18 0 0 K

Though it is clear that the sparse FFT method works faster than the full FFT method, the perfor-

mance of Line 8 depends on the structure of the input data pzn , which makes it difficult to compare

the sparse FFT method to other methods in terms of efficiency. However, as for the sparse convolution

method, we are able to construct the best and worse cases in terms of complexity for the matrix-vector

product in Line 8.

For simplicity, assume C = 2s, where s < t. Notice that, compared with the full FFT method, at

each q-iteration, the computational saving in the sparse FFT method comes from sparse updates (UBD

or LBD) and from “null updates”, for which both x̂q−1 [kLq + j] and x̂q−1

[
kLq + L∗q + j

]
are zero and

no update is needed. The following theorem shows the total number of sparse butterfly updates is fixed.
12Good sorting algorithms (Merge sort, Introsort, etc.) can achieve this with O(C log2 C) INOPs.
13Note that for each obligor n, the number of active blocks, FBU blocks, LBU blocks and UBU blocks in the qth iteration

are normally different.
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Theorem 5.6. Let x be a vector with K = 2t elements and C > 0 nonzero elements. If the sparse FFT

method is applied to compute F(x), then there are K − C sparse updates (LBU or UBU).

Proof. First, we prove that all the elements of F(x) are nonzero elements.14 It is sufficient to show that

this is the case for C = 1. Suppose x[k∗] 6= 0 and x[k] = 0 for all k 6= k∗, k = 0, . . . ,K − 1. From the

definition of discrete Fourier transform, we have

x̂t[k] = (F(x)) [k] =

K−1∑
j=0

x[j]wjk = x[k∗]

(
cos

(−2πkk∗

K

)
+ i sin

(−2πkk∗

K

))
.

Since cos (−2πkk∗/K) and sin (−2πkk∗/K) can not be zero at the same time and x[k∗] 6= 0, (F(x)) [k] 6=

0 for all k = 0, . . . ,K − 1. Moreover, as mentioned earlier, only LBU or UBU produces fill-in (i.e.,

increases the number of nonzero elements), and each of them adds one nonzero element per update.

Therefore, we need K−C sparse updates (either LBU or UBU) to convert the K−C zero elements in x

to nonzero elements in F(x). Once x̂q∗ [k] becomes nonzero, x̂q[k] remains nonzero for all q > q∗ (except

in rare cases, as noted in Footnote 10). Therefore, the total number of sparse updates is K − C.

We need to find a way to allocate these K − C sparse updates to different q-iterations to maximize

or minimize the number of zero updates to obtain the best case and the worse case, respectively. Recall

that at each q-iteration, the total number of butterfly updates is fixed at K/2. A sparse update at the

qth iteration converts a zero element to a nonzero element, which reduces the number of zero updates

at this iteration by one. Moreover, the zero element involved in this sparse update normally remains

nonzero for all later iterations, which means the numbers of zero updates in the later iterations are all

reduced by one. Therefore, to minimize the total number of zero updates, we allocate the K −C sparse

updates as early as possible. Likewise, we need to delay the K − C sparse updates as much as possible

to maximize the total number of zero updates.

Based on the analysis above, the best case and the worst case for the sparse FFT method are

constructed as follows.

Best case In this case, we maximize the number of zero updates and make all K − C sparse updates

be UBUs. Specifically, we let 
x̂0 [k] 6= 0, k = 0, . . . , 2s − 1,

x̂0[k] = 0, k = 2s, . . . , 2t − 1.

(5.2.20)

14The term “nonzero element” here means a “structurally nonzero element”, as explained in Footnote 10.

100



Then from the first iteration to the sth iteration, only FBUs are performed. Starting from the (s+ 1)th

iteration, only UBUs are applied. The vector x̂q is filled up with nonzeros in the last iteration. This is

depicted in Figure 5.13a, in which K = 16, C = 4. If we use the notation employed in Algorithm 5.10,

then 
Ĉq = ĈFq = 2s−q, ĈLq = ĈUq = 0, q = 1, . . . , s,

Ĉq = ĈUq = 1, ĈLq = ĈFq = 0 q = s+ 1, . . . , t.

(5.2.21)

In total,

s∑
q=1

ĈFq L
∗
q =

s∑
q=1

2s−q · 2q−1 = C log2 C/2

FBUs and

t∑
q=s+1

ĈUq L
∗
q =

t∑
q=s+1

2q−1 = K − C

UBUs are used.

Worse case In this case, we minimize the number of zero updates and make all K−C sparse updates

be LBUs. Specifically, we let 
x̂0 [j2t−s − 1] 6= 0, j = 1, . . . , 2s,

x̂0[k] = 0, otherwise.
(5.2.22)

Then from the first iteration to the (t − s)th iteration, only LBUs are performed. At the end of the

(t− s)th iteration, the vector is filled with all nonzero elements. Starting from the (t− s+ 1)st iteration,

FBUs are applied to every element. This is depicted in Figure 5.13b, in which K = 16, C = 4. If we use

the notation employed in Algorithm 5.10, then


Ĉq = ĈLq = 2s, ĈFq = ĈUq = 0, q = 1, . . . , t− s,

Ĉq = ĈFq = 2t−q, ĈLq = ĈUq = 0, q = t− s+ 1, . . . , t.

(5.2.23)

In total,

t−s∑
q=1

ĈLq L
∗
q =

t−s∑
q=1

2s · 2q−1

= K − C
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Figure 5.13: Sparse FFT method (t = 4, s = 2)

(a) Best case (b) Worst case

LBUs and

t∑
q=t−s+1

ĈFq L
∗
q =

t∑
q=t−s+1

2t−q · 2q−1

= K log2 C/2

FBUs are used.

We can extend this analysis to the computation of the loss probabilities p̃zN−1. First, both the best

case and the worse case are not achievable when the sparse FFT algorithm is applied to compute p̃zN−1.

In the best case, p̂zn[1] is nonzero for n = 0, . . . , N−1, where p̂zn is the vector obtained after bit-reversing

pzn. Hence, pzn[K/2] is nonzero for n = 0, . . . , N − 1. Therefore, pz0 ∗pz1 has length at least K + 1 since a

nonzero element occurs at K/2+K/2 = K, indicating that there is nonzero possibility that the portfolio

loss is lK . However, this contradicts our assumption that the largest portfolio loss is lK−1 = (K − 1)δ,

which is enforced by the the way we choose K. A similar argument can be applied to the worst case,
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in which nonzero p̂zn[K − 1] implies nonzero pzn[K − 1]. If we denote Ψb
sfft and Ψw

sfft as the amount of

computation needed in Algorithm 5.11 in the best case and in the worst case, respectively, then

Ψb
sfft ≤ Ψsfft ≤ Ψw

sfft,

where Ψsfft is the amount of computation needed in Algorithm 5.11 to compute the loss probabilities

p̃zN−1in any feasible case.

It is very difficult to obtain the achievable lower bound and upper bound for Ψsfft because of the

bit reversal operations. Therefore, we analyze Ψb
sfft and Ψw

sfft instead. For the best case, we can let

the permuted conditional loss probability vectors have the same structure as in (5.2.20). That is,


q̂zn,0 [k] 6= 0, k = 0, . . . , 2s − 1,

q̂zn,0[k] = 0, k = 2s, . . . , 2t − 1,

for all obligors n = 0, . . . , N − 1. In this case, by(5.2.21), Line 8 in Algorithm 5.11 costs

N−1∑
n=0

t∑
q=1

(
5Ĉn,q + 3(L∗q + 1)ĈFn,q + (3L∗q + 2)ĈLn,q + 2L∗qĈ

U
n,q + 3

)

= N

(
s∑
q=1

(
5 · 2s−q + 3(2q−1 + 1)2s−q + 3

)
+

t∑
q=s+1

(
5 · 1 + 2 · 2q−1 · 1 + 3

))

= N

(
2K +

3

2
C log2 C + 6C + 7 log2K − 5 log2 C − 8

)

INOPs and

N−1∑
n=0

t∑
q=1

(
10L∗qĈ

F
n,q + 8L∗qĈ

L
n,q

)
= N

(
s∑
q=1

10 · 2q−1 · 2s−q
)

= 5NC log2 C

FLOPs. Therefore, in the best case, the total amount of computation needed in Algorithm 5.11 is

• TROPs: ΨTROP,b
sfft = 2(K − 1);
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• INOPs:

ΨINOP,b
sfft = (K + 2 log2K − 1) + 5NC log2K +NC log2 C

+N

(
2K +

3

2
C log2 C + 6C + 7 log2K − 5 log2 C − 8

)
+5K log2K +

t∑
q=1

(
3
K

2q
+

3

2
K + 3

)
= 2NK +

(
13

2
log2K + 4

)
K

+

(
5C log2K +

5

2
C log2 C + 6C + 7 log2K − 5 log2 C − 8

)
N

+ (5 log2K − 4) ;

• FLOPs:

ΨFLOP,b
sfft = (K + 2 log2K − 1) + 5NC log2 C + 6(N − 1)K

+ (K − 1) + 5K log2K +K

= 6NK + (5 log2K − 3)K + 5NC log2 C + 2 log2K − 2.

In the best case, all pzn have the same length, K̄ = K−1
N + 1. Therefore, by (5.1.36), the speedup of the

sparse FFT method over the full convolution method in this best case is

Ψconv

Ψb
fft

=

(
1− 1

N

)
K2 +

(
N−3

2 + 1
N

)
K + N−1

2

βΨTROP,b
fft + ΨINOP,b

fft + ΨFLOP,b
fft

=

(
1− 1

N

)
K2 +

(
N−3

2 + 1
N

)
K + N−1

2

8NK + f bsfft(K,β)K + gbsfft(K,C)N + hbsfft(K,β)

where

f bsfft(K,β) =
23

2
log2K + 2β + 1,

gbsfft(K,C) = 5C log2K +
15

2
C log2 C + 6C + 7 log2K − 5 log2 C − 8,

hbsfft(K,β) = 7 log2K − 2β − 6).
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Hence,

Ψconv

Ψb
fft

=
K2
((

1− 1
N

)
+
(
N−3

2 + 1
N

)
1
K + N−1

2
1
K2

)
NK

(
8 +

fbsfft(K,β)

N +
gbsfft(K,C)

K +
hbsfft(K,β)

NK

)
K�N≈ K

8N

= Ω (K/N) . (5.2.24)

Similarly, for the worst case,


q̂zn,0 [j2t−s − 1] 6= 0, j = 1, . . . , 2s,

q̂zn,0[k] = 0, otherwise,

for all obligors n = 0, . . . , N − 1. In this case, by (5.2.23), Line 8 in Algorithm 5.11 costs

N−1∑
n=0

t∑
q=1

(
5Ĉn,q + 3(L∗q + 1)ĈFn,q + (3L∗q + 2)ĈLn,q + 2L∗qĈ

U
n,q + 3

)

= N

(
t−s∑
q=1

(
5 · 2s + (3 · 2q−1 + 2)2s + 3

)
+

t∑
q=t−s+1

(
5 · 2t−q + 3 ·

(
2q−1 + 1

)
· 2t−q + 3

))

= N

((
3

2
log2 C + 3

)
K + (7C + 3) log2K + (−7C log2 C + 5C − 8)

)

INOPs and

N−1∑
n=0

t∑
q=1

(
10L∗qĈ

F
n,q + 8L∗qĈ

L
n,q

)

= N

(
t−s∑
q=1

8 · 2q−1 · 2s +

t∑
q=t−s+1

10 · 2q−1 · 2t−q
)

= 8N(K − C) + 5KN log2 C

FLOPs. Therefore, the total amount of computation needed in Algorithm 5.11 is

• TROPs: ΨTROP,w
sfft = 2(K − 1);
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• INOPs:

ΨINOP,w
sfft = (K + 2 log2K − 1) + 5NC log2K +NC log2 C

+N

((
3

2
log2 C + 3

)
K + (7C + 3) log2K + (−7C log2 C + 5C − 8)

)
+5K log2K +

t∑
q=1

(
3
K

2q
+

3

2
K + 3

)
=

(
3

2
log2 C + 3

)
NK + (5 log2K + 4)K

+ (12C log2K − 6C log2 C + 5C + 3 log2K − 8)N + (5 log2K − 4);

• FLOPs:

ΨFLOP,w
sfft = (K + 2 log2K − 1) + (8N(K − C) + 5KN log2 C) + 6(N − 1)K

+ (K − 1) + 5K log2K +K

= (5 log2 C + 14)NK + (5 log2K − 3)K − 8CN + 2 (log2K − 1) .

Thus, the speedup of the sparse FFT method over the full convolution method in the best case is

Ψconv

Ψw
fft

=

(
1− 1

N

)
K2 +

(
N−3

2 + 1
N

)
K + N−1

2

βΨTROP,w
fft + ΨINOP,w

fft + ΨFLOP,w
fft

=

(
1− 1

N

)
K2 +

(
N−3

2 + 1
N

)
K + N−1

2(
17 + 13

2 log2 C
)
NK + fwsfft(K,β)K + gwsfft(K,C)N + hwsfft(K,β)

where

fwsfft(K,β) = 10 log2K + 2β + 1,

gwsfft(K,C) = 12C log2K − 6C log2 C − 3C + 3 log2K − 8,

hwsfft(K,β) = 7 log2K − 2β − 6.

Hence,

Ψconv

Ψw
fft

=
K2
((

1− 1
N

)
+
(
N−3

2 + 1
N

)
1
K + N−1

2
1
K2

)
NK

((
17 + 13

2 log2 C
)

+
fwsfft(K,β)

N +
gwsfft(K,C)

K +
hwsfft(K,β)

NK

)
K�N≈ K

N
(
17 + 13

2 log2 C
)

= Ω (K/ (N log2 C)) . (5.2.25)
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Comparing (5.2.24) and (5.2.25) with (5.2.15), we see that the speedup of the sparse FFT method

over the full FFT method is
Ψfft

Ψb
sfft

∼ Ω(log2K) (5.2.26)

in the best case and
Ψfft

Ψw
sfft

∼ Ω(log2K/ log2 C) (5.2.27)

in the worst case.

5.2.4 Truncated Sparse FFT Method

5.2.4.1 Truncated N-fold Convolution

The distribution of portfolio credit losses often has a very fat tail, which means the distribution is quite

skewed and there is a small, but not insignificant, probability for the occurrence of a very large loss.

Figure 5.14 shows a typical distribution of portfolio credit losses. In this example, we set K = 29 = 512,

l0 = Lmin and lK−1 = Lmax, where Lmin and Lmax are the minimum and maximum portfolio losses,

respectively. With this discretization scheme, each vector pzn has a length of K, with many zeros

padded on the end of pzn. From Figure 5.14, the range of the portfolio losses is from l0 to l511, but the

probabilities P {L = lk} are very small for k ≥ 100, and the tail probabilities P {L > lk} are less than

10−8 for k ≥ 100. In practice, risk managers are primarily concerned about calculating the 99.9% credit

VaR for regulation capital, and the 99.98% credit VaR for economic capital to maintain an AA rating.

In this example, the 99.9% credit VaR corresponds to l57 and 99.98% credit VaR is between l61 and l62.

Thus both the 99.9% and 99.98% credit VaR are much less than the maximum loss lK−1. Moreover, in

the computation of VaR, we are not concerned with the probabilities of portfolio losses exceeding VaR.

Therefore, if we truncate pzn by dropping many zeros in its tail such that lK−1 ≥ VaR, where K is the

length of the truncated vectors pzn, then we can compute the N -fold convolution of pzn to approximate

the conditional probabilities P {Lz = lk} for k = 0, . . . ,K − 1.

We let K = 2t, where

t = min
{
t ∈ N

∣∣l2t−1 ≥ max
(
VaRα, L

0
0, . . . , L

0
N−1

)}
, (5.2.28)

and VaRα is the credit VaR with a confidence level α. Construct the truncated vectors pzn by pzn[k] =

pzn[k] for k = 0, . . . ,K − 1. The reason we put L0
n in the maximum function in (5.2.28) is that we do not

want to drop nonzero probabilities in pzn. Since L0
n = wnLGC0

n is the largest loss for obligor n, then the
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Figure 5.14: Fat-tailed distribution
Top: probability mass Bottom: 1-CDF

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

P
{L

=
l k
}

k

0 100 200 300 400 500
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

1
−

P
{L

≤
l k
}

k

1−99.98%

1−99.9%

57 62

108



definition of t in (5.2.28) makes pzn[k] = 0 for k ≥ K, which guarantees the truncated vectors pzn include

all nonzero conditional loss probabilities for obligor n.

Next, the conditional portfolio loss probabilities can be approximated by the N -fold circular convo-

lution of pzn :

P {Lz = lk} ≈
(
N−1
?
n=0

pzn

)
[k] (5.2.29)

for k = 0, . . . ,K − 1.

The benefit of computing the truncated N -fold convolution lies in its efficiency. From the previous

subsection, we know that the length of vectors pzn, K, is the most significant parameter influencing

the computational cost for the FFT methods. Since the truncated vectors pzn are much shorter than

the full vectors pzn, the computation of the N -fold convolution of pzn is expected to be much faster

than the computation of the N -fold convolution of pzn. For instance, in the example shown in Figure

5.14, to compute the 99.9% or 99.98% credit VaR, if we use the full FFT method or the sparse FFT

method, the length of the vectors is K = 29 = 512, while, if we use the approximation (5.2.29), then we

can choose K = 26 = 64. Therefore, instead of computing an N -fold convolution of vectors with 512

elements, we only need to compute an N -fold convolution of vectors with 64 elements. The improvement

of performance is significant.

5.2.4.2 Aliasing Error

As we mentioned, (5.2.29) is an approximation to the conditional loss probability. The difference between

P {Lz = lk} and
(
N−1
?
n=0

pzn

)
[k] in (5.2.29) is called the aliasing error. The following theorem gives a

formula for the aliasing error.

Theorem 5.7. Let K = 2t, where t is defined in (5.2.28), and construct pzn by pzn[k] = pzn[k] for

k = 0, . . . ,K − 1, then

P {Lz = lk} =

(
N−1
?
n=0

pzn

)
[k]− δak

where

δak =

UN−1
k∑
u=1

P
{
Lz = luK+k

}
, (5.2.30)

UN−1
k = max

{
u ∈ N

∣∣0 ≤ uK + k ≤ N(K − 1)
}
.
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Proof. To begin, note that pzn[k] = pzn[k] for k = 0, . . . ,K − 1 and pzn[k] = 0 for k ≥ K. Therefore,

(
N−1

~
n=0

pzn

)
[k] =

(
N−1

~
n=0

pzn

)
[k] (5.2.31)

for k = 0, . . . , N(K − 1). We have shown that

P {Lz = lk} =

(
N−1

~
n=0

pzn

)
[k] (5.2.32)

for k = 0, . . . , N(K − 1) in Subsection 5.1.1. Thus, (5.2.31) and (5.2.32) imply

P {Lz = lk} =

(
N−1

~
n=0

pzn

)
[k] (5.2.33)

for k = 0, . . . , N(K − 1). By Theorem 5.4, we have

(
N−1

~
n=0

pzn

)
[k] =

(
N−1
?
n=0

pzn

)
[k]−

UN−1
k∑
u=1

(
N−1

~
n=0

pzn

)
[uK + k]. (5.2.34)

Thus, (5.2.33) and (5.2.34) imply

P {Lz = lk} =

(
N−1
?
n=0

pzn

)
[k]−

UN−1
k∑
u=1

P
{
Lz = luK+k

}
,

which completes the proof.

It should be noted that, Theorem 5.7 shows that

P {Lz = lk} ≤
(
N−1
?
n=0

pzn

)
[k],

hence

P {Lz ≤ lk} =
∑
k≤m

P {Lz = lk} ≤
∑
k≤m

(
N−1
?
n=0

pzn

)
[k].

Consequently, VaR calculated with truncated probability vectors, pzn, would be smaller than VaR cal-

culated with probability vectors without truncating, pzn. Therefore, VaR calculated with truncated

probability vectors would underestimate the risk.
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5.2.4.3 Aliasing Reduction

Theorem 5.7 shows that the truncated N -fold circular convolution may incur aliasing errors. One way

to reduce the aliasing errors is to apply an exponential window to decrease the value of the elements at

the end of each vector pzn and to recover the values after the N -fold circular convolution is completed.

The exponential window was originally applied in the field of signal processing [26, 47], and Schaller and

Temnov [53] used this idea in the loss aggregation problem in insurance.

To begin, consider a sequence of vectors, each of length K, {xn}N−1
n=0 . We construct a sequence of

transformed vectors {xn,τ}N−1
n=0 by applying an exponential window to each xn :

xn,τ [k] = e−k/τxn[k] (5.2.35)

with τ > 0. The following theorem shows how to recover the N -fold linear convolution of xn from the

N -fold linear convolution of xn,τ .

Theorem 5.8. Let N ≥ 2 , {xn}N−1
n=0 be a sequence of vectors, each of length K, and {xn,τ}N−1

n=0 be the

associated sequence of transformed vectors satisfying (5.2.35). Then

(
N−1

~
n=0

xn

)
[k] = ek/τ

(
N−1

~
n=0

xn,τ

)
[k] (5.2.36)

for k = 0, . . . ,K − 1.

Proof. We prove this theorem by induction. For the base case, let N = 2. We need to prove

ek/τx0,τ ∗ x1,τ [k] = x0 ∗ x1[k].

By Lemma D.1 in Appendix D, we have
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ek/τx0,τ ∗ x1,τ [k]

=


ek/τ

 k∑
j=0

x0,τ [j]x1,τ [k − j]

, k = 0, . . . ,K − 1,

ek/τ

 K−1∑
j=k−(K−1)

x0,τ [j]x1,τ [k − j]

 , k = K, . . . , 2(K − 1),

=


ek/τ

 k∑
j=0

e−j/τx0[j]e−(k−j)/τx1[k − j]

, k = 0, . . . ,K − 1,

ek/τ

 K−1∑
j=k−(K−1)

e−j/τx0[j]e−(k−j)/τx1[k − j]

 , k = K, . . . , 2(K − 1),

=



k∑
j=0

x0[j]x1[k − j], k = 0, . . . ,K − 1,

K−1∑
j=k−(K−1)

x0[j]x1[k − j], k = K, . . . , 2(K − 1),

= x0 ∗ x1[k].

Therefore, (5.2.36) is true for N = 2. For the induction step, assume (5.2.36) is true for some N ≥ 2.

Then

ek/τ

(
(N+1)−1

~
n=0

xn,τ

)
[k] = ek/τ

((
N−1

~
n=0

xn,τ

)
∗ xN,τ

)
[k].

Applying Lemma D.1 again, we have

ek/τ

(
(N+1)−1

~
n=0

xn,τ

)
[k] = ek/τ

 k∑
j=0

(
N−1

~
n=0

xn,τ

)
[j]xN,τ [k − j]

,
for k = 0, . . . ,K − 1,

ek/τ

(
(N+1)−1

~
n=0

xn,τ

)
[k] = ek/τ

 k∑
j=k−(N(K−1)−1)

(
N−1

~
n=0

xn,τ

)
[j]xN,τ [k − j]

 ,

for k = K, . . . , N(K − 1), and

ek/τ

(
(N+1)−1

~
n=0

xn,τ

)
[k] = ek/τ

 K−1∑
j=k−(N(K−1)−1)

(
N−1

~
n=0

xn,τ

)
[j]xN,τ [k − j]

 ,
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for k = N(K − 1) + 1, . . . , (N + 1)(K − 1). Since (5.2.36) is true for N ,

(
N−1

~
n=0

xn,τ

)
[k] = e−j/τ

(
N−1

~
n=0

xn

)
[k].

Thus,

ek/τ

(
(N+1)−1

~
n=0

xn,τ

)
[k] = ek/τ

 k∑
j=0

e−j/τ
(
N−1

~
n=0

xn

)
[j]e−(k−j)/τxN [k − j]

,
=

k∑
j=0

(
N−1

~
n=0

xn

)
[j]xN [k − j],

for k = 0, . . . ,K − 1,

ek/τ

(
(N+1)−1

~
n=0

xn,τ

)
[k] = ek/τ

 k∑
j=k−(N(K−1)−1)

e−j/τ
(
N−1

~
n=0

xn

)
[j]e−(k−j)/τxN [k − j]

 ,

=

k∑
j=k−(N(K−1)−1)

(
N−1

~
n=0

xn

)
[j]xN [k − j],

for k = K, . . . , N(K − 1), and

ek/τ

(
(N+1)−1

~
n=0

xn,τ

)
[k] = ek/τ

 K−1∑
j=k−(N(K−1)−1)

e−j/τ
(
N−1

~
n=0

xn

)
[j]e−(k−j)/τxN [k − j]

 ,

=

K−1∑
j=k−(N(K−1)−1)

(
N−1

~
n=0

xn

)
[j]xN [k − j],

for k = N(K − 1) + 1, . . . , (N + 1)(K − 1). Hence,

ek/τ

(
(N+1)−1

~
n=0

xn,τ

)
[k] =

(
N−1

~
n=0

xn ∗ xN
)

[k] =

(
(N+1)−1

~
n=0

xn

)
[k]

for k = 0, . . . , (N + 1)(K − 1). Therefore, (5.2.36) is true for N + 1. This completes the proof.

Combining Theorem 5.4 and Theorem 5.8, we obtain the following corollary.

Corollary 5.9. Let N ≥ 2, {pzn}
N−1
n=0 be a sequence of truncated vectors, each of length K defined in

Theorem 5.7. Define a sequence of transformed vectors
{
pzn,τ

}N−1

n=0
by

pzn,τ [k] = e−k/τpzn,τ [k]
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for k = 0, . . . ,K − 1. Then

P {Lz = lk} = ek/τ
(
N−1
?
n=0

pzn,τ

)
[k]− δak,τ

where

δak,τ =

UN−1
k∑
u=1

e−uK/τ P
{
Lz = luK+k

}
, (5.2.37)

UN−1
k = max

{
u ∈ N

∣∣0 ≤ uK + k ≤ N(K − 1)
}
.

Proof. To begin, by Theorem 5.8, we have

(
N−1

~
n=0

pzn

)
[k] = ek/τ

(
N−1

~
n=0

pzn,τ

)
[k]. (5.2.38)

In addition, Theorem 5.4 shows that

(
N−1

~
n=0

pzn,τ

)
[k] =

(
N−1
?
n=0

pzn,τ

)
[k]−

UN−1
k∑
u=1

(
N−1

~
n=0

pzn,τ

)
[uK + k]. (5.2.39)

Substituting (5.2.39) into (5.2.38), we obtain

(
N−1

~
n=0

pzn

)
[k] = ek/τ

(
N−1
?
n=0

pzn,τ

)
[k]−

UN−1
k∑
u=1

ek/τ
(
N−1

~
n=0

pzn,τ

)
[uK + k].

Applying Theorem 5.8 again to
(
N−1

~
n=0

pzn,τ

)
[uK + k], we have

(
N−1

~
n=0

pzn,τ

)
[uK + k] = e−(uK+k)/τ

(
N−1

~
n=0

pzn

)
[uK + k],

which leads to

(
N−1

~
n=0

pzn

)
[k] = ek/τ

(
N−1
?
n=0

pzn,τ

)
[k]−

UN−1
k∑
u=1

ek/τe−(uK+k)/τ

(
N−1

~
n=0

pzn

)
[uK + k]

= ek/τ
(
N−1
?
n=0

pzn,τ

)
[k]−

UN−1
k∑
u=1

e−uK/τ
(
N−1

~
n=0

pzn

)
[uK + k]. (5.2.40)
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As discussed in the proof of Theorem 5.7, we know

P {Lz = lk} =

(
N−1

~
n=0

pzn

)
[k], (5.2.41)

for k = 0, . . . ,K − 1. Therefore, substituting (5.2.41) into (5.2.40) gives

P {Lz = lk} = ek/τ
(
N−1
?
n=0

pzn,τ

)
[k]−

UN−1
k∑
u=1

e−uK/τP
{
Lz = luK+k

}

for k = 0, . . . ,K − 1, which concludes the proof.

Corollary 5.9 suggests that we can approximate the conditional portfolio loss probabilities by

P {Lz = lk} ≈ ek/τ
(
N−1
?
n=0

pzn,τ

)
[k]. (5.2.42)

As we discussed in 5.2.4.2, VaR calculated by (5.2.42) would underestimate the risk as well. However,

comparing the aliasing errors δak,τ in (5.2.37) and δak in (5.2.30), it is obvious that δak,τ < δak since τ > 0.

Therefore, the truncated approximation with the exponential window in (5.2.42) reduces the aliasing

errors incurred in the truncated approximation in (5.2.29).

5.2.4.4 Optimal τ

Formula (5.2.37) for δak,τ shows that δak,τ is a strictly increasing function of the parameter τ . Thus

the aliasing error increases as τ increases, which suggests that we should make τ as small as possible.

However, the aliasing error is not the only source of errors incurred in the approximation (5.2.42). The

exponential window makes the value of the elements in the tail of the vector pzn decrease exponentially

to zero. Notice that the elements in the tail of pzn are probabilities of big losses from the obligor n, which

are already very small. When we compute (5.2.42), we need to handle extremely small numbers. Due

to the finite precision of the computer, rounding errors play a very significant role when operating with

extremely small numbers.

We give an example to illustrate the importance of the rounding errors in the approximation (5.2.42).

Consider K = 211 = 2048, and, for all n = 0, . . . , 99, let pzn[0] = 0.9, pzn[8] = 0.05, pzn[16] = 0.03,

pzn[24] = 0.02, and pzn[k] = 0, for all other k = 0, . . . ,K − 1. Let K = 28 = 256, and truncate pzn at

K − 1 to obtain pzn, where P
{
Lz ≤ lK−1

}
≈ 0.9897. Then we compute the following:

1. Apply the sparse convolution method using double-precision floating-point arithmetic to compute
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theN -fold linear convolution
N−1

~
n=0

pzn[k] for k = 0, . . . ,K−1, denoting the results by ζ
((

N−1

~
n=0

pzn

)
[k]

)
;

2. Apply the sparse FFT method using single-precision15 floating-point arithmetic to compute the

truncated N -fold circular convolution without exponential windowing,
(
N−1
?
n=0

pzn

)
[k], and the trun-

catedN -fold circular convolution with exponential windowing, ek/τ
(
N−1
?
n=0

pzn,τ

)
[k] for k = 0, . . . ,K−

1 and τ = 20, 30, 40, 50 and 60, denoting the results by ζ
((

N−1
?
n=0

pzn

)
[k]

)
and ζ

(
ek/τ

(
N−1
?
n=0

pzn,τ

)
[k]

)
,

respectively;

3. Treat ζ
(
N−1

~
n=0

pzn[k]

)
as the benchmark for P {Lz = lk}, and approximate the error incurred in the

approximation (5.2.29) and in the approximation (5.2.42) for different values of τ by

δk =

∣∣∣∣ζ ((N−1

~
n=0

pzn

)
[k]

)
− ζ

((
N−1
?
n=0

pzn

)
[k]

)∣∣∣∣ ,
δk,τ =

∣∣∣∣ζ ((N−1

~
n=0

pzn

)
[k]

)
− ζ

(
ek/τ

(
N−1
?
n=0

pzn,τ

)
[k]

)∣∣∣∣ ;
4. Compute the theoretical aliasing error by

δak =

UN−1
k∑
u=1

P
{
Lz = luK+k

}
≈
UN−1
k∑
u=1

ζ

((
N−1

~
n=0

pzn

)
[uK + k]

)
,

δak,τ =

UN−1
k∑
u=1

e−uK/τP
{
Lz = luK+k

}
≈
UN−1
k∑
u=1

e−uK/τζ

((
N−1

~
n=0

pzn

)
[uK + k]

)
.

The numerical results for δak and δak,τ are presented in Figure 5.15a, and the numerical results of δk and

δk,τ are given in in Figure 5.15b. If the rounding errors were not significant, then ζ
(
ek/τ

(
N−1
?
n=0

pzn,τ

)
[k]

)
would be very close to ek/τ

(
N−1
?
n=0

pzn,τ

)
[k]. Consequently, by Theorem 5.7 and Corollary 5.9, the total

error δk and δk,τ should be very close to the aliasing error δak and δak,τ for all k and τ . However, numerical

results show that this is not true. Comparing the curves of δak and δak,τ in Figure 5.15a with the curves

of δk and δk,τ in Figure 5.15b, we see that, for small k, the actual errors δk and δk,τ are close to the

aliasing errors δak and δak,τ , which decrease as k increases, indicating that the rounding errors are not

significant for small k. However, as k increases, unlike the aliasing errors δak and δak,τ , which decrease,

the actual errors δk and δk,τ begin to increase, and the actual error δk,τ with small τ starts to increase
15By using single precision here, we aim to amplify the impact of rounding errors incurred in the approximations (5.2.29)

and (5.2.42), and to ignore the impact of rounding errors in our benchmark, which is computed with double precision.
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earlier than that with large τ . This implies that the rounding errors increase with k. We also observe

that, for some τ , the errors incurred in computing P {Lz = lk} by the truncated sparse FFT method

with an exponential window can be even larger than the errors for the truncated sparse FFT method

without an exponential window. This indicates that the reduction in the aliasing errors associated with

using the exponential window can be offset by the increase in the rounding errors if an inappropriate τ

is used.

Moreover, to compute VaRα, we need to find the smallest l such that P {L ≤ l} ≥ α, which, in

our approach, requires the computation of P {Lz ≤ l}, since P {L ≤ l} = E [P {Lz ≤ l}]. To compute

P {Lz ≤ lm}, m = 0, . . . ,K − 1, we need to compute the sum

P {Lz ≤ lm} =
∑
k≤m

P {Lz = lk} . (5.2.43)

The aliasing error in computing P {Lz ≤ lm} is the sum of the aliasing errors in computing P {Lz = lk}:

∆a
m =

∑
k≤m δ

a
k and ∆a

m.τ =
∑
k≤m δ

a
k,τ . There are rounding errors involved in the summation in

(5.2.43) as well. For the example outlined above, we also compute the aliasing error and the actual error

in computing P {Lz ≤ lm}:

∆a
m ≈

∑
k≤m

UN−1
k∑
u=1

ζ

((
N−1

~
n=0

pzn

)
[uK̄ + k]

)
,

∆a
m.τ ≈

∑
k≤m

UN−1
k∑
u=1

e−uK/τζ

((
N−1

~
n=0

pzn

)
[uK̄ + k]

)
,

∆m =

∣∣∣∣∣∣ζ
∑
k≤m

(
N−1

~
n=0

pzn

)
[k]

− ζ
∑
k≤m

(
N−1
?
n=0

pzn

)
[k]

∣∣∣∣∣∣ ,
∆m.τ =

∣∣∣∣∣∣ζ
∑
k≤m

(
N−1

~
n=0

pzn

)
[k]

− ζ
∑
k≤m

ek/τ
(
N−1
?
n=0

pzn,τ

)
[k]

∣∣∣∣∣∣ .
The numerical results are shown in Figure 5.16a and Figure 5.16b. As we can see, when we compute

P {Lz ≤ lm} with the truncated FFT method with exponential windowing, the choice of τ plays a

significant role in both aliasing errors and rounding errors. Large τ is ineffective in reducing aliasing

errors, while small τ makes rounding errors explode. Therefore, we need to find an appropriate τ to

balance aliasing errors and rounding errors.
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Denote the rounding error in the computation of P {Lz ≤ lm} by

∆r
m,τ =

∑
k≤m

(
N−1
?
n=0

pzn

)
[k]− ζ

∑
k≤m

(
N−1
?
n=0

pzn

)
[k]

 .

Figure 5.15: The impact of rounding errors on the computation of P {Lz = lk}

(a) Aliasing errors, δak and δak,τ
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(b) Actual errors, δk and δk,τ
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Figure 5.16: The impact of rounding errors on the computation of P {Lz ≤ lm}

(a) Aliasing errors, ∆a
m and ∆a

m,τ
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(b) Actual errors, ∆m and ∆m,τ
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Then

P {Lz ≤ lm} = ζ

∑
k≤m

(
N−1
?
n=0

pzn

)
[k]

−∆a
m,τ + ∆r

m,τ .

To obtain the optimal τ , we wish to solve the following optimization problem:

min
τ

∣∣∆r
m,τ −∆a

m,τ

∣∣ . (5.2.44)

Though we know how the aliasing errors behave, it is more difficult to analyze the rounding errors. Most

rounding error models ignore the signs of the rounding errors and thereby produce the worst-case bound

of the rounding errors. If we consider the rounding errors in every operation, then we get a rounding

error bound at each operation. By applying appropriate inequalities to the bound obtained at each

operation, we obtain a bound for ∆r
m,τ . However, this approach is normally too pessimistic, and the
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bound for ∆r
m,τ is usually much larger than ∆r

m,τ . Consequently, the optimal τ obtained by minimizing

the distance between this bound and ∆a
m,τ is not particularly helpful.

Instead, we apply a method suggested in [53] to estimate the optimal τ . For the aliasing error, instead

of using formula (5.2.37), we amplify it by

∆a
m,τ =

∑
k≤m

UN−1
k∑
u=1

e−uK/τP
{
Lz = luK+k

}

≤ e−m/τ
∑
k≤m

UN−1
k∑
u=1

P
{
Lz = luK+k

}
≤ e−m/τP {Lz > lm}

= e−m/τ (1− P {Lz ≤ lm})
.
= ∆̃a

m,τ , (5.2.45)

where m ≤ K̄ is used in the inequalities above.

For the rounding error, due to the finite precision of the floating number system, each element,

pzn,τ [k], in pzn,τ is stored in a computer as fl
(
pzn,τ [k]

)
, where fl(x) is the nearest floating number to x

in a floating point number system. Thus, there is a rounding error

εzn,τ [k] = fl
(
pzn,τ [k]

)
− pzn,τ [k].

In the truncated sparse FFT method with exponential windowing, if we consider only the propagation

of rounding errors εzn,τ , then the total rounding error ∆r
m,τ can be approximated by

∆r
m,τ ≈

∑
k≤m

ek/τF−1

(
N−1∏
n=0

F
(
fl
(
pzn,τ

)))
[k]−

∑
k≤m

ek/τF−1

(
N−1∏
n=0

F
(
pzn,τ

))
[k]. (5.2.46)

In any floating point number system, we have εzn,τ [k] = uzn,τ [k]pzn,τ [k] for k = 0, . . . ,K − 1, where

uzn,τ [k] ∈ [−u, u], and u is the unit roundoff in the floating point number system. Therefore,

F
(
fl
(
pzn,τ

))
[k] =

K−1∑
j=0

fl
(
pzn,τ [j]

)
wjk

=

K−1∑
j=0

(
pzn,τ [j] + uzn,τ [j]pzn,τ [j]

)
wjk

= F
(
pzn,τ

)
[k] +

K−1∑
j=0

uzn,τ [j]pzn,τ [j]wjk.
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Denote µzn,τ [k]
.
=
∑K−1
j=0 uzn,τ [j]pzn,τ [j]wjk, then

F
(
fl
(
pzn,τ

))
[k]−F

(
pzn,τ

)
[k] = µzn,τ [k],

and

∣∣µzn,τ [k]
∣∣ ≤ K−1∑

j=0

∣∣uzn,τ [j]
∣∣ pzn,τ [j]

∣∣wjk∣∣
=

K−1∑
j=0

∣∣uzn,τ [j]
∣∣ pzn,τ [j]

≤ uzn,τ [k]

≤ u.

Therefore, |µzn[k]| ∼ O(u).

Consequently,

N−1∏
n=0

F
(
fl
(
pzn,τ

))
[k] =

N−1∏
n=0

(
F
(
pzn,τ

)
[k] + µzn,τ [k]

)
=

N−1∏
n=0

F
(
pzn,τ

)
[k] +

N−1∑
n=0

µzn,τ [k]
∏
v 6=n
F
(
pzv,τ

)
[k]

+O
(
u2
)
. (5.2.47)

Since ∣∣∣∣∣∣
N−1∑
n=0

µzn,τ [k]
∏
v 6=n
F
(
pzv,τ

)
[k]

∣∣∣∣∣∣ ≤
N−1∑
n=0

∣∣µzn,τ [k]
∣∣ ∏
v 6=n

∣∣F (pzv,τ) [k]
∣∣ ,

and

∣∣F (pzv,τ) [k]
∣∣ =

∣∣∣∣∣∣
K−1∑
j=0

pzv,τ [j]wjk

∣∣∣∣∣∣ ≤
K−1∑
j=0

e−j/τpzv [j]
∣∣wjk∣∣ ≤ 1,

we have ∣∣∣∣∣∣
N−1∑
n=0

µzn,τ [k]
∏
v 6=n
F
(
pzv,τ

)
[k]

∣∣∣∣∣∣ ≤
N−1∑
n=0

∣∣µzn,τ [k]
∣∣ ≤ Nu. (5.2.48)

Denote νzn,τ [k]
.
=
∑N−1
n=0

(
µzn,τ [k]

∏
v 6=n F

(
pzv,τ

)
[k]
)

+O
(
u2
)
, then (5.2.47) and (5.2.48) show that

N−1∏
n=0

F
(
fl
(
pzn,τ

))
[k]−

N−1∏
n=0

F
(
pzn,τ

)
[k] = νzn,τ [k]
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and
∣∣νzn,τ [k]

∣∣ ∼ O(Nu) for k = 0, . . . ,K − 1.

For the inverse Fourier transform, we could perform the analysis as we did for the Fourier transform.

However, as we mentioned, this would give a rather pessimistic estimation. Instead, a statistical error

analysis is applied. The basic idea of the statistical error analysis is to assume the rounding errors

δ = fl (x)− x

are i.i.d. random variables with a uniform distribution on the interval [−ux, ux], and to use the root

mean square error (RMSE) as a measure for the rounding error, where RMSE of a random variable Y

is defined by

RMSE(Y) =

√
E
[
(Y − E [Y])

2
]
.

Usually the statistical error analysis gives a more realistic estimate of the rounding errors than does the

worst-case error bound. One can find more details about the statistical error analysis in [31, 32, 33, 34,

39].

In our problem, since νzn,τ [k] ∼ O(Nu) for k = 0, . . . ,K − 1, we assume Re
(
νzn,τ [k]

)
and Im

(
νzn,τ [k]

)
are i.i.d. random variables with a uniform distribution on the interval [−Nu,Nu].16 Hence,

E
[
Re
(
νzn,τ [k]

)]
= E

[
Im
(
νzn,τ [k]

)]
= 0,

V
[
Re
(
νzn,τ [k]

)]
= V

[
Im
(
νzn,τ [k]

)]
=
N2u2

3
.

Note that

F−1

(
N−1∏
n=0

F
(
fl
(
pzn,τ

)))
[k] =

1

K

K−1∑
j=0

(
N−1∏
n=0

F
(
fl
(
pzn,τ

))
[j]

)
w−jk

=
1

K

K−1∑
j=0

(
N−1∏
n=0

F
(
pzn,τ

)
[j] + νzn,τ [j]

)
w−jk

= F−1

(
N−1∏
n=0

F
(
pzn,τ

)
[k]

)
+

1

K

K−1∑
j=0

νzn,τ [j]w−jk.

16For a complex number x, Re(x) and Im(x) are the real part and imaginary part of x, respectively.
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Denote ξzτ [k]
.
= 1

K

∑K−1
j=0 νzn,τ [j]w−jk, then

E [Re (ξzτ [k])] = E

 1

K

K−1∑
j=0

(
Re
(
νzn,τ [j]

)
cos

(−2π

K̄
(−jk)

)
− Im

(
νzn,τ [j]

)
sin

(−2π

K̄
(−jk)

))
=

1

K

K−1∑
j=0

(
E
[
Re
(
νzn,τ [j]

)]
cos

(−2π

K̄
(−jk)

)
− E

[
Im
(
νzn,τ [j]

)]
sin

(−2π

K̄
(−jk)

))
= 0,

since E
[
Re
(
νzn,τ [k]

)]
= E

[
Im
(
νzn,τ [k]

)]
= 0, for k = 0, . . . , K̄ − 1. Moreover,

V [Re (ξzτ [k])] =
1

K
2

K−1∑
j=0

(
V
[
Re
(
νzn,τ [j]

)]
cos2

(−2π

K̄
(−jk)

)
+ V

[
Im
(
νzn,τ [j]

)]
sin2

(−2π

K̄
(−jk)

))

=
1

K
2

K−1∑
j=0

N2u2

3

=
N2u2

3K
,

since Re
(
νzn,τ [k]

)
and Im

(
νzn,τ [k]

)
are independent and V

[
Re
(
νzn,τ [k]

)]
= V

[
Im
(
νzn,τ [k]

)]
= N2u2

3 .

Therefore, the RMSE of Re (ξzτ [k]) is

RMSE (Re (ξzτ [k])) =

√
E
[
(Re (ξzτ [k])− E [Re (ξzτ [k])])

2
]

=
√

V [Re (ξzτ [k])]

=
Nu√
3K

.

Similarly, RMSE (Im (ξzτ [k])) = Nu/
√

3K. Therefore,

F−1

(
N−1∏
n=0

F
(
fl
(
pzn,τ

)))
[k]−F−1

(
N−1∏
n=0

F
(
pzn,τ

)
[k]

)
= ξzτ [k], (5.2.49)

where |ξzτ [k]| ∼ O
(
Nu/
√
K
)
.

Finally, by (5.2.46) and (5.2.49), we have

∆r
m,τ ≈

m∑
k=0

ek/τξzτ [k].

Again, assuming Re (ξzτ [k]) and Im (ξzτ [k]) are i.i.d. random variables with a uniform distribution on the
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interval
[
−Nu/

√
K,Nu/

√
K
]
, we have

E [Re (ξzτ [k])] = E [Im (ξzτ [k])] = 0,

V [Re (ξzτ [k])] = V [Im (ξzτ [k])] =
N2u2

3K
.

By similar arguments, we have

E
[
Re
(
∆r
m,τ

)]
=

m∑
k=0

ek/τE [Re (ξzτ [k])] = 0,

E
[
Im
(
∆r
m,τ

)]
=

m∑
k=0

ek/τE [Im (ξzτ [k])] = 0,

V
[
Re
(
∆r
m,τ

)]
=

m∑
k=0

e2k/τV [Re (ξzτ [k])] =
N2u2

3K

e
2(m+1)

τ − 1

e
2
τ − 1

,

V
[
Im
(
∆r
m,τ

)]
=

m∑
k=0

e2k/τV [Im (ξzτ [k])] =
N2u2

3K

e
2(m+1)

τ − 1

e
2
τ − 1

,

and

RMSE
(
Re
(
∆r
m,τ

))
=
√
V
[
Re
(
∆r
m,τ

)]
=

Nu√
3K

√
e

2(m+1)
τ − 1

e
2
τ − 1

,

RMSE
(
Im
(
∆r
m,τ

))
=
√

V
[
Im
(
∆r
m,τ

)]
=

Nu√
3K

√
ee2(m+1)/τ − 1

e2/τ − 1
,

which indicates ∣∣∆r
m,τ

∣∣ ∼ O
 Nu√

K

√
e2m/τ − 1

e2/τ − 1

 .

Therefore, we can approximate the solution to the problem (5.2.44) by solving

∆̃a
m,τ = ∆̃r

m,τ ,

where

∆̃r
m,τ

.
=

Nu√
K

√
e2m/τ − 1

e2/τ − 1
.

That is,

Nu√
K

√
e2m/τ − 1

e2/τ − 1
= e−m/τ (1− P {Lz ≤ lm}) . (5.2.50)

However, the conditional loss probabilities P {Lz ≤ lm}, which is what we aim to compute, is in the
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equation (5.2.44). To solve this problem, we can apply the asymptotic approximation based on the central

limit theorem to approximate P {Lz ≤ lm}. Applying the CLT approximation described in Section (4.2),

the conditional loss probability can be approximated by

P {Lz ≤ lm} ≈ Φ

(
lm − µ(z)

σ(z)

)
,

where µ(z) = E [Lz] and σ(z) =
√

V [Lz]. Therefore we can solve the following equation to obtain an

approximation to the optimal τ .

Nu√
K

√
e2m/τ − 1

e2/τ − 1
= e−m/τ

(
1− Φ

(
lm − µ(z)

σ(z)

))
. (5.2.51)

Notice that, the optimal τ obtained by (5.2.51) is dependent on m and z. If we need to compute

P {Lz ≤ lm} for only one quantile lm, then we need to solve (5.2.51) once to get τm. If we need to

compute the distribution P {Lz ≤ lm} for m = 0, . . . ,K − 1, then a more accurate approximation to the

distribution can be achieved by solving (5.2.51) to obtain τm for each m, and applying the truncated

sparse FFT method plus exponential windowing with τm to compute P {Lz ≤ lm}. For the example we

discussed in the beginning of this subsubsection, we compare the total errors in computing P {Lz ≤ lm}

for m = 0, . . . ,K−1 using different optimal τm to that using other values of τ . The results are presented

in Figure 5.17a. Figure 5.17b shows the optimal τm for different m.
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Figure 5.17: Comparison of actual errors in computing P {Lz ≤ lm} with different τ

(a) Actual errors, ∆m and ∆m,τ
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We conclude this section by presenting Algorithm 5.12, which is based on the truncated sparse

FFT method plus exponential windowing with optimal τ .
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Algorithm 5.12 Truncated sparse FFT method with exponential window to compute P {Lz ≤ lm}
Input: pzn, K, t, m;
Output: pzm;

1: t← dlog2(m)e; K ← 2t;
2: pzn ← pzn(0 : K − 1);
3:
4: Compute wlong by Algorithm 5.5 with t;
5: p̃← pz0 ;

6:
7: Compute τ by solving (5.2.51);
8: for k = 1 : K − 1 do
9: pzn[k]← e−k/τpzn[k];
10: end for
11:
12: for n = 0 : N − 1 do
13: pzn ← PTKp

z
n by Algorithm 5.9;

14: sort(d̂);
15: for q = 1 : t do
16: pzn ← Aqpzn by Algorithm 5.10;
17: end for
18: if n > 0 then
19: p̃← p̃� pzn;

20: end if
21: end for
22:
23: wlong ← wlong ;

24: p̃← PTK p̃ by Algorithm 5.4;
25: for q = 1 : t do
26: p̃← Aqp̃ by Algorithm 5.6;
27: end for
28: p̃← p̃/K;

29:
30: for k = 0 : K − 1 do
31: p̃[k]← ek/τ p̃[k];
32: end for
33:
34: pzm ← 0;

35: for k = 0 : m do
36: pzm ← pzm + p̃[k];
37: end for
38: return pzm;
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5.3 Numerical Results and Comparisons

In this section, we conduct numerical experiments to compare different exact methods. In Subsection

5.3.1, we compare the sparse convolution (SCONV) method and the truncated sparse convolution (TR

SCONV) method to the benchmark full convolution (FCONV) method in the best/worse case discussed

in Subsection 5.1.2. The purpose of this comparison is to provide numerical support for the speedups we

derived in (5.1.38) and (5.1.42), and to check the error estimation in (5.1.50). In Subsection 5.3.2, we

compare the sparse FFT method (SFFT) to the benchmark full FFT (FFFT) method in the best/worst

case described in Subsection 5.2.3.4 to provide numerical support for the speedups we obtained in (5.2.26)

and (5.2.27). As we discussed before, the best/worse case may not be achievable for real portfolios, while

we are more interested in the performance of different methods when they are used for real portfolios.

Therefore, in Subsection 5.3.3, we build several test portfolios, and compare the efficiency and accuracy

of the SCONV method, TR SCONV method, SFFT method, the truncated sparse FFT (TR SFFT)

method, and the truncated sparse FFT method with exponential windowing (EW TR SFFT) to those of

the benchmark FCONV method. Finally, in Subsection 5.3.4, we compare the efficiency and accuracy of

the exact methods to MC method for some synthetic portfolios. All methods are implemented in C++

and the computation was performed on a workstation with a 2.8GHz Intel Core 2 Duo CPU and 6GB

667 MHz DDR2 SDRAM.

5.3.1 Best/Worst Cases: (Truncated) Sparse Convolution Methods

As shown in (5.1.38) and (5.1.42), the speedup of the SCONV method over the FCONV method is Ω(α2)

in the best case and Ω
(
α2CN

)
in the worst case. Therefore, we build different test cases to determine

the impact of the parameters N , α, and C, respectively, in both best and worst cases.

To provide numerical support for Theorem 5.2 and Corollary 5.3, we let the threshold Tol = 10−16,

and set ε by (5.1.50). Then we compare Tol and the maximum absolute difference of p̃zN−1[k] computed

by the TR SCONV method and by the FCONV method.
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5.3.1.1 Best Case

Testing N . The nonzero index vector dn is constructed by (5.1.28). To test the impact of the

parameter N , we set α = 5, C = 2, qzn = [0.99, 0.01]T for n = 0, . . . , N − 1, and compute p̃zN−1 for

N =10, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 by FCONV, SCONV and TR SCONV

method. The CPU time, speedup and maximum absolute error in p̃zN−1[k] are listed in Table 5.3. The

CPU time and speedup are given in Figure 5.18.

Table 5.3: Numerical results for testing N in the best case for the SCONV and TR SCONV methods

N

FCONV SCONV TR SCONV

CPU time CPU time Speedup CPU time Speedup Max error

10 1.3424E-05 3.7019E-06 3.6262E+00 3.8064E-06 3.5267E+00 9.9000E-19

500 3.0142E-02 5.9117E-03 5.0987E+00 4.1962E-04 7.1832E+01 1.5590E-18

1000 1.1617E-01 2.0850E-02 5.5717E+00 1.1123E-03 1.0444E+02 1.2533E-18

1500 2.5580E-01 4.3483E-02 5.8828E+00 1.9280E-03 1.3268E+02 1.0603E-18

2000 4.4709E-01 7.3202E-02 6.1076E+00 3.0786E-03 1.4523E+02 9.8600E-19

2500 6.8955E-01 1.0992E-01 6.2732E+00 4.0676E-03 1.6952E+02 9.8813E-19

3000 9.8746E-01 1.5380E-01 6.4204E+00 5.8243E-03 1.6954E+02 8.8315E-19

3500 1.3369E+00 2.0607E-01 6.4876E+00 6.8472E-03 1.9525E+02 7.7952E-19

4000 1.7383E+00 2.6373E-01 6.5912E+00 8.2931E-03 2.0961E+02 7.2973E-19

4500 2.1886E+00 3.2870E-01 6.6584E+00 1.0200E-02 2.1457E+02 7.0412E-19

5000 2.6983E+00 4.0255E-01 6.7030E+00 1.2288E-02 2.1959E+02 6.7083E-19
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Figure 5.18: CPU time and speedup for testing N in the best case for the SCONV and TR SCONV
methods

(a) CPU time

(b) Speedup

The numerical results show that, as N increases, the CPU time required by each convolution method

increases. The SCONV method and the TR SCONV method run much faster than the FCONV method,

and the TR SCONV method has a much larger speedup than the SCONV method. The speedup of the

SCONV method over the FCONV method increases with N for small N , but, when N is larger than

2000, the increase of the speedup is rather slow, with the speedup remaining between 6 and 7. This
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implies that, when N is large enough, it has no significant impact on the speedup of the SCONV method.

This result agrees with our theoretical speedup in (5.1.38), where there is no N in the expression.

However, for the TR SCONV method, the speedup is much more significant and depends strongly

on N . As N increases from 10 to 5000, the speedup of TR SCONV method increases steadily from 3.57

to 219.59. The reason for this is that, when N is large, more extremely small p̃zn−1[i]pzn[j] are truncated

to zero, which saves computational time.

The last column in Table 5.3 indicates that the maximum absolute error in all cases tested is around

10−18 ∼ 10−19, which is less than our pre-defined threshold Tol = 10−16. These numerical results

support the way we choose ε in (5.1.50), which follows from Theorem 5.2 and Corollary 5.3.

Testing α. The nonzero index vector dn is constructed by (5.1.28). To test the impact of the

parameter α, we set N = 5000, C = 2, qzn = [0.99, 0.01]T for n = 0, . . . , N − 1, and compute p̃zN−1 for

α =2, 4, 6, 8, 10, 12, 14, 16, 18, 20 by the FCONV, SCONV and TR SCONV methods. The CPU time,

speedup and maximum absolute error in p̃zN−1[k] are listed in Table 5.4. The CPU time and speedup

are given in Figure 5.19.
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Table 5.4: Numerical results for testing α in the best case for the SCONV and TR SCONV methods

α

FCONV SCONV TR SCONV

CPU time CPU time Speedup CPU time Speedup Max error

2 7.1225E-01 4.0126E-01 1.7750E+00 1.1616E-02 6.1316E+01 6.7084E-19

4 1.9379E+00 4.0220E-01 4.8182E+00 1.1545E-02 1.6786E+02 6.7084E-19

6 3.6616E+00 4.0488E-01 9.0437E+00 1.1773E-02 3.1102E+02 6.7084E-19

8 6.0961E+00 4.1231E-01 1.4785E+01 1.1561E-02 5.2730E+02 6.7084E-19

10 8.9407E+00 4.1099E-01 2.1754E+01 1.1734E-02 7.6195E+02 6.7084E-19

12 1.1965E+01 4.1276E-01 2.8988E+01 1.1745E-02 1.0187E+03 6.7084E-19

14 1.5858E+01 4.2376E-01 3.7422E+01 1.1764E-02 1.3480E+03 6.7084E-19

16 2.0172E+01 4.2474E-01 4.7493E+01 1.1857E-02 1.7013E+03 6.7084E-19

18 2.5335E+01 4.2623E-01 5.9440E+01 1.1907E-02 2.1277E+03 6.7084E-19

20 3.0947E+01 4.3193E-01 7.1648E+01 1.1849E-02 2.6118E+03 6.7084E-19
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Figure 5.19: CPU time and speedup for testing α in the best case for the SCONV and TR SCONV
methods

(a) CPU time

(b) Speedup

The numerical results show that, as α increases, the CPU time required by all convolution methods

increases. The SCONV and TR SCONV methods are much faster than the FCONV method, and the

TR SCONV method has a much larger speedup than the SCONV method. The speedup of the SCONV

method over the FCONV method increases with α. We performed a linear least squares fit to the
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speedup of the SCONV method to

fSCONVbest,α (α) = p2α
2,

f̃SCONVbest,α (α) = p3α
3 + p2α

2 + p1α+ p0.

The results are

fSCONVbest,α (α) = 0.19α2,

f̃SCONVbest,α (α) = 8.67E-04 · α3 + 0.12 · α2 + 0.95 · α− 0.75. (5.3.1)

Figure 5.20 compares the fitted curves fSCONVbest,α (α) and f̃SCONVbest,α (α) to the actual SCONV speedup.

Figure 5.20: Comparison of the fitted curves fSCONVbest,α (α) and f̃SCONVbest,α (α) to actual speedup for the
SCONV method

Figure 5.20 shows f̃SCONVbest,α (α) and fSCONVbest,α (α) are good fits to the SCONV speedup. Moreover, the

coefficient of α3 in f̃SCONVbest,α (α) is insignificant compared to the coefficient of α2. Therefore, we conclude

that, in the best case, the speedup of the SCONV method grows quadratically in α, which agrees with

our theoretical speedup in (5.1.38).

For the TR SCONV method, there is a rapid increase of the speedup as α grows. More specifically,

as α increases from 2 to 20, the speedup of the TR SCONV method increases from 61.32 to 2611.82,

which shows that α has a significant impact on the speedup of the TR SCONV method.

The last column in Table 5.4 indicates that the maximum absolute error in all cases tested is around

6.71× 10−19, which is less than our pre-defined threshold Tol = 10−16. These numerical results support
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the way we choose ε in (5.1.50), which follows from Theorem 5.2 and Corollary 5.3.

Testing C. The nonzero index vector dn is constructed by (5.1.28). To test the impact of the

parameter C, we set N = 5000, α = 5, and vary C =2, 3, 4, 5, 6, 7, 8, 9, 10. For each C, the nonzero

probability vector qzn is set to

qzn[c] =


1− 0.01

∑C−1
k=1 k, c = 0,

0.01(C − c), c = 1, . . . , C − 1.

(5.3.2)

for n = 0, . . . , N − 1. For example, we have qzn = [0.99, 0.01]T for C = 2, and qzn = [0.97, 0.02, 0.01]T for

C = 3. We compute p̃zN−1 for C =2, 3, 4, 5, 6, 7, 8, 9, 10 by the FCONV, SCONV and TR SCONV

methods. The CPU time, speedup and maximum absolute errors are listed in Table 5.5. The CPU time

and speedup are given in Figure 5.21.

Table 5.5: Numerical results for testing C in the best case for the SCONV and TR SCONV methods

C

FCONV SCONV TR SCONV

CPU time CPU time Speedup CPU time Speedup Max error

2 2.7020E+00 4.0286E-01 6.7070E+00 1.2369E-02 2.1845E+02 6.7083E-19

3 8.7557E+00 1.1851E+00 7.3882E+00 4.3140E-02 2.0296E+02 7.1550E-19

4 1.8338E+01 2.3692E+00 7.7402E+00 1.0581E-01 1.7331E+02 6.5983E-19

5 3.1189E+01 3.9493E+00 7.8973E+00 2.0932E-01 1.4900E+02 5.9852E-19

6 4.7585E+01 5.9644E+00 7.9782E+00 3.5692E-01 1.3332E+02 5.4234E-19

7 6.8201E+01 8.8232E+00 7.7297E+00 5.5200E-01 1.2355E+02 7.3922E-19

8 9.4349E+01 1.3111E+01 7.1962E+00 7.9805E-01 1.1822E+02 4.5567E-19

9 1.2767E+02 1.9604E+01 6.5124E+00 1.0951E+00 1.1658E+02 4.1625E-19

10 1.7050E+02 2.9386E+01 5.8021E+00 1.4350E+00 1.1882E+02 3.8501E-19
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Figure 5.21: CPU time and speedup for testing C in the best case for the SCONV and TR SCONV
methods

(a) CPU time

(b) Speedup

The numerical results show that, as C increases, the CPU time required by each convolution method

increases. The SCONV method and the TR SCONV method run much faster than the FCONV method,

and the TR SCONV method has a much larger speedup than the SCONV method. The speedup of the

SCONV method over the FCONV method varies in a narrow range between 5.8 and 7.8 as C increases
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from 2 to 10. This implies that C has no significant impact on the speedup of the SCONV method. This

result agrees with our theoretical speedup in (5.1.28), where there is no C in the expression.

However, for the TR SCONV method, as C increases from 2 to 6, the speedup of the TR SCONV

method decreases rapidly from 218.45 to 133.32, while for C > 7, the change in the speedup is much

smaller (within [116, 118]). We believe this is related to the way that we construct the nonzero probability

vector qzn.

The last column in Table 5.5 indicates that the maximum absolute error in all test cases is around

10−19, which is less than our pre-defined threshold Tol = 10−16. These numerical results support the

way we choose ε in (5.1.50), which follows from Theorem 5.2 and Corollary 5.3.

5.3.1.2 Worst Case

Testing N . The nonzero index vector dn is constructed by (5.1.32). To test the impact of the

parameter N , we set α = 5, C = 2, qzn = [0.999, 0.001]T for n = 0, . . . , N − 1, and compute p̃zN−1 for

N =5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 by FCONV, SCONV and TR SCONV method. Unlike our

testing for the best case, we can not choose very large test parameters N for the worst case, because the

length of the resultant vector, as shown in (5.1.40), is too large, so it is impractical to use the benchmark

FCONV method. Since N in our tests is not large, most p̃zn−1[i]pzn[j] are not truncated in the TR

SCONV method. Hence, to differentiate between the SCONV method and the TR SCONV method, we

set qzn = [0.999, 0.001]T instead of qzn = [0.99, 0.01]T as we did in the best case. The CPU time, speedup

and maximum absolute error in p̃zN−1[k] are listed in Table 5.6. The CPU time and speedup are given

in Figure 5.22.
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Table 5.6: Numerical results for testing N in the worst case for the SCONV and TR SCONV methods

N

FCONV SCONV TR SCONV

CPU time CPU time Speedup CPU time Speedup Max error

5 4.8879E-05 2.8456E-06 1.7177E+01 2.8084E-06 1.7405E+01 0.0000E+00

6 1.8328E-04 4.1232E-06 4.4451E+01 4.1147E-06 4.4543E+01 1.0000E-18

7 7.1740E-04 6.4959E-06 1.1044E+02 6.4813E-06 1.1069E+02 9.9900E-19

8 2.8440E-03 1.1487E-05 2.4758E+02 1.1287E-05 2.5197E+02 9.9800E-19

9 1.1339E-02 2.2779E-05 4.9778E+02 2.1028E-05 5.3923E+02 9.9700E-19

10 4.5390E-02 4.6737E-05 9.7118E+02 4.0010E-05 1.1345E+03 9.9600E-19

11 1.8338E-01 9.8854E-05 1.8551E+03 7.2842E-05 2.5175E+03 9.9500E-19

12 7.3656E-01 1.9506E-04 3.7761E+03 1.2859E-04 5.7280E+03 9.9400E-19

13 2.9516E+00 4.1519E-04 7.1090E+03 2.2741E-04 1.2979E+04 9.9300E-19

14 1.1838E+01 1.0949E-03 1.0812E+04 6.5229E-04 1.8148E+04 9.9202E-19

15 4.7299E+01 2.4584E-03 1.9240E+04 1.5208E-03 3.1101E+04 9.9104E-19
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Figure 5.22: CPU time and speedup for testing N in the worst case for the SCONV and TR SCONV
methods

(a) CPU time

(b) Speedup

The numerical results show that, as N increases, the CPU time required by each convolution method

increases. The SCONV method and the TR SCONV method run much faster than the FCONV method,

and the TR SCONV method has a larger speedup than the SCONV method. The speedup of the SCONV

method over the FCONV method increases with N . Setting α = 5 and C = 2, we perform a least squares
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fit to the speedup of the SCONV method to

fSCONVworst,N (N) = p0α
2CN ,

f̃SCONVworst,N (N) = p0α
2pN1 .

The results are

fSCONVworst,N (N) = 2.48E-02 · α2 · CN , (5.3.3)

f̃SCONVworst,N (N) = 0.26 · α2 · 1.73N . (5.3.4)

Figure 5.23 compares the fitted curves fSCONVworst,N (N) and f̃SCONVworst,N (N) to the actual SCONV speedup.

Figure 5.23: Comparison of the curves fSCONVworst,N (N) and f̃SCONVworst,N (N) to the actual speedup for the
SCONV method

Comparing (5.3.3) and (5.3.4), the fitted parameter p2 = 1.73 in (5.3.4) is close to C = 2 in (5.3.3),

and Figure 5.23 shows f̃SCONVworst,N (N) and fSCONVworst,N (N) are good fits to the SCONV speedup. Therefore,

we conclude that, in the worst case, given C, the speedup of the SCONV method grows with N at a

rate approximately proportional to CN , which agrees with our theoretical speedup in (5.1.42).

For the TR SCONV method, we also see an increase of the speedup with N . More specifically,

as N increases from 5 to 15, the speedup for the TR SCONV method increases from 1.7405E+01 to

3.1101E+04. Moreover, Figure 5.22 shows that the speedup for the TR SCONV method increases faster
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than for the SCONV method.

The last column in Table 5.6 indicates that the maximum absolute error in all test cases is around

10−18, which is less than our pre-defined threshold Tol = 10−16. These numerical results support the

way we choose ε in (5.1.50), which follows from Theorem 5.2 and Corollary 5.3.

Testing α. The nonzero index vector dn is constructed by (5.1.32). To test the impact of the parameter

α, we set N = 10, C = 2, qzn = [0.999, 0.001]T for n = 0, . . . , N − 1, and compute p̃zN−1 for α = 2, 4, 6,

8, 10, 12, 14, 16, 18, 20 by the FCONV, SCONV and TR SCONV methods. The CPU time, speedup

and maximum absolute error in p̃zN−1[k] are listed in Table 5.7. The CPU time and speedup are given

in Figure 5.24.

Table 5.7: Numerical results for testing α in the worst case for the SCONV and TR SCONV methods

α

FCONV SCONV TR SCONV

CPU time CPU time Speedup CPU time Speedup Max error

2 7.2563E-03 4.0056E-05 1.8115E+02 3.0984E-05 2.3420E+02 9.9600E-19

4 2.8978E-02 4.9368E-05 5.8698E+02 3.6531E-05 7.9324E+02 9.9600E-19

6 6.5528E-02 5.5913E-05 1.1720E+03 4.2510E-05 1.5415E+03 9.9600E-19

8 1.1636E-01 6.2294E-05 1.8679E+03 4.7268E-05 2.4617E+03 9.9600E-19

10 1.8198E-01 6.9105E-05 2.6334E+03 5.2628E-05 3.4579E+03 9.9600E-19

12 2.6328E-01 7.3040E-05 3.6046E+03 5.7074E-05 4.6130E+03 9.9600E-19

14 3.5772E-01 7.6822E-05 4.6565E+03 6.0807E-05 5.8829E+03 9.9600E-19

16 4.6826E-01 8.3836E-05 5.5854E+03 6.5697E-05 7.1276E+03 9.9600E-19

18 5.9164E-01 8.7474E-05 6.7636E+03 6.9958E-05 8.4571E+03 9.9600E-19

20 7.5155E-01 9.3215E-05 8.0625E+03 7.4498E-05 1.0088E+04 9.9600E-19
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Figure 5.24: CPU time and speedup for testing α in the worst case for the SCONV and TR SCONV
methods

(a) CPU time

(b) Speedup

The numerical results show that, as α increases, the CPU time required by each convolution method

increases. The SCONV method and the TR SCONV method are much faster than the FCONV method,

and the TR SCONV method has a larger speedup than the SCONV method. Moreover, the speedup of

the SCONV method over the FCONV method increases with α. Setting N = 10 and C = 2, we perform

a least squares fit to the speedup of the SCONV method to
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fSCONVworst,α (α) = p0α
2CN ,

f̃SCONVworst,α (α) = p2α
2CN + p1α+ p0.

The results are

fSCONVworst,α (α) = 2.09E-02 · α2 · CN , (5.3.5)

f̃SCONVworst,α (α) = 1.29E-02 · α2 · CN + 1.73E2 · α− 2.67E2. (5.3.6)

Figure 5.25 compares the fitted curves fSCONVworst,α (α) and f̃SCONVworst,α (α) to the actual SCONV speedup.

Figure 5.25: Comparison of curves fSCONVworst,α (α) and f̃SCONVworst,α (α) to the actual speedup for the SCONV
method

Figure 5.25 shows f̃SCONVworst,α (α) and fSCONVworst,α (α) are good fits to the SCONV speedup. Therefore, we

conclude that, in the worst case, the speedup of the SCONV method grows with α at an approximately

quadratic rate, which agrees with our theoretical speedup in (5.1.42).

For the TR SCONV method, we also see an increase of the speedup with α. As α increases from 2 to

20, the speedup of the TR SCONV method increases from 2.3420E+02 to 1.0088E+04. Moreover, Figure

5.25 shows that the speedup of the TR SCONV method increases faster than the SCONV method.

The last column in Table 5.6 shows that the maximum absolute error in all test cases is less than

1 × 10−18, which is less than our pre-defined threshold Tol = 10−16. These numerical results support

the way we choose ε in (5.1.50), which follows from Theorem 5.2 and Corollary 5.3.
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Testing C. The nonzero index vector dn is constructed by (5.1.32). To test the impact of the

parameter C, we set N = 5, α = 5, and compute p̃zN−1 for C = 2, 3, 4, 5, 6, 7, 8, 9, 10 by the FCONV,

SCONV and TR SCONV methods. The nonzero probability vector qzn is set by (5.3.2). The CPU time,

speedup and maximum absolute error in p̃zN−1[k] are listed in Table 5.8. The CPU time and speedup

are given in Figure 5.26.

Table 5.8: Numerical results for testing C in the worst case for the SCONV and TR SCONV methods

C

FCONV SCONV TR SCONV

CPU time CPU time Speedup CPU time Speedup Max error

2 4.7681E-05 2.7492E-06 1.7344E+01 2.7615E-06 1.7266E+01 1.0000E-17

3 1.9000E-03 8.7902E-06 2.1615E+02 8.2259E-06 2.3098E+02 6.6667E-18

4 2.6975E-02 3.5919E-05 7.5100E+02 2.7927E-05 9.6591E+02 5.0000E-18

5 2.1314E-01 9.3964E-05 2.2683E+03 7.0636E-05 3.0174E+03 4.0000E-18

6 1.1339E+00 2.5541E-04 4.4395E+03 1.6440E-04 6.8972E+03 3.3333E-18

7 4.6423E+00 8.9170E-04 5.2061E+03 6.6096E-04 7.0236E+03 2.8571E-18

8 1.5689E+01 1.9104E-03 8.2124E+03 1.7044E-03 9.2050E+03 2.5000E-18

9 4.5850E+01 4.8498E-03 9.4540E+03 4.4943E-03 1.0202E+04 2.2222E-18

10 1.1949E+02 9.8298E-03 1.2156E+04 8.8366E-03 1.3522E+04 2.0000E-18
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Figure 5.26: CPU time and speedup for testing C in the worst case for the SCONV and TR SCONV
methods

(a) CPU time

(b) Speedup

The numerical results show that, as C increases, the CPU time required by each convolution method

increases. The SCONV method and the TR SCONV method are much faster than the FCONV method,

and the TR SCONV method has a larger speedup than the SCONV method. Moreover, the speedup of

SCONV method over the FCONV method increases with C. Setting N = 5 and α = 2, we perform a

least square fit to the speedup of the SCONV method to
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fSCONVworst,C (C) = p0α
2CN ,

f̃SCONVworst,C (C) = p0α
2Cp1 .

The results are

fSCONVworst,C (C) = 5.83E-03 · α2 · CN , (5.3.7)

f̃SCONVworst,C (C) = 2.36 · α2 · C2.32. (5.3.8)

Figure 5.27 compares the fitted curves fSCONVworst,C (C) and f̃SCONVworst,C (C) to the actual SCONV speedup.

Figure 5.27: Comparison of the curves fSCONVworst,C (C) and f̃SCONVworst,C (C) to the actual SCONV speedup
for SCONV method

Comparing (5.3.7) and (5.3.8), the fitted parameter p1 = 2.32 in (5.3.8) is significantly smaller than

N = 5 in (5.3.7). Moreover, Figure 5.23 shows that f̃SCONVworst,C (C) fits the actual SCONV speedup much

better than fSCONVworst,C (C). We believe the reason for this is that, N = 5 is fairly small in this example,

while the theoretical speedup in (5.1.42) is obtained for a large N . Varying C from 2 to 10, we are not

able to conduct an adequate test for large N , since as shown in (5.1.35) and (5.1.41), the total number

of FLOPs in the worst case for both the TR SCONV method and the SCONV method grows with N

at an exponential rate. Our test cases show that, for small N , given α, the speedup of SCONV method

grows with C at a rate proportional to α2CN̂ , for some N̂ < N .
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For the TR SCONV method, we also see an increase of the speedup with C. As C increases from

2 to 10, the speedup of the TR SCONV method increases from 1.7266E+01 to 1.3522E+04. Moreover,

Figure 5.27 shows that the speedup of the TR SCONV method increases faster than that of the SCONV

method.

The last column in Table 5.8 shows that the maximum absolute error in all test cases is around

10−17 ∼ 10−18, which is less than our pre-defined threshold Tol = 10−16. These numerical results

support the way we choose ε in (5.1.50), which follows from Theorem 5.2 and Corollary 5.3.

5.3.2 Best/Worst Cases: Sparse FFT Method

As shown in (5.2.24) and (5.2.25), the speedup of the SFFTmethod over the FCONVmethod is Ω(log2K)

in the best case and Ω (log2K/ log2 C) in the worst case. Therefore, we build different test cases to

determine the impact of the parameters N , K, and C respectively in both the best and worst cases.

5.3.2.1 Best Case

Testing N . For n = 1, . . . , N , the nonzero index vector dn is constructed such that the bit reversal

of pzn has the pattern shown in (5.2.20). To test the impact of the parameter N , we set K = 212 = 4096,

C = 2, qzn = [0.99, 0.01]T for n = 0, . . . , N − 1, and compute p̃zN−1 for N =10, 500, 1000, 1500, 2000,

2500, 3000, 3500, 4000, 4500, 5000 by the FFFT and the SFFT methods. The CPU time and speedup

for the SFFT method over the FFFT method are shown in Table 5.9 and Figure 5.28.
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Table 5.9: Numerical results for testing N in the best case for the SFFT method

N

FFFT SFFT

CPU time CPU time Speedup

10 1.3058E-02 1.4168E-03 9.2167E+00

500 4.1576E-01 3.8490E-02 1.0802E+01

1000 8.3717E-01 7.5225E-02 1.1129E+01

1500 1.2479E+00 1.1217E-01 1.1125E+01

2000 1.6801E+00 1.5183E-01 1.1065E+01

2500 2.0955E+00 1.8730E-01 1.1188E+01

3000 2.5143E+00 2.2704E-01 1.1074E+01

3500 2.9283E+00 2.6131E-01 1.1206E+01

4000 3.3653E+00 2.9840E-01 1.1278E+01

4500 3.7721E+00 3.3843E-01 1.1146E+01

5000 4.1405E+00 3.7541E-01 1.1029E+01
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Figure 5.28: CPU time and speedup for testing N in the best case for the SFFT method

(a) CPU time

(b) Speedup

The numerical results show that, as N increases, the CPU time required by both the FFFT and

SFFT methods increases. However, the SFFT method is much faster than the FFFT method. The

speedup of the SFFT method over the FFFT method varies within the narrow range [10.80, 11.28], for

N > 10. This implies that when N is large, it has no significant impact on the speedup of the SFFT

method. This result agrees with our theoretical speedup in (5.2.26), where there is no dependence on
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N .

Testing K. For n = 1, . . . , N , the nonzero index vector dn is constructed such that the bit reversal

of pzn has the pattern as shown in (5.2.22). To test the impact of the parameter K, we set N = 500,

C = 2, qzn = [0.99, 0.01]T for n = 0, . . . , N − 1, and compute p̃zN−1 for K =2t, t = 6, . . . , 16, by the

FFFT and SFFT methods. The CPU time and speedup for the SFFT method over the FFFT method

are shown in Table 5.10 and Figure 5.29.

Table 5.10: Numerical results for testing K in the best case for the SFFT method

log2K

FFFT SFFT

CPU time CPU time Speedup

6 4.2739E-03 1.9121E-03 2.2351E+00

7 9.0629E-03 2.4977E-03 3.6285E+00

8 1.9059E-02 3.6985E-03 5.1531E+00

9 4.1372E-02 5.9792E-03 6.9193E+00

10 8.9180E-02 1.0159E-02 8.7787E+00

11 1.9197E-01 2.0042E-02 9.5784E+00

12 4.1730E-01 3.8440E-02 1.0856E+01

13 8.9428E-01 7.4671E-02 1.1976E+01

14 1.9138E+00 1.4725E-01 1.2997E+01

15 4.3107E+00 3.0983E-01 1.3913E+01

16 9.1930E+00 6.0983E-01 1.5075E+01
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Figure 5.29: CPU time and speedup for testing K in the best case for the SFFT method

(a) CPU time

(b) Speedup

The numerical results show that, as K increases, the CPU time required by both FFT methods

increases. However, the SFFT method is much faster than the FFFT method. Moreover, the speedup

of the SFFT method over the FFFT method increases with K. We perform a least squares fit of the
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speedup of the SFFT method to

fSFFTbest,K (K) = p1 log2K + p0,

f̃SFFTbest,K (K) = p3(log2K)3 + p2(log2K)2 + p1 log2K + p0.

The results are

fSFFTbest,K (K) = 1.28 · log2K − 4.91,

f̃SFFTbest,K (K) = 1.07E-3 · (log2K)3 − 8.10E-2 · (log2K)2 + 2.66 · log2K − 11.19. (5.3.9)

Figure 5.30 compares the fitted curves fSFFTbest,K (K) and f̃SFFTbest,K (K) to the actual SFFT speedup.

Figure 5.30: Comparison of the curves fSFFTbest,K (K) and f̃SFFTbest,K (K) to the actual speedup for the SFFT
method

The coefficients for f̃SFFTbest,K (K) in (5.3.9) show that the speedup for the SFFT method has a strong

dependence on log2K, but a weak dependence on (log2K)2 and (log2K)3. Moreover, Figure 5.30 shows

f̃SFFTbest,K (K) and fSFFTbest,K (K) are good fits to the SFFT speedup. Therefore, we conclude that, in the

best case, the speedup of the SFFT method grows with log2K at a linear rate, which agrees with our

theoretical speedup in (5.2.26).

Testing C. For n = 1, . . . , N , the nonzero index vector dn is constructed such that the bit reversal of

pzn has the pattern shown in (5.2.20). To test the impact of the parameter C, we set K = 215 = 32768,

N = 500, and vary C =2t, t = 1, . . . , 6. For each C, the nonzero probability vector qzn is set to

qzn[c] =


1− 0.001

∑C−1
k=1 k, c = 0,

0.001(C − c), c = 1, . . . , C − 1.

(5.3.10)
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for n = 0, . . . , N − 1. We compute p̃zN−1 for C =2t, t = 1, . . . , 6, by the FFFT and SFFT methods. The

CPU time and speedup of the SFFT method over the FFFT method are shown in Table 5.11 and Figure

5.31.

Table 5.11: Numerical results for testing C in the best case for the SFFT method

log2 C

FFFT SFFT

CPU time CPU time Speedup

1 4.2453E+00 3.0555E-01 1.3894E+01

2 4.2444E+00 3.0541E-01 1.3898E+01

3 4.2331E+00 3.0392E-01 1.3929E+01

4 4.2280E+00 3.0733E-01 1.3757E+01

5 4.2252E+00 3.1371E-01 1.3468E+01

6 4.2264E+00 3.1270E-01 1.3515E+01
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Figure 5.31: CPU time and speedup in testing C for the best case for the SFFT method

(a) CPU time

(b) Speedup

The numerical results show that, as C increases, the CPU time required by both FFT methods

does not change significantly. However, the SFFT method is much faster than the FFFT method. The

speedup of the SFFT method over the FFFT method varies within the narrow range [13.47, 13.93], which

implies that C has no significant impact on the speedup of the SFFT method. This result agrees with

our theoretical speedup in (5.2.26), where there is no dependence on C.
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5.3.2.2 Worst case

Testing N . For n = 1, . . . , N , the nonzero index vector dn is constructed such that the bit reversal

of pzn has the pattern shown in (5.2.22). To test the impact of the parameter N , we set K = 212 = 4096,

C = 2, qzn = [0.99, 0.01]T for n = 0, . . . , N − 1, and compute p̃zN−1 for N =10, 500, 1000, 1500, 2000,

2500, 3000, 3500, 4000, 4500, 5000 by the FFFT and SFFT methods. The CPU time and speedup of

the SFFT method over the FFFT method are shown in Table 5.12 and Figure 5.32.

Table 5.12: Numerical results for testing N in the worst case for the SFFT method

N

FFFT SFFT

CPU time CPU time Speedup

10 1.0966E-02 2.0292E-03 5.4044E+00

500 4.1209E-01 7.5271E-02 5.4748E+00

1000 8.2536E-01 1.4959E-01 5.5175E+00

1500 1.2383E+00 2.2363E-01 5.5372E+00

2000 1.6509E+00 3.0255E-01 5.4566E+00

2500 2.0623E+00 3.7351E-01 5.5214E+00

3000 2.4708E+00 4.5089E-01 5.4799E+00

3500 2.8903E+00 5.2536E-01 5.5015E+00

4000 3.2969E+00 5.9861E-01 5.5075E+00

4500 3.7097E+00 6.7783E-01 5.4729E+00

5000 4.1149E+00 7.4766E-01 5.5037E+00
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Figure 5.32: CPU time and speedup for testing N in the worst case for the SFFT method

(a) CPU time

(b) Speedup

The numerical results show that, as N increases, the CPU time required by both FFT methods

increases. However, the SFFT method is much faster than the FFFT method. The speedup for the

SFFT method over the FFFT method varies within the narrow range [5.40, 5.54]. This shows that N

has no significant impact on the speedup of the SFFT method. This result agrees with our theoretical

speedup in (5.2.27), where there is no dependence on N .
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Testing K. For n = 1, . . . , N , the nonzero index vector dn is constructed such that the bit reversal

of pzn has the pattern as shown in (5.2.22). To test the impact of the parameter K, we set N = 500,

C = 2, qzn = [0.99, 0.01]T for n = 0, . . . , N − 1, and compute p̃zN−1 for K =2t, t = 6, . . . , 16, by the

FFFT and SFFT methods. The CPU time and speedup for the SFFT method over the FFFT method

are shown in Table 5.13 and Figure 5.33.

Table 5.13: Numerical results for testing K in the worst case for the SFFT method

log2K

FFFT SFFT

CPU time CPU time Speedup

6 3.8460E-03 2.4288E-03 1.5835E+00

7 8.7737E-03 3.5982E-03 2.4384E+00

8 1.8969E-02 5.9309E-03 3.1982E+00

9 4.0623E-02 1.0245E-02 3.9653E+00

10 8.6628E-02 1.9518E-02 4.4383E+00

11 1.9047E-01 3.8004E-02 5.0119E+00

12 4.1286E-01 7.5320E-02 5.4815E+00

13 8.8957E-01 1.4934E-01 5.9566E+00

14 1.8956E+00 2.9417E-01 6.4437E+00

15 4.2369E+00 6.1615E-01 6.8764E+00

16 9.0529E+00 1.2406E+00 7.2973E+00
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Figure 5.33: CPU time and speedup for testing K in the worst case for the SFFT method

(a) CPU time

(b) Speedup

The numerical results show that, as K increases, the CPU time required by each FFT method

increases. The SFFT method is much faster than the FFFT method. The speedup of the SFFT method

over the FFFT method increases with K. We perform a least squares fit of the speedup of the SFFT
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method to

fSFFTworst,K(K) = p1 log2K + p0,

f̃SFFTworst,K(K) = p3(log2K)3 + p2(log2K)2 + p1 log2K + p0.

The results are

fSFFTworst,K(K) = 0.55 · log2K − 1.32,

f̃SFFTworst,K(K) = 1.97E-3 · (log2K)3 − 8.68E-2 · (log2K)2 + 1.71 · log2K − 6.03. (5.3.11)

Figure 5.34 compares the fitted curve fSFFTworst,K(K) and f̃SFFTworst,K(K) to the actual SFFT speedup.

Figure 5.34: Comparison of the curves fSFFTworst,K(K) and f̃SFFTworst,K(K) to the actual speedup for the
SFFT method

The coefficients of f̃SFFTworst,K(K) in (5.3.11) show that the speedup for the SFFT method has a strong

dependence on log2K, but a weak dependence on (log2K)2 and (log2K)3. Figure 5.34 shows f̃SFFTworst,K(K)

and fSFFTworst,K(K) are good fits to the SFFT speedup. Therefore, we conclude that, in the worst case, the

speedup of SFFT method grows with log2K at a linear rate, which agrees with our theoretical speedup

in (5.2.27).

Testing C. For n = 1, . . . , N , the nonzero index vector dn is constructed such that the bit reversal of

pzn has the pattern shown in (5.2.22). To test the impact of the parameter C, we set K = 215 = 32768,
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N = 500, and vary C =2t, t = 1, . . . , 6. For each C, the nonzero probability vector qzn is set to

qzn[c] =


1− 0.001

∑C−1
k=1 k, c = 0,

0.001(C − c), c = 1, . . . , C − 1.

(5.3.12)

for n = 0, . . . , N − 1. We compute p̃zN−1 for C =2t, t = 1, . . . , 6, by the FFFT and SFFT methods. The

CPU time and speedup of the SFFT method over the FFFT method are shown in Table 5.14 and Figure

5.35.

Table 5.14: Numerical results for testing C in the worst case for the SFFT method

log2 C

FFFT SCONV

CPU time CPU time Speedup

1 4.2592E+00 6.1680E-01 6.9054E+00

2 4.2533E+00 7.7951E-01 5.4564E+00

3 4.2556E+00 9.5273E-01 4.4667E+00

4 4.2354E+00 1.1072E+00 3.8255E+00

5 4.2371E+00 1.2736E+00 3.3268E+00

6 4.2371E+00 1.4482E+00 2.9259E+00
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Figure 5.35: CPU time and speedup for testing C in the worst case for the SFFT method

(a) CPU time

(b) Speedup
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The numerical results show that, as C increases, the CPU time required by the FFFT method does

161



not change significantly, but the CPU time for the SFFT method increases. The number of rating classes

does have an impact on the efficiency of the FFFT method, as can be explained by the complexity analysis

presented in Subsection 5.2.2.5. As C increases, the probability vectors become less sparse, causing the

SFFT method to slow down. Nevertheless, the SFFT method is much faster than the FFFT method.

The speedup of the SFFT method over the FFFT method decreases with C. We perform a least squares

fit of the speedup for the SFFT method to

fSFFTworst,C(C) =
p1

log2 C
,

f̃SFFTworst,C(C) =
p1

p2 + p3 log2 C
.

The results are

fSFFTworst,C(C) =
8.87

log2 C
,

f̃SFFTworst,C(C) =
15.52

2.71 + log2 C
. (5.3.13)

Figure 5.36 compares the fitted curves fSFFTworst,C(C) and f̃SFFTworst,C(C) to the actual SFFT speedup.

Figure 5.36: Comparison of the curves fSFFTworst,C(C) and f̃SFFTworst,C(C) to the actual speedup for the
SFFT method

Figure 5.36 shows that fSFFTbest,K (K) does not fit the SFFT speedup very well, but f̃SFFTbest,K (K) does.

Note that f̃SFFTworst,C(C) ∼ Ω(1/ log2 C). Therefore, as C increases, it is still true that, for fixed N and K,

the speedup of the SFFT method varies approximately proportional to 1/ log2 C, which agrees with our
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theoretical speedup in (5.2.27).

5.3.3 Testing on Synthetic Portfolios

In this subsection, we compare the SCONV, TR SCONV, FFFT, SFFT, TR SFFT and EW TR SFFT

methods to the benchmark FCONV method in computing the loss distribution for realistic synthetic

portfolios. We build six testing portfolios to test the efficiency and accuracy of different methods.

For all portfolios, the number of obligors is N = 500, and all obligors are in the highest rating class.

The synthetic testing portfolios are divided into two groups: homogeneous and inhomogeneous. The

portfolios within each group differ in the the number of rating classes, C, which is also the number of

nonzero elements in pzn. We test C = 2 and 18, where C = 2 corresponds to the simplest rating system

- default and no default - and C = 18 corresponds to a typical rating system in the market (see Table

2.1). The following table summarizes the portfolios we use in our tests.

Table 5.15: Testing portfolios for exact methods

Portfolio C c(n) EADn LGCcn βn

Homo-

geneous

Π1 2 1
1

LGC1
c

n

0.5
Π2 18 17 LGC2

c

n

Hetero-

geneous

Π∗1 2 1
Unif(0.5, 1)

L̃GC1
c

n

Π∗2 18 17 L̃GC2
c

n

The loss-given-credit-event, LGCcn, given in Table 5.15 are set to be

LGC1
n = [0.9, 0]T ;

LGC2
n = [0.9,LGC∗] T , LGC∗ = [0.8 : −0.05 : 0];

L̃GC1,2
c

n =



Unif(0.9,1), if c = 0

Unif

(
0, L̃GC1,2

c−1

n

)
, if 0 < c < C − 2

0, if c = C − 1

.

The unconditional credit migrating probabilities are listed in Table 5.16 for C = 2 and in Table 5.17 for
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C = 18.

Table 5.16: Credit migration matrix for C = 2

c 1 0

1 0.9073 0.0927

0 0 1
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Table 5.17: Credit migration matrix for C = 18

c 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

17 0.9062 0.0502 0.0186 0.0050 0.0049 0.0021 0.0009 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0119

16 0.0324 0.7989 0.0841 0.0517 0.0137 0.0036 0.0015 0.0011 0.0002 0.0001 0.0003 0.0001 0.0004 0.0000 0.0000 0.0000 0.0000 0.0119

15 0.0146 0.0458 0.8073 0.0795 0.0287 0.0077 0.0027 0.0007 0.0002 0.0001 0.0000 0.0001 0.0003 0.0001 0.0003 0.0000 0.0000 0.0119

14 0.0025 0.0080 0.0367 0.8225 0.0778 0.0277 0.0068 0.0010 0.0009 0.0008 0.0001 0.0004 0.0001 0.0007 0.0001 0.0000 0.0000 0.0139

13 0.0008 0.0013 0.0067 0.0505 0.8157 0.0716 0.0250 0.0062 0.0018 0.0007 0.0014 0.0014 0.0005 0.0004 0.0001 0.0000 0.0000 0.0159

12 0.0004 0.0005 0.0024 0.0101 0.0503 0.8014 0.0751 0.0286 0.0077 0.0026 0.0007 0.0008 0.0008 0.0005 0.0001 0.0000 0.0003 0.0177

11 0.0004 0.0007 0.0012 0.0024 0.0154 0.0733 0.7589 0.0679 0.0364 0.0125 0.0036 0.0020 0.0015 0.0015 0.0005 0.0001 0.0003 0.0214

10 0.0004 0.0007 0.0011 0.0012 0.0031 0.0233 0.0692 0.7456 0.0816 0.0293 0.0088 0.0028 0.0033 0.0026 0.0013 0.0005 0.0002 0.0250

9 0.0001 0.0010 0.0008 0.0011 0.0022 0.0089 0.0281 0.0633 0.7446 0.0773 0.0233 0.0064 0.0068 0.0033 0.0027 0.0010 0.0005 0.0286

8 0.0004 0.0001 0.0004 0.0005 0.0022 0.0035 0.0070 0.0314 0.0871 0.6977 0.0675 0.0314 0.0175 0.0077 0.0036 0.0011 0.0015 0.0394

7 0.0003 0.0001 0.0007 0.0004 0.0014 0.0011 0.0033 0.0075 0.0285 0.0850 0.6877 0.0543 0.0467 0.0141 0.0108 0.0054 0.0028 0.0499

6 0.0000 0.0000 0.0004 0.0001 0.0004 0.0008 0.0010 0.0035 0.0068 0.0253 0.0810 0.6625 0.0810 0.0289 0.0304 0.0119 0.0057 0.0603

5 0.0000 0.0000 0.0001 0.0003 0.0004 0.0013 0.0011 0.0016 0.0028 0.0059 0.0230 0.0583 0.6699 0.0707 0.0511 0.0223 0.0073 0.0839

4 0.0000 0.0000 0.0003 0.0000 0.0004 0.0007 0.0010 0.0011 0.0013 0.0021 0.0054 0.0221 0.0601 0.6724 0.0650 0.0456 0.0155 0.1070

3 0.0000 0.0000 0.0003 0.0000 0.0006 0.0001 0.0004 0.0009 0.0012 0.0011 0.0026 0.0105 0.0245 0.0545 0.6320 0.1001 0.0417 0.1295

2 0.0000 0.0003 0.0003 0.0000 0.0000 0.0001 0.0006 0.0004 0.0014 0.0020 0.0013 0.0032 0.0086 0.0291 0.0466 0.6707 0.0840 0.1514

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0037 0.0051 0.0032 0.0009 0.0045 0.0159 0.0154 0.0321 0.7307 0.1881

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
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For each testing portfolio, we first compute the maximum portfolio loss Lmax by (5.1.6), and set the

minimum portfolio loss to be zero, since initially all obligors are in the highest credit rating state. Then

we construct a discretization grid by (5.1.13) and (5.1.14) with K = 216 = 65536. Notice that K is

chosen to be a power of two for our FFT methods which are based on the Cooley-Tukey radix-2 FFT

algorithm. Based on this discretization scheme, indices of nonzero elements are computed by

dn[c] = bLcn/δc , (5.3.14)

for c = 0, . . . , C−1. The discretization errors associated with(5.3.14) have no impact on our comparisons

of the accuracy of the different methods, since all methods use the same dn. Since the methods tested

here only differ in how they compute the conditional loss probabilities, it is enough to sample once only

for systematic risk factors Z. That is, in our testing, the sample size for the outer simulation is 1, and,

to eliminate the impact of sampling error, all methods share the same sample of systematic risk factors

Z. It should be mentioned that, changing the values of Z does not change the location of the nonzero

elements in the conditional probability vectors; hence different values of Z would not have an impact

on the efficiency of the sparse methods. Conditional on Z = z, the nonzero conditional probabilities

qzn =
[
qzn[0], . . . , qzn[C − 1]

]T are computed by (5.1.1).

For the FCONV, SCONV, TR SCONV, FFFT, SFFT methods, we first compute the portfolio loss

probabilities by

p[k] = P {L = lk} , (5.3.15)

where lk = kδ, for k = 0, . . . ,K − 1, and then we compute the cumulative loss probabilities by

p̂[k]
.
= P {L ≤ lk} =

∑
j≤k

p[j] (5.3.16)

for k = 0, . . . ,K−1. To distinguish the results for different methods, we denote p̂method as the cumulative

loss probabilities vector computed by method method. As mentioned above, we use the FCONV method

as the benchmark, then based on p̂FCONV we compute VaR at the confidence level γ = 95%, 99%, 99.9%

and 99.98% by VaRγ = kγδ, where kγ = min {k : p̂FCONV [k] ≥ γ} . For the TR SFFT and EW TR SFFT

166



methods, we first determine the length, K̄, of truncated vectors pzn by

K̄ = min
{

2t 2t ≥ VaRγ
}

(5.3.17)

and then apply the TR SFFT and EW TR SFFT methods to (5.3.15) and (5.3.16) to compute the

cumulative loss probabilities p̂TR SFFT [k] and p̂EW TR SFFT [k] for k = 0, . . . , K̄ − 1. Notice that, for

the TR SCONV method, we let the threshold for errors in cumulative loss probabilities be Tol = 10−4,

and set ε by (5.1.51). For the EW TR SFFT method, the optimal threshold is applied.

5.3.3.1 Accuracy

To assess the accuracy, we compare p̂method [kγ ] to p̂FCONV [kγ ] by computing the relative difference

δmethodγ =

∣∣∣∣ p̂method [kγ ]− p̂FCONV [kγ ]

p̂FCONV [kγ ]

∣∣∣∣ .
Numerical results are listed in Table 5.18.
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Table 5.18: Relative difference in computing cumulative loss probabilities for the synthetic portfolios

Portfolio γ SCONV TR SCONV FFFT SFFT TR SFFT EW TR SFFT

Π1

95.00% 0.0000E+00 1.4462E-12 6.9944E-15 6.9944E-15 4.6121E-03 1.5212E-10

99.00% 0.0000E+00 6.6760E-10 2.0203E-15 2.0203E-15 4.5668E-03 6.0558E-10

99.50% 0.0000E+00 9.2452E-10 4.0185E-15 4.0185E-15 4.5419E-03 1.0029E-09

99.90% 0.0000E+00 2.2267E-09 2.0005E-15 2.0005E-15 2.5059E-09 8.7274E-11

99.98% 0.0000E+00 3.6096E-09 2.9982E-15 2.9982E-15 2.5038E-09 5.4503E-11

Π2

95.00% 0.0000E+00 5.7029E-10 1.0529E-15 1.0529E-15 4.9932E-04 3.8893E-11

99.00% 0.0000E+00 1.1255E-09 1.0093E-15 1.0093E-15 4.7867E-04 7.1638E-11

99.50% 0.0000E+00 1.4293E-09 1.0042E-15 1.0042E-15 4.7626E-04 8.5115E-11

99.90% 0.0000E+00 2.2645E-09 1.0002E-15 1.0002E-15 4.7434E-04 1.1316E-11

99.98% 0.0000E+00 3.3572E-09 0.0000E+00 0.0000E+00 1.3372E-09 2.0055E-11

Π∗1

95.00% 0.0000E+00 7.8558E-10 2.1038E-15 2.1038E-15 2.1308E-02 1.1229E-09

99.00% 0.0000E+00 2.3471E-09 1.0093E-15 1.0093E-15 3.7618E-11 6.5662E-13

99.50% 0.0000E+00 3.2772E-09 1.0042E-15 1.0042E-15 3.7425E-11 1.4614E-12

99.90% 0.0000E+00 5.9515E-09 1.0002E-15 1.0002E-15 3.7277E-11 5.0555E-13

99.98% 0.0000E+00 9.3155E-09 0.0000E+00 0.0000E+00 3.7248E-11 4.9315E-13

Π∗2

95.00% 0.0000E+00 8.4618E-11 1.0521E-15 1.0521E-15 4.0012E-03 1.5583E-10

99.00% 0.0000E+00 2.2055E-10 0.0000E+00 0.0000E+00 4.0256E-03 3.1577E-10

99.50% 0.0000E+00 3.5677E-10 0.0000E+00 0.0000E+00 4.0054E-03 1.0353E-09

99.90% 0.0000E+00 9.5019E-10 1.0002E-15 1.0002E-15 9.6766E-10 1.8468E-12

99.98% 0.0000E+00 1.9823E-09 0.0000E+00 0.0000E+00 9.6689E-10 1.7900E-13

If we consider the cumulative loss probabilities computed by the FCONV method to be exact, the

following observations can be made. First, the SCONV method generates exactly the same cumulative

loss probabilities as the FCONV method. The relative errors for the TR SCONV method are about

10−9 − 10−12, which are much smaller than the specified threshold of TOL = 10−4. For the FFT

methods, the relative errors for the FFFT method are the same as those for the SFFT method: both

are of order 10−15. The TR SFFT method suffers from significant aliasing errors, which may be as large

as 10−2. On the other hand, thanks to the effective aliasing reduction, the EW TR SFFT method has

errors of 10−9−10−13, which is much better than the TR SFFT method. Comparing the TR SCONV

method and the EW TR SFFT method, for the selected parameters, both methods provide comparable
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accuracy: the TR SCONV method is slightly more accurate when γ is small, while the EW TR SFFT

method is more accurate when γ is very close to 1.

5.3.3.2 Efficiency

To compare the efficiency, we record the CPU time in seconds required by the different methods to

compute the loss probabilities p[k], and compute the speedup of the different methods over the benchmark

FCONV method. The results are listed in Table 5.19, Table 5.20, Figure 5.37 and Figure 5.38.

Table 5.19: CPU time to compute the cumulative loss probabilities for the synthetic portfolios

Portfolio γ FCONV SCONV TR SCONV FFFT SFFT TR SFFT EW TR SFFT

Π1

95.00%

1.1480E+01 1.0573E-02 2.4508E-03 8.3550E+00 1.2472E+00

7.2478E-02 7.5574E-02

99.00% 7.3006E-02 7.5970E-02

99.50% 1.4293E-01 1.4715E-01

99.90% 1.4505E-01 1.4601E-01

99.98% 1.4330E-01 1.4693E-01

Π2

95.00%

2.3397E+01 6.0346E+00 1.2276E-01 8.3001E+00 2.7862E+00

4.6687E-02 4.8128E-02

99.00% 4.6568E-02 4.8182E-02

99.50% 4.6691E-02 4.8197E-02

99.90% 4.6590E-02 4.8510E-02

99.98% 8.6040E-02 8.7429E-02

Π∗1

95.00%

1.9534E+01 6.7058E-01 6.9470E-02 8.3285E+00 1.0317E+00

6.1093E-02 6.3298E-02

99.00% 1.1981E-01 1.2355E-01

99.50% 1.2119E-01 1.2319E-01

99.90% 1.2081E-01 1.2320E-01

99.98% 1.2041E-01 1.2385E-01

Π∗2

95.00%

2.2968E+01 6.2474E+00 1.5334E-01 8.6662E+00 2.7181E+00

4.6147E-02 4.8056E-02

99.00% 4.6382E-02 4.9104E-02

99.50% 4.6001E-02 4.7835E-02

99.90% 8.2625E-02 8.3669E-02

99.98% 8.2738E-02 8.3888E-02
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Table 5.20: Speedup to compute the cumulative loss probabilities for the synthetic portfolios

Portfolio γ SCONV TR SCONV FFFT SFFT TR SFFT EW TR SFFT

Π1

95.00%

1.0858E+03 4.6841E+03 1.3740E+00 9.2042E+00

1.5839E+02 1.5190E+02

99.00% 1.5724E+02 1.5111E+02

99.50% 8.0318E+01 7.8011E+01

99.90% 7.9143E+01 7.8622E+01

99.98% 8.0110E+01 7.8131E+01

Π2

95.00%

3.8772E+00 1.9060E+02 2.8189E+00 8.3974E+00

5.0115E+02 4.8614E+02

99.00% 5.0243E+02 4.8560E+02

99.50% 5.0111E+02 4.8545E+02

99.90% 5.0220E+02 4.8232E+02

99.98% 2.7194E+02 2.6761E+02

Π∗1

95.00%

2.9129E+01 2.8118E+02 2.3454E+00 1.8934E+01

3.1974E+02 3.0860E+02

99.00% 1.6303E+02 1.5811E+02

99.50% 1.6118E+02 1.5856E+02

99.90% 1.6169E+02 1.5855E+02

99.98% 1.6223E+02 1.5772E+02

Π∗2

95.00%

3.6765E+00 1.4979E+02 2.6503E+00 8.4501E+00

4.9772E+02 4.7795E+02

99.00% 4.9519E+02 4.6774E+02

99.50% 4.9930E+02 4.8016E+02

99.90% 2.7798E+02 2.7451E+02

99.98% 2.7760E+02 2.7380E+02

170



Figure 5.37: Comparison of the CPU time for the synthetic portfolios
upper: linear scale; lower: log scale
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Figure 5.38: Comparison of the speedups for the synthetic portfolios
upper: linear scale; lower: log scale
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We make the following observations based on the numerical results.

Speedup of the sparse methods Figure 5.38 and Table 5.20 show us that

• In all testing cases tested, the sparse methods (SCONV and SFFT method) are more efficient

than the corresponding full exact methods (FCONV and FFFT). In addition, the truncated sparse

methods (TR SCONV and (EW) TR SFFT ) are faster than the corresponding sparse methods.

• The speedups for the TR SFFT and EW TR SFFT methods are very close in the cases tested,

which indicates that the additional computational cost incurred by EW TR SFFT is negligible.

• Compared with the SFFT method, the SCONV method is more efficient when the vector of condi-

tional probabilities is very sparse (C = 2), but slightly less efficient when the vector is less sparse

(C = 18). Similar observation holds for the comparison of the TR SCONV method and the (EW)

TR SFFT method for tested portfolios.

• For a fixed portfolio, as the confidence level γ increases, the speedup of the (EW) TR SFFT method

behaves like a decreasing step function. For example, for portfolio Π1, the speedup of (EW) TR

SFFT method for γ = 99% is almost the same as that for γ = 95%. However, the speedup

decreases as γ increases to 99.5%, but thereafter remains the same level for γ = 99.9% and 99.98%.

We believe this is due to the length, K̄, of the truncated vectors of conditional probabilities. A

larger confidence level α leads to a larger VaRγ = kγδ, and consequently a larger kγ . Since K̄ is

determined by (5.3.17), it is an increasing step function of γ. Indeed, as shown in Table 5.21, for

portfolio Π1, K̄ = 212 = 4096 for γ = 95% and 99%, and K̄ = 213 = 8192 for γ = 99.5%, 99.9%

and 99.98%. The same observation can be made for other portfolios. These observations show

that the efficiency of the (EW) TR SFFT methods depends mainly on K̄.17

17This conclusion also applies to the SFFT method, although we did not examine the impact of K on the SFFT method.
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Table 5.21: kγ and K̄ for (EW) TR SFFT method

γ
Π1 Π2 Π∗1 Π∗2

kγ K̄ kγ K̄ kγ K̄ kγ K̄

95.00% 3536 212 631 210 3775 212 781 210

99.00% 4046 212 782 210 4319 213 941 210

99.50% 4191 213 842 210 4525 213 1003 210

99.90% 4584 213 968 210 4959 213 1137 211

99.98% 4846 213 1084 211 5351 213 1261 211

When VaRγ is very large, K̄, could be very close toK. For example, for some portfolios, percentage

VaRγ could be larger than 0.5, then K̄ = K, and no truncation could be made to improve the

SFFT method. Therefore, this could be a major factor which discourages people to rank (EW)

TR SFFT method over the TR SCONV method.

Impact of sparsity. Based on Table 5.19, for each method, we compute the ratio of the CPU time

required for C = 18 and for the similar portfolio with C = 2. The results are shown in Table 5.22.

Table 5.22: Ratio of CPU time for similar portfolios with C = 18 and C = 2

Portfolio γ FCONV SCONV TR SCONV FFFT SFFT TR SFFT EW TR SFFT

Homo-

geneous

95.00%

2.04 570.78 50.09 0.99 2.23

0.64 0.64

99.00% 0.64 0.63

99.50% 0.33 0.33

99.90% 0.32 0.33

99.98% 0.60 0.60

Hetero-

geneous

95.00%

1.18 9.32 2.21 1.04 2.63

0.76 0.76

99.00% 0.39 0.40

99.50% 0.38 0.39

99.90% 0.68 0.68

99.98% 0.69 0.68

Based on the results in Table 5.22, we make the following observations.

• For the convolution methods, if the portfolios are homogeneous, it takes longer to compute the

cumulative loss probabilities for C = 18 than for C = 2. Moreover, the impact of sparsity on the
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SCONV method and the TR SCONV method is much greater than on the FCONV method. This

is as expected since larger C makes the vectors of conditional probabilities less sparse, which makes

sparse convolution less effective. For heterogeneous portfolios, a similar observation holds, except

the impact of sparsity is less significant in this case, because when a portfolio is inhomogeneous,

nonzero elements are not aligned, whence the number of nonzero elements in p̃zn increases more

quickly than in the homogeneous case. The difference in the speed of increase of the number of

nonzero elements in p̃zn is more significant for C = 2 (we will see this point shortly in connection

with Table 5.23), since, when C = 18, the vectors of conditional probabilities are less sparse, so

the number of nonzero elements in p̃zn increases rapidly in any case.

• Sparsity has almost no impact on the FFFT method. The SFFT method runs about twice as

fast for C = 2 compared to C = 18 for both the homogeneous and inhomogeneous portfolios.

For the TR SFFT and EW TR SFFT methods, if we exclude the cases where K̄ is different for

different values of C (the case where the ratio of CPU times are in bold in Table 5.22), then the

ratios of CPU time are around 0.60-0.64 for homogeneous portfolios and around 0.68-0.76 for the

inhomogeneous portfolios, indicating that the (EW) TR FFT method runs faster for C = 18 than

for C = 2. The reason for this is that K̄ is smaller for C = 18 than for C = 2, as can be seen from

Table 5.21.

• For the FFT methods, the impact of sparsity is less significant than for the convolution methods,

which follows from the observation that the ratios for the FFT methods are closer to 1 than are

the ratios for the convolution methods.

Impact of heterogeneity. Based on Table 5.19, for each method and each of C = 2 and C = 18, we

compute the ratio of the CPU time required for inhomogeneous portfolios over the homogenous portfolios

for the same value of C. The results are shown in Table 5.23.
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Table 5.23: Ratio of CPU time: heterogeneous over homogenous

C γ FCONV SCONV TR SCONV FFFT SFFT TR SFFT EW TR SFFT

2

95.00%

1.70 63.43 28.35 1.00 0.83

0.84 0.84

99.00% 1.64 1.63

99.50% 0.85 0.84

99.90% 0.83 0.84

99.98% 0.84 0.84

18

95.00%

0.98 1.04 1.25 1.04 0.98

0.99 1.00

99.00% 1.00 1.02

99.50% 0.99 0.99

99.90% 1.77 1.72

99.98% 0.96 0.96

Based on the results in Table 5.23, we make the following observations:

• Except for the SCONV and TR SCONV methods in cases where the vectors of conditional proba-

bilities are very sparse (C = 2), the impact of heterogeneity is not very significant, since the ratios

of CPU time are within the range [0.83, 1.77].

• For convolution methods, when C = 2, it takes longer to compute the cumulative loss probabilities

for inhomogeneous portfolios than for homogeneous portfolios, and the impact of heterogeneity

on the SCONV and TR SCONV methods is much more significant than on the FCONV method.

When C = 18, the impact of heterogeneity is not significant. For the SCONV and TR SCONV

methods, notice that (5.1.27) shows that the CPU time depends on both the number of nonzero

elements, C, and the positions of the nonzero elements. When C = 2, the vectors of conditional

probabilities are very sparse. For homogeneous portfolios, nonzero elements are aligned for all

obligors. This is the best case, as explained in Subsubsection 5.1.2.3, that generates the minimum

number of new nonzero elements after each convolution operation. However, for inhomogeneous

portfolios, the nonzero elements are not aligned, hence the number of nonzero elements increases

more quickly. Therefore, it takes much more CPU time for the SCONV and TR SCONV methods

to compute the cumulative loss probabilities for inhomogeneous portfolios. However, when C = 18,

the vectors of conditional probabilities are no longer very sparse, and even for the homogeneous

portfolios, vectors of conditional probabilities are not perfectly equally spaced, which leads to a

rapid increase in the number of nonzero elements. Therefore, the impact of the difference in the
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positions of the nonzero elements between homogeneous portfolios and inhomogeneous portfolios

is much less significant, hence the impact of heterogeneity on the CPU time becomes very small.

• For FFT methods, the impact of heterogeneity is not very significant. Heterogeneity has almost no

impact on the FFFT method. For sparse FFT methods (SFFT, TR SFFT and EW TR SFFT ), if

we exclude cases where K̄ is different for the corresponding homogeneous portfolio and inhomoge-

neous portfolio (the case where the ratio of CPU times are in bold in Table 5.23), then the ratios

of CPU times are quite stable around 0.84 for C = 2, indicating that the sparse FFT methods

run a little faster for inhomogeneous portfolios. The reason for this is that the bit reversals of

the conditional probabilities vectors are closer to the best case we discussed in Subsection 5.2.3.4.

For C = 18, the ratios of CPU times are quite stable around 1.00, implying that heterogeneity

has almost no impact on sparse FFT methods as well. The reason for this is similar to that

for convolution methods. That is, when the conditional probabilities vectors are not very sparse,

the impact of the difference in positions of nonzero elements between homogeneous portfolios and

inhomogeneous portfolios is much less significant.

• Compared with sparse convolution methods, the efficiency of the sparse FFT methods is much less

sensitive to heterogeneity of portfolios when the conditional probabilities vectors are very sparse

(C = 2). When C = 18, the impact of heterogeneity is very limited for both sparse convolution

methods and sparse FFT methods.

5.3.4 Comparison: MC and Exact Methods

In this subsection, we compare some sparse convolution methods to the MC methods for some synthetic

portfolios.

We divide our testing cases into four groups depending on the homogeneity and the size of rating

classes. Within each group, we vary the size of portfolios to check the impact of portfolio size on methods

tested. For all portfolios, all obligors are in the highest rating class. In order to avoid discretization

errors, the loss-given-credit-event, LGCcn, and the EAD, EADn, are specified such that each of Lcn is on

the discretization grid of loss with length of K = 216 = 65536 constructed by (5.1.13) and (5.1.14). The

following table summarizes the portfolios used in our tests.
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Table 5.24: Testing portfolios for exact methods against MC method

Group Homogeneity C c(n) N EADn LGCcn βn

1
Homogeneous

2 20 2t, t = 2, . . . , 12
1

c
20

0.5
2 17 24 2t, t = 2, . . . , 10 c

24

3
Heterogeneous

2 20 2t, t = 2, . . . , 12 ẼAD3
n

c
20

Unif(−1, 1)
4 17 24 2t, t = 2, . . . , 10 ẼAD4

n
c
20

The credit migration matrices used in tests in this subsection are the migration matrix in Table 5.16

for C = 2, and the submatrix of the migration matrix in Table 5.17 for C = 17 .

For Groups 3 and 4, we would like to have the histogram of the EAD similar to the PDF of the

exponential distribution, whence the portfolio has more obligors with smaller EAD and less obligors

with larger EAD. Meanwhile, to make each Lcn fall on the discretization grid, we set ẼAD3,4
n ∈ N+,∑N−1

n=0 ẼAD3
n = 216, and

∑N−1
n=0 ẼAD4

n = 212. Specifically, EAD’s in Group 3 and 4 are set as follows:

Step 1 Generate Xn ∼ exp(10), n = 0, . . . , N − 1;

Step 2 For n = 0, . . . , N − 1, calculate

Yn =


Xn∑N−1
n=0 Xn

× 216, Group 3

Xn∑N−1
n=0 Xn

× 212, Group 4
;

Step 3 For n = 1, . . . , N − 1, calculate

ẼAD3,4
n =


dYne ; if Yn < medium(Y )

bYnc ; if Yn ≥ medium(Y )

,

where medium(Y ) is the medium of a sample of Y ;

Step 4 Calculate

ẼAD3
0 = 216 −

N−1∑
n=1

ẼAD3
n,

ẼAD4
0 = 212 −

N−1∑
n=1

ẼAD4
n;

Step 5 If ẼAD3,4
0 > 0, stop, else repeat Step 1 to 5.

As an illustration, Figure 5.39 shows the histogram of EADs for the portfolio with size 212 in Group

177



3 and for the portfolio with size 210 in Group 4.

Figure 5.39: Histogram of EADs

(a) Histogram of EADs for the portfolio with size 212 in Group 3

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

EAD

# 
of

 o
bl

ig
or

s

(b) Histogram of EADs for the portfolio with size 210 in Group 4

0 5 10 15 20 25 30
0

100

200

300

400

500

EAD

# 
of

 o
bl

ig
or

s

For each constructed portfolio, we compute the cumulative loss probabilities

p̂method[k]
.
= P {L ≤ lk}

for k = 0, . . . ,K−1 using the SCONV, TR SCONV and MC method, respectively, then we can compute

VaR at the confidence levels γ = 95%, 99%, 99.9% and 99.98% by VaRmethodγ = kmethodγ δ, where

kmethodγ = min {k : p̂method [k] ≥ γ} . Also, using the SCONV method as the benchmark, we compute the

loss probability for the TR SCONV and MC methods, p̂method
[
kSCONVγ

]
, at the quantile VaRSCONVγ .

Notice that, for the MC method, we vary the sample size from 22 = 4 to 214 = 16384, and compare

the results for each sample size. For the TR SCONV method, we let the threshold for errors in the

cumulative loss probabilities be Tol = 10−4 and set ε by (5.1.51).
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5.3.4.1 Accuracy

To assess the accuracy, using the SCONV method as the benchmark, we first compare the loss probability

at VaR computed by the TR SCONV and MC methods by computing the absolute difference

δProb,methodγ =
∣∣p̂method [kSCONVγ

]
− p̂SCONV

[
kSCONVγ

]∣∣ .
The numerical results are presented in Figures 5.40 - 5.47. We then compare VaR computed by the TR

SCONV and MC methods by computing the absolute difference

δV aR,methodγ =
∣∣∣VaRmethodγ −VaRSCONVγ

∣∣∣ .
The numerical results are presented in Figures 5.48 - 5.55.

From the numerical results, we make following observations:

• Figures 5.40 - 5.47 show that, for all tested portfolios, δProb,TR SCONV
γ is much smaller than

δProb,MC
γ and the predetermined the error bound Tol = 10−4 , which shows that the TR SCONV

method generates much more accurate loss probabilities than the MC method. Also note that, due

to the random nature of the MCmethod, δProb,MC
γ fluctuates randomly (but with a downward trend

with the sample size), while the δProb,TR SCONV
γ is deterministic and constant, which indicates

that the TR SCONV method enjoys a more stable error control in loss probabilities than the MC

method.

• Figures 5.40 - 5.47 show that, for all tested portfolios, δProb,MC
γ tends to decrease as the sample

size increases. That is, the accuracy in the loss probabilities computed by the MC method tends to

improve as the sample size increases. The reason for this is that the variance of the MC estimates

deceases as the sample size increases.

• Figures 5.48 - 5.55 show that δV aR,TR SCONV
γ is zero for most of the testing portfolios, while

δV aR,MC
γ is generally nonzero, especially for small sample sizes. Even in the case where δV aR,TR SCONV

γ

is nonzero, it is usually smaller than δV aR,MC
γ . This indicates that the TR SCONV method is

more accurate at computing VaR than the MC method. The portfolio loss distribution in Merton’s

model is discontinuous and piecewise constant, hence a small fluctuation in the confidence level

might have no impact on VaR. Therefore, even though the errors in the loss probability in both

the MC and TR SCONV methods are not zero, small errors in the loss probability might lead to

zero error in VaR.
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Figure 5.40: Comparison of the errors in the loss probability at VaR computed by
the TR SCONV and MC methods

Portfolios in Group 1

(a) γ = 95%

Sample size (V)
22 23 24 25 26 27 28 29 210 211 212 213 214

E
rr

or
 in

 p
ro

ba
bi

lit
y

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

(b) γ = 99%

Sample size (V)
22 23 24 25 26 27 28 29 210 211 212 213 214

E
rr

or
 in

 p
ro

ba
bi

lit
y

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

180



Figure 5.41: Comparison of the errors in the loss probability at VaR computed by
the TR SCONV and MC methods
Portfolios in Group 1 (Cont’d)
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Figure 5.42: Comparison of the errors in the loss probability at VaR computed by
the TR SCONV and MC methods

Portfolios in Group 2
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Figure 5.43: Comparison of the errors in the loss probability at VaR computed by
the TR SCONV and MC methods
Portfolios in Group 2 (Cont’d)
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Figure 5.44: Comparison of the errors in the loss probability at VaR computed by
the TR SCONV and MC methods

Portfolios in Group 3
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Figure 5.45: Comparison of the errors in the loss probability at VaR computed by
the TR SCONV and MC methods
Portfolios in Group 3 (Cont’d)
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Figure 5.46: Comparison of the errors in the loss probability at VaR computed by
the TR SCONV and MC methods

Portfolios in Group 4
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Figure 5.47: Comparison of the errors in the loss probability at VaR computed by
the TR SCONV and MC methods
Portfolios in Group 4 (Cont’d)
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Figure 5.48: Comparison of the errors in VaR computed by the TR SCONV and MC methods
Portfolios in Group 1
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Figure 5.49: Comparison of the errors in VaR computed by the TR SCONV and MC methods
Portfolios in Group 1 (Cont’d)
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Figure 5.50: Comparison of the errors in VaR computed by the TR SCONV and MC methods
Portfolios in Group 2
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Figure 5.51: Comparison of the errors in VaR computed by the TR SCONV and MC methods
Portfolios in Group 2 (Cont’d)
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Figure 5.52: Comparison of the errors in VaR computed by the TR SCONV and MC methods
Portfolios in Group 3
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Figure 5.53: Comparison of the errors in VaR computed by the TR SCONV and MC methods
Portfolios in Group 3 (Cont’d)
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Figure 5.54: Comparison of the errors in VaR computed by the TR SCONV and MC methods
Portfolios in Group 4
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Figure 5.55: Comparison of the errors in VaR computed by the TR SCONV and MC methods
Portfolios in Group 4 (Cont’d)
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5.3.4.2 Efficiency

To compare the efficiency, we record the CPU time in seconds required by the MC, SCONV and TR

SCONV methods to compute the loss distribution. The results are shown in Figures 5.56 - 5.57.

Figure 5.56: Comparison of the CPU time to compute the loss distribution by SCONV, TR SCONV
and MC methods
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Figure 5.57: Comparison of the CPU time to compute the loss distribution by SCONV, TR SCONV
and MC methods (Cont’d)
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We make the following observations based on the testing results shown in Figures 5.56 - 5.57.

• For portfolios in Group 1, the CPU time of TR SCONV method is comparable to that of the

MC method with the sample size of 25, and for portfolios in Group 2, the CPU time of the TR
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SCONV method is comparable to that of the MC method with the sample size of 27, except for

the portfolio with 210 obligors where the CPU time of the TR SCONV method jumps to a level

comparable to that of the MC method with the sample size of 211. In contrast to the CPU time of

the TR SCONV method for homogeneous portfolios, the CPU time of the TR SCONV method for

inhomogeneous portfolios increases with the the portfolio size at a faster speed when the portfolio

size is small, but at a slower speed when portfolio size is large. Even though the TR SCONV

method is slower for inhomogeneous portfolios than homogeneous ones, it is still faster than the

MC method with the largest sample size of 214 in almost all cases, with the only one exception

being for the portfolio with 24 obligors in Group 4. For example, for the portfolio with 212 obligors

in Group 3, the CPU time of the TR SCONV method is between that of the MC method with

the sample size of 29 and 210, and for the portfolio with 210 obligors in Group 4, the CPU time of

the TR SCONV method is between that of the MC method with the sample size of 211 and 212.

Therefore, together with our comparison on the accuracy in the last subsubsection, it is clear that

TR SCONV method is more efficient and more accurate than the MC method with a reasonably

large sample size.

• The CPU time of the MC method is similar for portfolios in different groups, which shows that the

MC method is not sensitive to the sparsity and heterogeneity of the portfolio. However, testing

results in Figures 5.56 - 5.57. re-confirm the conclusion reached in the last subsubsection on the

impact of the sparsity and heterogeneity of the portfolio on the efficiency of the SCONV and TR

SCONV methods: they are sensitive to the sparsity and heterogeneity of the portfolio, and as the

portfolio becomes less sparse and less homogeneous, the SCONV and TR SCONV methods run

slower.

• Regardless of size, sparsity and heterogeneity of the portfolio, the TR SCONV method is con-

sistently faster than the SCONV method, which shows that dropping terms involving extremely

small probabilities is very effective in reducing the computing time of the SCONV method.
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Chapter 6

Hybrid Methods

One particular type of inhomogeneous, coarse-grained portfolio that often arises in practice is what we

call a “lumpy” portfolio, which consists of a large, fairly homogeneous, fine-grained sub-portfolio and

a small inhomogeneous sub-portfolio with large exposures to a few obligors. For lumpy portfolios, the

methods discussed in the previous two chapters have different characteristics of efficiency and accuracy.

Exact methods are very accurate, but relatively slow, even though the efficiency can be improved sub-

stantially by exploiting the sparsity. Asymptotic approximations are very fast, but their loss probabilities

are close to the true loss probabilities only when the portfolio is fairly fine-grained and close to being

homogeneous. Hence the accuracy of asymptotic approximations is problematic for lumpy portfolios. In

this section, we develop a hybrid approximation for such lumpy portfolios. This hybrid approximation

combines an asymptotic approximation (CLT or LLN) and an exact method or MC approximation. Our

goal for the hybrid method is to be more accurate than either the LLN or CLT approximation for lumpy

portfolios, but much less computationally expensive than an exact method or MC simulation.

For a given lumpy portfolio Π, we first divide it into two sub-portfolios Πhomo and Πlmp. The sub-

portfolio Πhomo is fine-grained and close to homogeneous, while the sub-portfolio Πlmp consists of the

remaining few obligors which are highly heterogeneous and coarse-grained. We relabel the obligors in

Π so that obligors 0, 1, . . ., Nhomo − 1 are in Πhomo, and obligors Nhomo, Nhomo + 1, . . ., N − 1 are in

Πlmp, and denote the number of obligors in Πlmp by Nlmp = N − Nhomo. Therefore, conditional on the

systematic risk factors Z = Z(u), the loss of the portfolio Π can be written as

L(N)(z,E) = Lhomo(z,Ehomo) + Llmp(z,E lmp),

where Lhomo(z,Ehomo) and Llmp(z,E lmp) are the conditional losses of the sub-portfolios Πhomo and Πlmp,
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respectively. Consequently, given loss level lk on a discrete grid, the conditional loss probability can be

computed as

P
{
L(N)(z,E) < lk

}
= P {Lhomo(z,E) + Llmp(z,E) ≤ lk}

= E [P {Lhomo(z,E) + Llmp(z,E) ≤ lk|Llmp(z,E)}] . (6.0.1)

Since Πhomo is fine-grained and close to homogeneous, an asymptotic approximation can be applied to

estimate the conditional loss probability very fast with good accuracy. Since Πlmp is small, but highly

coarse-grained and heterogeneous, we can apply MC simulation or one of our exact methods to calculate

its conditional loss probability. Notice that conditional on Z = z, Lhomo(z,Ehomo) and Llmp(z,E lmp) are

independent, since elements in Ehomo and elements in E lmp are mutually independent. Therefore, we can

easily obtain the conditional loss probability for the whole portfolio by computing the conditional loss

probability for each sub-portfolio. Depending on the method applied to the lumpy sub-portfolio, two

types of hybrid method can be developed.

6.1 Hybrid Method: MC+CLT/LLN

To compute (6.0.1), we can apply MC simulation to generate i.i.d. samples of Llmp(z,E), then calcu-

late the loss probability conditional on each of these samples, and use the sample mean to approxi-

mate the expectation. To this end, we first sample from the multivariate standard normal distribution

N
(
0, INlmp×Nlmp

)
to obtain samples of the individual risk factors E(v)

lmp, v = 1, . . . , V , and then generate

V loss scenarios l(1)(z), l(2)(z), . . ., l(V )(z) by

l
(v)
lmp(z) =

N−1∑
n=Nhomo

ωn

C−1∑
c=0

LGCcnI{H
c−1
c(n)
−βTnz√

1−βTnβn
≤E(v)

n <
Hc
c(n)
−βTnz√

1−βTnβn

}
 . (6.1.1)

From (6.0.1) and (6.1.1), we now have

P
{
L(N)(z,E) ≤ l

}
≈ 1

V

V∑
v=1

P
{
Lhomo(z,Ehomo) + Llmp(z,E lmp) ≤ lk|Llmp(z,E lmp) = l

(v)
lmp(z)

}
=

1

V

V∑
v=1

P
{
Lhomo(z,Ehomo) ≤ lk − l(v)

lmp(z)
}
. (6.1.2)
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Notice that, for the second equation, we used the fact that conditional on Z = z, Lhomo(z,Ehomo) and

Llmp(z,E lmp) are independent.

On the other hand, since Πhomo is fine-grained and close to homogeneous, an asymptotic approxima-

tion can be applied to estimate the portfolio loss. If we use the CLT approximation, then

Lhomo(z,Ehomo) ≈ σhomo(z)X + µhomo(z), (6.1.3)

where X ∼ N(0, 1), σ2
homo(z) = V [Lhomo(z,Ehomo)] and µhomo(z) = E [Lhomo(z,Ehomo)]. Substituting

(6.1.3) into (6.1.2), we have

P
{
L(N)(z,E) ≤ l

}
≈ 1

V

V∑
v=1

P
{
σhomo(z)X + µhomo(z) ≤ lk − l(v)

lmp(z)
}

=
1

V

V∑
v=1

Φ

(
lk − l(v)(z)− µhomo(z)

σhomo(z)

)
. (6.1.4)

If the LLN approximation is applied instead of the CLT approximation, then Lhomo(z,Ehomo) ≈

µhomo(z), and

P
{
L(N)(z,E) ≤ lk

}
≈ 1

V

V∑
v=1

I{
µhomo(z)≤lk−l(v)

lmp (z)
}
.

(6.1.5)

To summarize, on the discretized gird, the portfolio loss probability is calculated by the MC+CLT/LLN

method as follows

P {L ≤ lk} =


1
UV

U∑
u=1

V∑
v=1

Φ

(
lk−lm(u,v)−µ(u)

homo

σ
(u)
homo

)
, MC+CLT,

1
UV

U∑
u=1

V∑
v=1

I{
µ

(u)
homo≤lk−lm(u,v)

}
,

MC+LLN,
(6.1.6)

where m(u,v) = l
(u,v)
lmp /δ , µ(u)

homo , µhomo

(
Z(u)

)
, σ(u)

homo , σhomo

(
Z(u)

)
, and Z(u) is the uth realization

of the systematic risk factor in the MC simulation.
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6.2 Hybrid Method: EXACT+CLT/LLN

We can also apply one of the exact methods to calculate the conditional probability mass function of

the loss of the lumpy sub-portfolio Πlmp:

P {Llmp(z,E lmp) = lm} , pmlmp(z), (6.2.1)

for m ∈ d̃lmp, where d̃lmp ,
{
m : pmlmp(z) 6= 0

}
is the set which includes indices of nonzero elements in

the loss probability vector as shown in Algorithm 5.3. Therefore, from (6.0.1) and (6.2.1) we have

P
{
L(N)(z,E) ≤ lk

}
=

∑
m∈d̃lmp

P {Lhomo(z,Ehomo) + Llmp(z,E lmp) ≤ lk|Llmp(z,E lmp) = lm} pmlmp(z)

=
∑

m∈d̃lmp

P {Lhomo(z,Ehomo) ≤ lk − lm} pmlmp(z),

Notice that, as in MC+CLT/LLN method, we used the fact that conditional on Z = z, Lhomo(z,Ehomo)

and Llmp(z,E lmp) are independent to obtain the second equation. Applying CLT/LLN to the homoge-

neous sub-portfolio, we have

P {L ≤ lk} =


1
U

U∑
u=1

∑
m∈d̃lmp

Φ

(
lk−lm−µ(u)

homo

σ
(u)
homo

)
p

(m,u)
lmp , EXACT+CLT,

1
U

U∑
u=1

∑
m∈d̃lmp

I{
µ

(u)
homo≤lk−lm

}p(m,u)
lmp , EXACT+LLN,

(6.2.2)

where p(m,u)
lmp , pmlmp

(
Z(u)

)
and Z(u) is the uth realization of the systematic risk factor in the MC

simulation.

Among the exact methods developed in the previous chapter, we believe the best choice of the exact

method to apply to the lumpy sub-portfolio is the truncated sparse convolution method. Compared with

the sparse convolution method, it provides significant improvement in efficiency at a cost of a user con-

trolled loss of accuracy. Compared with the truncated sparse FFT method with exponential windowing,

the truncated sparse convolution method only introduces truncation errors caused by dropping products

of extremely small probabilities, while the truncated sparse FFT method with exponential windowing

suffers from the two types of errors: (1) conditional probabilities, pmlmp(z), m > K̄, are ignored, where K̄

is the length of the truncated version of the conditional loss probability vector of the lumpy sub-portfolio;

(2) aliasing errors are introduced in the computation of pmlmp(z), m ≤ K̄. An additional complication

associated with using the truncated sparse FFT method is that, it is not easy to determine K̄1 and the
1This is not a problem if we apply the (truncated) sparse FFT method with exponential windowing to calculate VaR of
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optimal τ chosen to compute the truncated conditional loss probability vector.2

6.3 Implementation of the Hybrid Methods

In this section, we discuss how to implement the hybrid methods to calculate the portfolio loss distribu-

tion and VaR based on (6.1.6) and (6.2.2).

6.3.1 Implementation of the Hybrid Methods to Compute the Portfolio Loss

Distribution

6.3.1.1 Implementation Details

Several factors should be considered carefully when implementing the hybrid methods to compute the

portfolio loss distribution efficiently.

First of all, it is not efficient to directly implement (6.1.6) for the MC+LLN method or (6.2.2) for the

EXACT+LLN method. Given lk− l(u,v)
lmp and µ(u)

homo, a direct implementation of (6.1.6) for the MC+LLN

method costs UVK evaluations of the indicator function and the summation of UVK terms. Similarly,

(6.2.2) for the EXACT+LLN method requires UHNlmp−1K evaluations of the indicator function and the

summation of UHNlmp−1K terms, where HNlmp−1 =
∣∣∣d̃lmp

∣∣∣ is the the number of nonzero values in the

vector of loss probabilities of the lumpy sub-portfolio as defined in Theorem 5.1. Alternatively, two

better options are offered for the MC+LLN method:

• Sort a =
{
µ

(u)
homo + lm(u,v) , u = 1, . . . , U, v = 1, . . . , V

}
in ascending order, denoted by

â = {âm : â1 ≤ â2 ≤ · · · ≤ âUV }, then, for each k = 0, . . . ,K − 1, compute P {L ≤ lk} by

P {L ≤ lk} =
mk

UV
,

where mk = max {m : âm ≤ lk, m = 1, . . . , UV }. A good sorting algorithm, such as quick sort

and merge sort, can sort a(u,v) in O(UV logUV ) comparisons, and a bisection search for mk for

the whole portfolio, in which case K̄ can be estimated by a pre-run of the CLT approximation or LLN approximation. By

a pre-run of CLT method, one can obtain VaR, denoted by VaRclt, obtained by the CLT method, then K̄ can be estimated

by

K̄ = min
{

2t 2t ≥ VaRclt
}
.

2The proposed method to determine the optimal τ discussed in the previous section does not apply in this case since
it is designed to compute the optimal τ for the cumulative unconditional loss probability function valued at a particular
point, P {L ≤ lk}, while in the hybrid method, the exact method is used to calculate the conditional probability mass
function of the lumpy sub-portfolio.
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all k = 0, . . . ,K−1 requires O(K log2 UV ) comparisons. The total number of comparisons needed

by this option is O(UV logUV ) given UV � K.

• For each u = 1, . . . , U , sort a(u) =
{
µ

(u)
homo + lm(u,v) , v = 1, . . . , V

}
in ascending order, denoted by

â(u) =
{
â

(u)
m : â

(u)
1 ≤ â(u)

2 ≤ · · · ≤ â(u)
V

}
, then, for each k = 0, . . . ,K − 1, compute P {L ≤ lk} by

P {L ≤ lk} =
1

UV

U∑
u=1

m
(u)
k ,

where m(u)
k = max

{
m : â

(u)
m ≤ lk, m = 1, . . . , V

}
. Sorting a(u,v) requires O(UV log V ) compar-

isons for all u = 1, . . . , U , a bisection search for m(u)
k for all u = 1, . . . , U and k = 0, . . . ,K − 1

requires O(UK log2 V ) comparisons and the summations require O(UK) FLOPs . The total num-

ber of operations (i.e. comparisons or FLOPs) needed by this option is O(UK log2 V ) givenK � V.

Both options are less computationally intensive than the direct implementation of (6.1.6) for the MC+LLN

method, which requires O(UVK) FLOPs. Comparing the two options, we believe the second option is

often likely to be better even though its total number of FLOPs is larger than that required by the first

option. The reason for this is, the first option needs to store and access a huge vector, a, of UV elements

while the second option only needs to store and access a vector, a(u), of V elements. If the sample sizes

U and V are very large, the system might not have large enough memory to store UV elements, and,

even if the system is able to hold UV elements, memory access to a very long array could be very slow,

which could offset the gain in CPU time from less operations. For the EXACT+LLN method, a similar

strategy can be applied. For example, for the second option, instead of sorting a(u), we need to sort the

matrix

A(u) =

[
a(u), p

(u)
lmp

]
,

a(u) =
[
µ

(u)
homo + ld̃lmp[1], . . . , µ

(u)
homo + ld̃lmp[HNlmp−1]

]T
,

p
(u)
lmp =

[
p
(d̃lmp[1],u)
lmp , . . . , p

(d̃lmp[HNlmp−1],u)
lmp

]T
,

by the first column in ascending order, denoted by

Â(u) =

[
â(u), p̂

(u)
lmp

]
,
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then for each k = 0, . . . ,K − 1, compute P {L ≤ lk} by

P {L ≤ lk} =
1

U

U∑
u=1

m
(u)
k∑

m=1

p̂
(m,u)
lmp , (6.3.1)

where m
(u)
k = max

{
m : â

(u)
m ≤ lk, m = 1, . . . ,HNlmp−1

}
. Sorting A(u) by its first column requires

O(UHNlmp−1 logHNlmp−1) comparisons for all u = 1, . . . , U , a bisection search form(u)
k for all u = 1, . . . , U

and k = 0, . . . ,K − 1 requires O(UK log2HNlmp−1) comparisons. Notice that, unlike the MC+LLN

method, for the EXACT+LLN method, summations in (6.3.1) take O(UKHNlmp−1/2) FLOPs on aver-

age. Therefore, the total number of FLOPs needed by this option is still O(UKHNlmp−1). Even though

(6.3.1) requires less FLOPs to compute summations than (6.2.2), the total saving on the computational

effort by (6.3.1) over (6.2.2) for the EXACT+LLN method is not as large as that for MC+LLN method.

Secondly, for the EXACT+CLT method, for each u = 1, . . . , U , a naive implementation of (6.2.2)

could compute Φ

(
lk−lm−µ(u)

homo

σ
(u)
homo

)
for every k = 1, . . . ,K and m ∈ d̃lmp. This wastes computational time

on computing duplicate values of Φ

(
lk−lm−µ(u)

homo

σ
(u)
homo

)
. For example, the value of Φ

(
lk−lm−µ(u)

homo

σ
(u)
homo

)
based on

the combination of k = 3 and m = 1 is exactly same as for k = 4 and m = 2, or k = 5 and m = 3, etc.,

since lk − lm = (k −m)δ. This could result in a severe loss in efficiency since the computation of the

normal CDF function Φ is costly. Instead, for each u = 1, . . . , U , one can first compute and save

Φ
(u)
i = Φ

(
li − µ(u)

homo

σ
(u)
homo

)
, i = −max

(
d̃lmp

)
, . . . ,K − 1−min

(
d̃lmp

)
, (6.3.2)

and then compute

P {L ≤ lk} =
1

U

U∑
u=1

∑
m∈d̃lmp

Φ
(u)
k−mp

(m,u)
lmp . (6.3.3)

Compared with the naive implementation of the EXACT+CLT method based on (6.2.2), the implemen-

tation based on (6.3.2) and (6.3.3) can reduce the number of evaluations of the normal CDF function

significantly from KHNlmp−1 to K−min
(
d̃lmp

)
+max

(
d̃lmp

)
. This trick can be applied to the MC+CLT

method as well.

Based on discussion above, we propose Algorithms 6.1 - 6.4 to compute the portfolio loss distribution

by the MC+LLN, EXACT+LLN, MC+CLT and EXACT+CLT methods, respectively.
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Algorithm 6.1 MC+LLN method to compute P {L ≤ lk}, k = 0, . . . ,K − 1
Input: Subportfolio Πhomo, Πlmp and loss levels l;
Output: p;

1: p← 0;
2: for u = 1 : U do
3: Generate Z(u), z ← Z(u); # O(US) FLOPs
4: Compute µ(u)homo based on z, µhomo ← µ

(u)
homo; # O(UNhomo) FLOPs

5: for v = 1 : V do
6: Generate E(u,v)

lmp , εlmp ← E(u,v)
lmp ; # O(UV Nlmp) FLOPs

7: Compute lm(u,v) based on z and εlmp, llmp[v]← lm(u,v) ; # O(UV NlmpC) FLOPs
8: a[v]← µhomo + llmp[v]; # O(UV ) FLOPs
9: end for
10: sort(a); # O(UV log(V ) FLOPs
11: for k = 0 : K − 1 do
12: Apply bisection search to find m(u)

k based on a and l[k], m← m
(u)
k ; # O(UK log2(V )) FLOPs

13: p[k]← p[k] +m; # O(UK) FLOPs
14: end for
15: end for
16: p← p/(UV ); # O(K) FLOPs
17: return p;

Algorithm 6.2 EXACT+LLN method to compute P {L ≤ lk}, k = 0, . . . ,K − 1
Input: Subportfolio Πhomo, Πlmp and loss levels l;
Output: p;

1: p← 0;
2: for u = 1 : U do
3: Generate Z(u), z ← Z(u); # O(US) FLOPs
4: Compute µ(u)homo based on z, µhomo ← µ

(u)
homo; # O(UNhomo) FLOPs

5: Compute HNlmp−1, d̃lmp, and p
(u)
lmp based on z by an exact method, plmp ← p

(u)
lmp ;

# O(UC2N2
lmp) FLOPs (best case, SCONV)

# O(UCNlmp ) FLOPs (worst case, SCONV)
6: for v = 0 : HNlmp−1 − 1 do
7: a[v]← µhomo + l[d̃lmp[v]]; # O(UHNlmp−1) FLOPs
8: for k = 0 : K − 1 do
9: p[k]← p[k] + I{a[v]≤l[k]}plmp[d̃lmp[v]]; # O(UKHNlmp−1) FLOPs
10: end for
11: end for
12: end for
13: p← p/U ; # O(K) FLOPs
14: return p;
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Algorithm 6.3 MC+CLT method to compute P {L ≤ lk}, k = 0, . . . ,K − 1
Input: Subportfolio Πhomo, Πlmp and loss levels l;
Output: p;

1: p← 0;
2: Compute indices of minimum and maximum loss of the lumpy sub-portfolio imin and imax; # O(Nlmp) FLOPs
3: for u = 1 : U do
4: Generate Z(u), z ← Z(u); # O(US) FLOPs
5: Compute µ(u)homo and σ(u)

homo based on z, µhomo ← µ
(u)
homo, σhomo ← σ

(u)
homo; # O(UNhomo) FLOPs

6: for i = imin : imax do
7: Φ[i]← Φ

(
li−µhomo
σhomo

)
; # O(UK) FLOPs

8: end for
9: for v = 1 : V do
10: Generate E(u,v)

lmp , εlmp ← E(u,v)
lmp ; # O(UV Nlmp) FLOPs

11: Compute lm(u,v) based on z and εlmp, m[v]← m(u,v); # O(UV NlmpC) FLOPs
12: for k = 0 : K − 1 do
13: p[k]← p[k] + Φ[k −m[v]]; # O(UV K) FLOPs
14: end for
15: end for
16: end for
17: p← p/(UV ); # O(K) FLOPs
18: return p;

Algorithm 6.4 EXACT+CLT method to compute P {L ≤ lk}, k = 0, . . . ,K − 1
Input: Subportfolio Πhomo, Πlmp and loss levels l;
Output: p;

1: p← 0;
2: Compute indices of minimum and maximum loss of the lumpy sub-portfolio imin and imax; # O(Nlmp) FLOPs
3: for u = 1 : U do
4: Generate Z(u), z ← Z(u); # O(US) FLOPs
5: Compute µ(u)homo and σ(u)

homo based on z, µhomo ← µ
(u)
homo, σhomo ← σ

(u)
homo; # O(UNhomo) FLOPs

6: Compute HNlmp−1, d̃lmp, and p
(u)
lmp based on z by an exact method, plmp ← p

(u)
lmp ;

# O(UC2N2
lmp) FLOPs (best case, SCONV)

# O(UCNlmp ) FLOPs (worst case, SCONV)
7: for i = imin : imax do
8: Φ[i]← Φ

(
li−µhomo
σhomo

)
; # O(UK) FLOPs

9: end for
10: for v = 0 : HNlmp−1 − 1 do
11: for k = 0 : K − 1 do
12: p[k]← p[k] + Φ[k − d̃lmp[v]]plmp[d̃lmp[v]]; # O(UKHNlmp−1) FLOPs
13: end for
14: end for
15: end for
16: p← p/U ; # O(K) FLOPs
17: return p;

6.3.1.2 Complexity Analysis

In this subsection, we examine the complexity of the hybrid methods to compute the whole loss

distribution, P {L ≤ lk}, for k = 0, . . . ,K − 1, Our analysis is based on the following observations:

K � V � Nlmp & C, and UV & K.
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• For the MC+LLN method, Algorithm 6.1 shows that the total complexity to compute the whole

loss distribution is O (U log2 V K), where we use the observation that K log2 V & V NlmpC;

• For the MC+CLT method, Algorithm 6.3 shows that the total complexity to compute the whole

loss distribution is O (UVK), where we use the observation that K � NlmpC;

• For EXACT+LLN/CLTmethods, Algorithm 6.2 and 6.4 show that the total complexity to compute

the whole loss distribution in the best case is O
(
UKHNlmp−1

)
= O (UKNlmpC), where we use the

observation that KHNlmp−1 � C2N2
lmp and the fact HNlmp−1 = NlmpC by (5.1.30). In the worst

case, the complexity is O
(
UHNlmp−1K

)
= O

(
UCNlmpK

)
, where we use the fact HNlmp−1 = CNlmp

by (5.1.34).

As a comparison, to compute the whole portfolio loss distribution, the pure MC method requires

O (UV NC) FLOPs3, SCONV method requires O
(
UN2C2

)
FLOPs in the best case, and O

(
UCN

)
FLOPs in the worst case4 and the TR SCONV method requires much less computation than the SCONV

method. Hence, if the goal is to compute the whole loss distribution, it is clear that all the hybrid meth-

ods, except possibly the MC+LLN method, have a very slim advantage in efficiency over the MC method,

or may even be inferior to it.

6.3.2 Implementation of the Hybrid Methods to Compute VaR

6.3.2.1 Implementation Details

VaR of a portfolio can be easily determined once the loss distribution of the portfolio is calculated.

However, it is not necessary to compute the whole loss distribution to determine VaR. Notice that

the portfolio loss probability, P {L ≤ lk}, as shown in (6.1.6) and (6.2.2) for the hybrid methods, is an

increasing function of the loss percentage level, lk, hence one can apply a bisection search to calculate

VaR. The number of evaluations of the portfolio loss probability function is at most log2K in this case.

This is much less than K, which is required to compute the whole loss distribution. Since we only need

to evaluate the portfolio loss probability function at log2K loss percentage levels, rather than all K loss

percentage levels, improvements designed to calculate the whole loss distribution in the last subsection

are not efficient when calculating VaR.

We propose below two new schemes to implement the bisection search to calculate VaR based on the

hybrid methods.
3The complexity of the pure Monte Carlo method to compute the loss distribution is similar with that of the Monte

Carlo method applied to the lumpy sub-portfolio in the MC+CLT/LLN method.
4The complexity of the SCONV method to compute the loss distribution is similar to that of the SCONV method

applied to the lumpy sub-portfolio in the EXACT+CLT/LLN method.
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• Memory-intensive Scheme Calculate and store lm(u,v) , u = 1, . . . , U and v = 1, . . . , V for the

MC+CLT/LLN method, or lm and p(m,u)
lmp u = 1, . . . , U and m ∈ d̃lmp for the EXACT+CLT/LLN

method, then perform the bisection search based on the stored lm(u,v) , or lm and p(m,u)
lmp . Algorithms

based on this scheme are presented in Algorithm 6.5 for the MC+CLT/LLN method, and in

Algorithm 6.6 for the EXACT+CLT/LLN method.

Algorithm 6.5 MC+CLT/LLN method to compute VaRγ(L) (Memory-intensive Scheme)
Input: Subportfolio Πhomo, Πlmp and loss levels l, γ;
Output: VaR;

1: for u = 1 : U do
2: Generate Z(u), z ← Z(u); # O(US) FLOPs
3: Compute µ(u)homo and σ(u)

homo based on z, µhomo[u]← µ
(u)
homo, σhomo[u]← σ

(u)
homo; # O(UNhomo) FLOPs

4: for v = 1 : V do
5: Generate E(u,v)

lmp , εlmp ← E(u,v)
lmp ; # O(UV Nlmp) FLOPs

6: Compute lm(u,v) based on z and εlmp, l[u, v]← lm(u,v) ; # O(UV NlmpC) FLOPs
7: end for
8: end for
9:
10: kL ← 0, kR ← K − 1;
11: while kL 6= kR do
12: kM ← d(kL + kR) /2e ;

13: p← 0; # O(log2(K)) FLOPs
14: for u = 1 : U do
15: for v = 1 : V do

16: p←

p+ Φ
(
l[kM]−llmp[u,v]−µhomo[u]

σhomo[u]

)
, MC+CLT,

p+ I{µhomo[u]≤l[kM]−llmp[u,v]},
MC+LLN,

# O(UV log2(K)) FLOPs

17: end for
18: end for
19: p← p/(UV ); # O(log2(K)) FLOPs
20: if p < γ then
21: kL ← kM;
22: else
23: kR ← kM;
24: end if
25: end while
26:
27: VaR← l[kM];
28: return VaR;
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Algorithm 6.6 EXACT+CLT/LLN method to compute VaRγ(L) (Memory-intensive Scheme)
Input: Subportfolio Πhomo, Πlmp and loss levels l, γ;
Output: VaR;

1: for u = 1 : U do
2: Generate Z(u), z ← Z(u); # O(US) FLOPs
3: Compute µ(u)homo and σ(u)

homo based on z, µhomo[u]← µ
(u)
homo, σhomo[u]← σ

(u)
homo; # O(UNhomo) FLOPs

4: Compute HNlmp−1, d̃lmp, and p
(u)
lmp based on z by an exact method, plmp[u, :]← p

(u)
lmp ;

# O(UC2N2
lmp) FLOPs (best case, SCONV)

# O(UCNlmp ) FLOPs (worst case, SCONV)
5: end for
6:
7: kL ← 0, kR ← K − 1;
8: while kL 6= kR do
9: kM ← d(kL + kR) /2e ; # O(log2(K)) FLOPs
10: p← 0;

11: for u = 1 : U do
12: for v = 0 : HNlmp−1 − 1 do

13: p←


p+ Φ

(
l[k]−llmp[u,d̃lmp[v]]−µhomo[u]

σhomo[u]

)
plmp[u, d̃lmp[v]], EXACT+CLT,

p+ I{µhomo[u]≤l[k]−llmp[u,d̃lmp[v]]}
plmp[u, d̃lmp[v]], EXACT+LLN,

# O(UHNlmp−1 log2(K))

FLOPs
14: end for
15: end for
16: p← p/V ; # O(log2(K)) FLOPs
17: if p < γ then
18: kL ← kM;
19: else
20: kR ← kM;
21: end if
22: end while
23:
24: VaR← l[kM];
25: return VaR;

• Memory-saving Scheme For each evaluation of the portfolio loss probability function, re-

calculate lm(u,v) , u = 1, . . . , U and v = 1, . . . , V , using the same random seed for the MC+CLT/LLN

method, or lm and p(m,u)
lmp , u = 1, . . . , U and m ∈ d̃lmp, for the EXACT+CLT/LLN method. Algo-

rithms based on this scheme are presented in Algorithm 6.7 for the MC+CLT/LLN method, and

in Algorithm 6.8 for the EXACT+CLT/LLN method.
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Algorithm 6.7 MC+CLT/LLN method to compute VaRγ(L) (Memory-saving Scheme)
Input: Subportfolio Πhomo, Πlmp and loss levels l, γ;
Output: VaR;

1: kL ← 0, kR ← K − 1;
2: while kL 6= kR do
3: kM ← d(kL + kR) /2e ; # O(log2(K)) FLOPs
4: p← 0;

5: for u = 1 : U do
6: Generate Z(u), z ← Z(u) with seed 0; # O(US log2(K)) FLOPs
7: Compute µ(u)homo and σ(u)

homo based on z, µhomo ← µ
(u)
homo, σhomo ← σ

(u)
homo; # O(UNhomo log2(K)) FLOPs

8: for v = 1 : V do
9: Generate E(u,v)

lmp , εlmp ← E(u,v)
lmp ; # O(UV Nlmp log2(K)) FLOPs

10: Compute lm(u,v) based on z and εlmp, l[v]← lm(u,v) ; # O(UV NlmpC log2(K)) FLOPs

11: p←

p+ Φ
(
l[kM]−llmp[v]−µhomo

σhomo

)
, MC+CLT,

p+ I{µhomo≤l[kM]−llmp[v]},
MC+LLN,

# O(UV log2(K)) FLOPs

12: end for
13: end for
14: p← p/(UV ); # O(log2(K)) FLOPs
15: if p < γ then
16: kL ← kM;
17: else
18: kR ← kM;
19: end if
20: end while
21:
22: VaR← l[kM];
23: return VaR;
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Algorithm 6.8 EXACT+CLT/LLN method to compute VaRγ(L) (Memory-saving Scheme)
Input: Subportfolio Πhomo, Πlmp and loss levels l, γ;
Output: VaR;

1: kL ← 0, kR ← K − 1;
2: while kL 6= kR do
3: kM ← d(kL + kR) /2e ; # O(log2(K)) FLOPs
4: p← 0;

5: for u = 1 : U do
6: Generate Z(u), z ← Z(u); # O(US log2(K)) FLOPs
7: Compute µ(u)homo and σ(u)

homo based on z, µhomo ← µ
(u)
homo, σhomo ← σ

(u)
homo; # O(UNhomo log2(K)) FLOPs

8: Compute HNlmp−1, d̃lmp, and p
(u)
lmp based on z by an exact method, plmp ← p

(u)
lmp ;

# O(UC2N2
lmp log2(K)) FLOPs (best case, SCONV)

# O(UCNlmp log2(K)) FLOPs (worst case, SCONV)
9: for v = 0 : HNlmp−1 − 1 do

10: p←


p+ Φ

(
l[k]−llmp[u,d̃lmp[v]]−µhomo

σhomo

)
plmp[d̃lmp[v]], EXACT+CLT,

p+ I{µhomo[u]≤l[k]−llmpd̃lmp[v]]}
plmp[d̃lmp[v]], EXACT+LLN,

# O(UHNlmp−1 log2(K)) FLOPs

11: end for
12: end for
13: p← p/V ; # O(log2(K)) FLOPs
14: if p < γ then
15: kL ← kM;
16: else
17: kR ← kM;
18: end if
19: end while
20:
21: VaR← l[kM];
22: return VaR;

Compared to the memory-saving schemes, the memory-intensive schemes reduce the number of

FLOPs by a factor of log2K but increases the memory usage by a factor of U . As we discussed in

the last subsection, memory access to a very long array could be very slow, which could offset the

advantage of fewer FLOPs. Therefore, we believe the memory-saving scheme is preferable.

6.3.2.2 Complexity Analysis

In this subsection, we examine the complexity of the hybrid methods to compute VaR, VaRγ(L). Our

analysis is based on the following observations: K � V � Nlmp & C, and UV & K.

• For the MC+CLT/LLN method, Algorithm 6.7 shows that the total complexity to compute VaR

is O (UV NlmpC log2K);

• For the EXACT+LLN/CLT method, Algorithm 6.8 shows that the total complexity to compute

VaR in the best case isO
(
UC2N2

lmp log2K
)
. In the worst case, the complexity isO

(
UHNlmp−1 log2K

)
= O

(
UCNlmp log2K

)
, where we use the fact HNlmp−1 = CNlmp by (5.1.34).
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The complexity of the benchmark pure MC method and the (TR) SCONV method to calculate VaR is

similar to that required to calculate the whole distribution. Therefore, if the goal is to compute VaR,

it is clear that all hybrid methods are more efficient than the benchmark pure MC method and (TR)

SCONV method.

6.4 Numerical Results and Comparisons

We end this chapter with a comparison of the accuracy and efficiency of the hybrid methods developed in

this chapter and the MC, asymptotic and exact methods developed in earlier chapters. The comparison

includes the computation of both the loss distribution and VaR with different confidence levels.

As mention in Subsection 6.1, a lumpy portfolio is a portfolio consisting of two sub-portfolios: a

large, fairly homogeneous sub-portfolio and a small heterogeneous sub-portfolio, where the obligors in

the fairly homogeneous sub-portfolio have about the same EAD, while the obligors in the heterogeneous

sub-portfolio have substantially larger EAD. For our tests, we construct eight testing lumpy portfolios

differing in the following factors:

• Number of obligors in the homogeneous sub-portfolio: 64 or 2048;

• Homogeneity of the homogeneous sub-portfolio: homogeneous or inhomogeneous, depending on

whether βn are identical or randomly generated from Unif(−1, 1);

• Size of rating classes: 2 or 17.

For all the portfolios, all the obligors start in the highest rating class. In order to avoid discretization

errors, the loss-given-credit-event, LGCcn, and the EAD, EADn, are specified such that each Lcn is on

the discretization grid for the loss with length of K = 216 = 65536 constructed by (5.1.13) and (5.1.14).

The following table summarizes the portfolios used in our tests.
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Table 6.1: Testing portfolios for hybrids methods against exact/MC methods

Portfolio C c(n) LGCcn
Homogeneous sub-portfolio Inhomogeneous sub-portfolio

Nhomo EADn βn
∑

EADn Nlmp EADn βn
∑

EADn

64-1 2 20 1− c
20

64 1

0.5

64 16 ẼAD64
n

0.5

448
64-2 17 24 1− c

24

64-3 2 20 1− c
20

Unif(−1, 1) Unif(−1, 1)

64-4 17 24 1− c
24

2048-1 2 20 1− c
20

2048 1

0.5

2048 64 ˜EAD2048
n

0.5

2048
2048-2 17 24 1− c

24

2048-3 2 20 1− c
20

Unif(−1, 1) Unif(−1, 1)

2048-4 17 24 1− c
24

The credit migration matrices used in the tests in this subsection are the migration matrix in Table

5.16 for C = 2, and the submatrix of the migration matrix in Table 5.17 for for C = 17 .

In the portfolios with 64 obligors in the homogeneous part, there are 16 obligors in the inhomoge-

neous part. In the portfolios with 2048 obligors in the homogeneous part, there are 64 obligors in the

inhomogeneous part. The EADs of obligors in the inhomogeneous sub-portfolio are generated in a way

similar to that used in Subsection 5.3.4. That is, we specify the EADs as follows.

Step 1 For n = 0, . . . , Nlmp − 1, generate Xn ∼ exp(10);

Step 2 For n = 0, . . . , Nlmp − 1, calculate

Yn =


Xn∑N−1
n=0 Xn

× 448, for ẼAD64
n

Xn∑N−1
n=0 Xn

× 2048, for ˜EAD2048
n

;

Step 3 For n = 1, . . . , Nlmp − 1, calculate

˜EAD64,2048
n =


dYne ; if Yn < medium(Y )

bYnc ; if Yn ≥ medium(Y )

;
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Step 4 Calculate

ẼAD64
0 = 448−

Nlmp−1∑
n=1

ẼAD64
n,

˜EAD2048
0 = 2048−

Nlmp−1∑
n=1

˜EAD2048
n;

Step 5 If ˜EAD64,2048
0 > 0, stop, else repeat Step 1 to 5.

As an illustration, Figures 6.1a and 6.1b show the histograms for ẼAD64
n and ˜EAD2048

n, respectively

.

Figure 6.1: Histogram of EADs for inhomogeneous portfolios

(a) Histogram of ẼAD64
n

(b) Histogram of ˜EAD2048
n

6.4.1 Comparison for Computing the Loss Distribution

For each constructed portfolio, we compute the cumulative loss probabilities

p̂method[k]
.
= P {L ≤ lk}
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for k = 0, . . . ,K − 1 using the LLN, CLT, Hybrid MC+LLN (Algorithm 6.1), Hybrid MC+CLT (Algo-

rithm 6.3), MC, TR SCONV, and SCONV method. For the TR SCONV method, we let the threshold

for the errors in the cumulative loss probabilities be Tol = 10−4, and set ε by (5.1.51). For the MC

method, we set the sample size to U = 214, V = 212.

6.4.1.1 Accuracy

Figures 6.2 - 6.9 compare the loss probabilities P {L ≤ lk} and P {L > lk} for different testing portfolios

computed by different methods. Since the tail is very close to zero and very flat, we plot P {L > l} on a

semi-log scale. To further assess the accuracy, we use SCONV method as the benchmark, and compute

the absolute errors in the loss probabilities by:

δProb,methodk =
∣∣p̂method [k]− p̂SCONV [k]

∣∣ .
Figures 6.10 - 6.13 present these absolute errors.

We make the following observations about the numerical results in Figures 6.2 - 6.13.

1. Both the CLT approximation and the LLN approximation fail to produce accurate loss distribu-

tions. The distributions generated by the MC+CLT approximation and by the MC+LLN approx-

imation are much closer to the true distributions, and the accuracy of these two hybrid methods

is comparable with that of the pure MC simulation. This shows that the hybrid methods’ use of a

MC simulation for the lumpy sub-portfolio is effective, and the hybrid approximations are indeed

superior to the corresponding pure asymptotic approximations in terms of accuracy.

2. When the loss level lk is not too big, the TR SCONV method produces the most accurate loss

probabilities. As the quantile lk increases, errors associated with the two hybrid approximations

decrease, while errors associated with the TR SCONV method increase. For our testing portfolios,

given the selected sample sizes and drop tolerance, the two hybrid approximations tend to outper-

form the TR SCONV method to produce extremely large loss probabilities in the right tail of the

loss distribution (P {L ≤ lk} ≥ 1− 10−8).

3. From Figures 6.10 - 6.13, we see that the errors associated with the MC+CLT approximation are

usually smaller than those for all approximations other than TR SCONV. Errors associated with

the MC+LLN approximation are smaller than those associated with the CLT approximation and

the LLN approximation. Though errors associated with the MC+LLN approximation are generally

larger than those associated with the MC+CLT, the difference in accuracy for two hybrid methods
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is not material, especially at the high probability end.

Figure 6.2: Comparison of the loss distribution

(a) P {L ≤ l}: Portfolio 64-1

(b) P {L > l}: Portfolio 64-1

217



Figure 6.3: Comparison of the loss distribution (Cont’d)

(a) P {L ≤ l}: Portfolio 64-2

(b) P {L > l}: Portfolio 64-2
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Figure 6.4: Comparison of the loss distribution (Cont’d)

(a) P {L ≤ l}: Portfolio 64-3

(b) P {L > l}: Portfolio 64-3
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Figure 6.5: Comparison of the loss distribution (Cont’d)

(a) P {L ≤ l}: Portfolio 64-4

(b) P {L > l}: Portfolio 64-4
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Figure 6.6: Comparison of the loss distribution (Cont’d)

(a) P {L ≤ l}: Portfolio 2048-1

(b) P {L > l}: Portfolio 2048-1
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Figure 6.7: Comparison of the loss distribution (Cont’d)

(a) P {L ≤ l}: Portfolio 2048-2

(b) P {L > l}: Portfolio 2048-2
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Figure 6.8: Comparison of the loss distribution (Cont’d)

(a) P {L ≤ l}: Portfolio 2048-3

(b) P {L > l}: Portfolio 2048-3
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Figure 6.9: Comparison of the loss distribution (Cont’d)

(a) P {L ≤ l}: Portfolio 2048-4

(b) P {L > l}: Portfolio 2048-4
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Figure 6.10: Comparison of the errors in the loss distribution

(a) δProb,methodk : Portfolio 64-1

(b) δProb,methodk : Portfolio 64-2
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Figure 6.11: Comparison of the errors in the loss distribution (Cont’d)

(a) δProb,methodk : Portfolio 64-3

(b) δProb,methodk : Portfolio 64-4
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Figure 6.12: Comparison of the errors in the loss distribution

(a) δProb,methodk : Portfolio 2048-1

(b) δProb,methodk : Portfolio 2048-2
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Figure 6.13: Comparison of the errors in the loss distribution (Cont’d)

(a) δProb,methodk : Portfolio 2048-3

(b) δProb,methodk : Portfolio 2048-4
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6.4.1.2 Efficiency

Figure 6.14 compares the CPU time in seconds required by the tested methods, as well as the speedup

of the the MC+LLN method relative to the pure MC, TR SCONV and SCONV methods, to compute

the loss distribution. In the bottom part of Figures 6.14a and 6.13c, we plot the CPU time on a semi-log

scale to better distinguish the efficiency of different methods. We make the following observations.

1. In all our tests, the MC+LLN method is faster than the MC method. Compared with the MC

method, the MC+LLN method is more than 3 times faster for the coarser portfolios 64-1, 64-2,

64-3 and 64-4, and more than 50 times faster for the finer portfolios 2048-1, 2048-2, 2048-3, and

2048-4. There are two sources for this speed-up. First, fewer random numbers are generated by

the hybrid approximations compared to the MC approximation. As mentioned earlier, the MC

approximation generates U ·(V ·N + S) random numbers, while the hybrid approximations require

only U · (V ·Nlmp + S) random numbers, where usually Nlmp � N . (For our numerical results,

N = 64, 2048, while Nlmp = 16, 64.). Secondly, because Nlmp � N , the computational work

required for (6.1.1) is much less than that required for (3.3.7), which accelerates the computation

significantly.

2. In all our tests, the MC+CLT method is significantly slower than the MC+LLN method, and

it is even slower than the MC method, as in Subsection 6.3.1.2 predicted. Since the MC+CLT

and MC+LLN methods are comparable in accuracy, we recommend using the MC+LLN method

instead of the MC+CLT method to compute the loss distribution.

3. In most of our tests, the MC+LLN method is significantly faster than the SCONV method, es-

pecially for finer portfolios with a complex rating system. On the other hand, the speed of the

MC+LLN method is comparable to that of the TR SCONV method for portfolios 64-1, 64-2, 64-3,

64-4, 2048-1 and 2048-3. Given that the TR SCONV method is more accurate than the MC+LLN

method to generate most of the loss probabilities, we recommend using the TR SCONV method

to compute the loss distribution for coarse portfolios with more complex rating systems. However,

the MC+LLN method is more than 10 times faster than the TR SCONV method for Portfolio

2048-2 and 2048-4, which shows that, for a very fine portfolio with a complex rating system, the

MC+LLN method provides a very good balance between accuracy and efficiency.
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Figure 6.14: Comparison of efficiency in computing the loss distribution

(a) CPU time: Portfolio 64-i

(b) Speedup: Portfolio 64-i
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(c) CPU time: Portfolio 2048-i

(d) Speedup: Portfolio 2048-i

6.4.2 Comparison for Computing VaR

For Portfolios 2048-1 and 2048-2, we compute VaR at the confidence levels γ = 95%, 99%, 99.9% and

99.98% by the following methods: LLN, CLT, Hybrid MC+LLN (Algorithm 6.7), Hybrid MC+CLT

(Algorithm 6.7), MC, Hybrid TR SCONV+LLN (Algorithm 6.8), Hybrid TR SCONV+CLT (Algorithm

6.8), TR SCONV, Hybrid SCONV+LLN, Hybrid SCONV+CLT and SCONV method. As in Subsection
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6.4.1, for the TR SCONV method, we set the threshold for errors in the cumulative loss probabilities to

Tol = 10−4, and set ε by (5.1.51). For the MC method, we set the sample size to U = 214, V = 212.

6.4.2.1 Accuracy

To assess the accuracy of these methods, we use VaRs calculated by the SCONV method as the bench-

mark, and compute the errors in VaRs computed by other methods by

δV aR,methodγ =
∣∣∣VaRmethodγ −VaRSCONVγ

∣∣∣ .
The testing results are presented in Figure 6.14, where we plot the errors on a semi-log scale in the bottom

part of each subfigure to better distinguish errors of different methods. From the numerical results, it

is clear that the errors in the computed VaR associated with all hybrid methods are comparable, and

are significantly smaller than the asymptotic methods. This shows that the hybrid method is effective

to reduce the asymptotic errors in VaR calculation for lumpy portfolios. On the other hand, there are

still small but acceptable errors associated with the hybrid methods in all testing cases, while the errors

associated with the exact methods or the MC method are zero in most testing cases. This shows that, to

calculate VaR, the exact methods and the MC method are more accurate than the hybrid methods, which

is as expected since the hybrid methods suffer from asymptotic errors associated with the homogeneous

sub-portfolio.
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Figure 6.14: Comparison of the errors in computing VaR

(a) Confidence level: 95%
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(b) Confidence level: 99%
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(c) Confidence level: 99.9%
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(d) Confidence level: 99.98%
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6.4.2.2 Efficiency

Figure 6.14 compares the average CPU time in seconds, to compute VaR at different confidence levels,

required by the tested methods, as well as the speedup of the hybrid methods relative to the pure MC,

TR SCONV and SCONV methods. In the bottom part of Figure 6.14a, we plot the CPU time on a

semi-log scale to better distinguish the efficiency of different methods. The following observations can

be made.

• The MC+LLN method and the MC+CLT method are comparably efficient to compute VaR, and
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they are approximately four times faster than the MC method. However, notice that the CPU time

required by the MC method to compute the loss distribution is comparable with that to compute

VaR, and as we observed in Subsection 6.4.1.2, the MC+LLN method is around 50 times faster

than the MC method to compute the loss distribution for the same testing portfolios. Moreover,

given the loss distribution, it takes little additional computational time to compute VaR. Therefore,

we recommend using Algorithm 6.1, rather than Algorithm 6.7, to compute VaR if the MC+LLN

method is selected.

• The SCONV+LLN method and the SCONV+CLT methods are comparably efficient to compute

VaR, and they are approximately 5-10 times faster than the SCONV method. However, the

SCONV+LLN and SCONV+CLT methods are significantly slower than the MC+LLN method.

Given these three methods have approximately the same accuracy, we recommend using the

MC+LLN method over the SCONV+LLN and SCONV+CLT method to compute VaR.

• Though the TR SCONV+LLNmethod and TR SCONV+CLTmethod are faster than the SCONV+LLN

method and the SCONV+CLT method, the TR SCONV+LLN method and the TR SCONV+CLT

method are slower than the TR SCONV method. This proves again that dropping extremely small

probabilities applied in the TR SCONV method is a very effective approach to boost the perfor-

mance of the SCONV method. Figure 6.13d shows that the MC+LLN method (Algorithm 6.7)

is around 10 time slower than the TR SCONV method for portfolios with a simple rating system

(portfolio 2048-1 and portfolio 2048-3), and approximated as fast as the TR SCONV method for

portfolios with a more complex rating system (portfolio 2048-2 and portfolio 2048-4). However,

as we discussed in Subsection 6.4.1.2, if Algorithm 6.1 is applied to calculate VaR, the MC+LLN

method would be around 10 times faster than the TR SCONV method to compute VaR, which

shows a good balance between accuracy and efficiency.
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Figure 6.14: Comparison of efficiency in computing VaR

(a) CPU time
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(b) Speedup over MC
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(c) Speedup over SCONV
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(d) Speedup over TR SCONV
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Chapter 7

Conclusion and Future Work

In this thesis, we develop several new asymptotic and exact methods to compute conditional loss prob-

abilities of credit portfolios in the CreditMetrics framework.

We propose an asymptotic approximation based on the CLT. We prove that both the conditional

and unconditional loss distributions converge to our CLT limiting distribution under conditions similar

to those used by Gordy to prove the convergence of the LLN approximation. To assess the accuracy

of the CLT approximation, we use Berry-Esseen-type results to bound the error incurred in the CLT

approximation.

We improve the efficiency of the exact methods by exploiting the sparsity that often occurs in the

obligors’ conditional losses. We develop a sparse convolution method which enjoys a speedup between

Ω
(
α2
)
and Ω

(
α2CN

)
compared with the straightforward convolution method. To further accelerate the

computation, we introduce a truncated sparse convolution method, which is subject to some additional

truncation error to a user-specified level, but gives a significant speedup compared to the sparse convo-

lution method. Moreover, we develop a sparse FFT method that enjoys a speedup of Ω (K/N) in the

best case and Ω (K/ (N log2 C)) in the worst case. We also construct a truncated sparse FFT method to

further improve its efficiency, with an optimal exponential windowing approach used to balance aliasing

errors and roundoff errors.

For lumpy portfolios, we introduce hybrid methods which combine an asymptotic approximation

(CLT or LLN) and MC simulation or an exact method to achieve a good balance between accuracy and

efficiency. Several algorithms are proposed to apply hybrid methods to compute the loss distribution

and VaR.

We conduct several numerical experiments to test our methods. For asymptotic methods, we have
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the following conclusions from our numerical results. The CLT approximation generates more accurate

approximations to the loss distribution than does the LLN approximation in most cases, especially for

coarse-grained heterogeneous portfolios. Also the CLT approximation consistently outperforms the LLN

in the high probability tail of the loss distribution, which makes the CLT approximation more attractive

as a method to compute downside risk measures, such as VaR and ES. Moreover, the CLT approximation

is almost as efficient as the LLN approximation, both of which are significantly more efficient than the

MC approximation.

For exact methods, numerical results in the best/worst cases agree with the theoretical speedup of

the SCONV method and the SFFT method, and errors in the TR SCONV method are significantly

smaller than the predefined error bound. In our tests with synthetic portfolios, we find that

• Both the SCONV method and the SFFT method produce excellent accuracy, and are faster than

the FCONV method. The TR SCONV and (EW) TR SFFT methods greatly improve the efficiency

of the SCONV and SFFT methods, respectively, at the cost of larger errors. However, it is easy to

keep the errors in the TR SCONV method below a user specified threshold. The TR SFFT suffers

significant aliasing errors, but, by using exponential windowing, the EW TR SFFT method can

reduce the aliasing errors to approximately the same level as the errors of the TR SCONV method

at negligible computational cost.

• The sparsity of the conditional probability vectors (or the number of rating classes) has an im-

pact on sparse methods and truncated sparse methods. In general, as C increases, the efficiency

decreases, but sparse FFT methods are less sensitive to the sparsity of portfolios than sparse con-

volution methods. However, one exception is the EW TR SFFT method, which might run faster

as C increases due to the increase in the length of the truncated conditional probability vectors.

• The heterogeneity of portfolios is another major factor which affects the efficiency of sparse con-

volution methods (SCONV and TR SCONV). When C is small, sparse convolution methods run

faster as the portfolio becomes more homogeneous. However, when C is large, the impact of the

heterogeneity of portfolios on the efficiency of sparse convolution methods is very limited. The

impact of the heterogeneity of portfolios is not significant on sparse FFT methods (SFFT and

(EW) TR SCONV).

• Comparing the sparse convolution methods (SCONV and TR SCONV) with the sparse FFT meth-

ods (SFFT and (EW) TR SFFT), the sparse convolution methods are much more efficient than

the sparse FFT methods when C is small. However, sparse FFT methods are much less sensitive
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to sparsity and heterogeneity of portfolios than sparse convolution methods, and as the portfo-

lio becomes less sparse and less homogeneous, the advantage in efficiency of sparse convolution

methods is gradually reduced and even reversed. Moreover, the length of the truncated vector of

probabilities has significant impact on the efficiency of the (EW) TR SFFT method. As the length

of the truncated vector of probabilities increases, the efficiency of the (EW) TR SFFT method

decreases.

• Compared to the MC method with a reasonably large sample size to achieve acceptable accuracy,

the TR SCONV method is more efficient and more accurate. In addition, compared to the random

errors incurred in the MC method, the errors incurred in the TR SCONV method are deterministic

and can be controlled by the user specified threshold.

For lumpy portfolios, numerical results show that both of the asymptotic approximations (CLT and

LLN) are inaccurate. For the calculation of the loss distribution and VaR, we conduct numerical exper-

iments to compare the efficiency and accuracy of different hybrid methods to those of exact methods

and asymptotic methods. Hybrid approximations produce much more accurate loss distributions than

asymptotic approximations for lumpy portfolios, especially in the high probability tail of the loss distri-

butions. The MC+LLN method is 3 – 50 times faster than the MC approximation, as much as 10 times

faster than the TR SCONV method, and as much as 700 times faster than the SCONV method, which

shows that the MC+LLN method provides a good balance between efficiency and accuracy.

In the future, we hope to perform the following improvements on the methods discussed in this thesis:

• Improve the efficiency of exact methods by allowing discretization errors.

• Further improve further simulation-based methods by developing importance sampling (IS) tech-

niques.

• Develop efficient methods for multi-period models.

For the exact methods, this thesis assumes that a perfect discretization grid is used. That is, each possible

loss is located exactly on our discretization grid. Hence, there is no discretization error involved in our

exact methods. It is worth mentioning that, subject to user specified discretization error tolerance,

we could round some losses to a coarser grid to reduce the total number of points on the grid and

consequently to accelerate the exact methods (especially the SFFT and TR SFFT methods). We could

combine this coarsening approach with other techniques described in this thesis to achieve a more

efficient, but less accurate, approximation to the conditional portfolio loss.
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Glasserman et al. [17, 18, 19] developed IS schemes for both the inner-level and the outer-level MC

simulations. For the inner-level simulation, their methods are quite effective. However, we believe that

it may be possible to improve their outer-level simulation. In their work, the IS scheme shifts the mean

of the normal distribution of systematic risk factors to approximate the IS zero-variance distribution.

The shifted mean is chosen by matching the mode of the shifted normal distribution and the mode of an

upper bound on the IS zero-variance distribution. This IS scheme suffers from the following problems:

1. The shifted normal distribution may not be close to the IS zero-variance distribution. Indeed,

we have found that the shape of the IS zero-variance distribution can be quite different from a

normal distribution. For example, the IS zero-variance distribution has more than one mode in

many cases.

2. The IS zero-variance distribution and its upper bound may have very different modes. Therefore,

the shifted mean may be very far away from the mode of the IS zero-variance distribution.

3. Their IS scheme does not match the variance. Instead, it takes the variance to be I. However, The

variance of the IS zero-variance distribution may be very different from I.

Currently, we are working on an improvement over Glasserman’s method. Our plan is to use a mix-

ture of Gaussians to approximate the IS zero-variance distribution to solve the first and last problems

outlined above. For the second problem, from the discussion in Section 4.2, the conditional portfolio

loss probabilities can be approximated by the CLT, hence we can use the CLT approximation to find a

good estimate of the IS zero-variance distribution. By minimizing the difference of the density function

of the CLT estimate of the IS zero-variance distribution and the density of the Gaussian mixture, we

may be able to determine the parameters in the Gaussian mixture. Once this is done, we can use the

measure corresponding to the Gaussian mixture to compute the unconditional portfolio loss distribution.

Since our CLT method approximates the conditional portfolio loss probabilities quite well, at least for

fine-grained portfolios, the CLT estimate of the IS zero-variance distribution should be close to the IS

zero-variance distribution. Therefore, the variance reduction in our IS scheme should be good.

All methods introduced in this thesis are based on a single-period Merton’s model. That is, we assume

all credit event can only occur at the end of the considered time-horizon. In recent years, multi-period

models have become more attractive to both regulators and financial institutions. In a multi-period

model, the considered time-horizon is divided into several periods, and it is assumed that credit events

can happen at the end of each period. If the assumption of a constant level of risk is applied (i.e.,

positions with changed credit quality at the end of a period are replaced with positions having similar
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credit quality to what they had at the start of the period), then the portfolio loss distribution in each

period can be assumed to be the same. Moreover, portfolio losses in different periods are independent,

hence the portfolio loss probabilities in the considered time-horizon can be computed by a multi-fold

convolution of portfolio loss probabilities in each period. Portfolio loss probabilities in each period can

be computed using any method introduced in this thesis. In the more complicated cases, for which the

assumption of constant level of risk is not applied, the portfolio loss probabilities in the considered time-

horizon can be computed by either a grouping method, for which the computation is based on grouping

all possible credit rating sequences by their corresponding losses, or a multi-period CLT approximation.

We are working on the methods for multi-period models in both cases.

We had originally planned to develop the improved IS scheme, as well as methods for multi-period

models in this thesis. However, we believe that this thesis already contains more than enough results.

Therefore, we plan to develop the improved IS scheme and the methods for multi-period models as two

separate projects.
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Appendix A

Proof of Theorem 4.1

We use Linderberg’s version of CLT to prove Theorem 4.1. The proof is based on the following two

lemmas.

Lemma A.1. If X1, . . . ,XN are independent with finite second moments, and

∀ ε > 0,
1(

σ(N)
)2 N−1∑

n=0

ˆ
{|x−µn|≥εσ(N)}

(x− µn)
2
dFn(x)→ 0 asN →∞, (A.0.1)

then ∑N−1
n=0 Xn − µ(N)

σ(N)

d→ N (0, 1), as N →∞,

where
(
σ(N)

)2
=
∑N−1
n=0 V [Xn], µn = E [Xn], µ(N) =

∑N−1
n=0 µn, Fn(x) is the CDF of Xn.

Proof. The proof of this lemma can be found in [56, pp. 328-337].

Lemma A.2. Under the model assumptions and conditions of Theorem 4.1, the conditional loss rate of

each obligor, Ln(z,E), is not a degenerate random variable. That is, ∃σmin(z) such that V [Ln(z,E)] ≥

σ2
min(z) > 0.

Proof. To begin, notice that, since Z = z <∞, there exists M > 0 such that

z ∈ DS , [−M,M ]× · · · × [−M,M ]. (A.0.2)

Let pcn(z) be the probability conditional on Z = z that obligor n is in credit state c at time t = t1 given
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that it is in credit state c(n) at time t = t0. It follows from (3.1.7) and (3.3.2) that

pcn (z) = P

H
c−1
c(n) − β

T
nz√

1− βTnβn
≤ En <

Hc
c(n) − βTnz√
1− βTnβn


= Φ

Hc
c(n) − βTnz√
1− βTnβn

− Φ

Hc−1
c(n) − β

T
nz√

1− βTnβn

 . (A.0.3)

Thus, the variance of Ln(z,E) is

V [Ln(z,E)] =

C−1∑
c=0

(LGCcn)
2
pcn (z)−

(
C−1∑
c=0

LGCcnp
c
n (z)

)2

=
1

2

(
C−1∑
a=0

(LGCan)
2
pan (z)

C−1∑
b=0

pbn (z) +

C−1∑
b=0

(
LGCbn

)2

pbn (z)

C−1∑
a=0

pan (z)

− 2

C−1∑
a=0

C−1∑
b=0

LGCanLGCbnp
a
n (z) pbn (z)

)

=
1

2

C−1∑
a=0

C−1∑
b=0

(
LGCan − LGCbn

)2

pan(z)pbn(z)

=
∑
a>b

(
LGCan − LGCbn

)2

pan(z)pbn(z), (A.0.4)

where we use
∑C−1
c=0 pcn(z) = 1 in the second equation.

Next we prove that, under our model assumptions in Chapter 4 and (A.0.2), for pcn (z) defined by

(A.0.3), the following statement is true:

∀n, ∃i, j ∈ {0, . . . , C − 1}, i 6= j, such that pin(z) > 0 and pjn(z) > 0. (A.0.5)

Suppose (A.0.5) is not true, then there must be a credit state c∗ such that pc
∗

n (z) = 1 and pcn(z) = 0 for

all c 6= c∗. From (A.0.3), we see that this is equivalent to


Hc
∗
c(n)−βTnz√
1−βTnβn

= +∞,
Hc
∗−1
c(n)

−βTnz√
1−βTnβn

= −∞.
(A.0.6)

From assumption 6 in Chapter 4

βTnβn ≤ βmax < 1,
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and from (A.0.2), we see that (A.0.6) is equivalent to


Hc∗

c(n) = +∞,

Hc∗−1
c(n) = −∞.

(A.0.7)

Since

Hc
c(n) = Φ−1

∑
γ≤c

P γc(n)

 , (A.0.8)

(A.0.7) is equivalent to 
∑
γ≤c∗ P

γ
c(n) = 1,∑

γ≤c∗−1 P
γ
c(n) = 0,

which implies P c
∗

c(n) = 1 and P cc(n) = 0 for all c 6= c∗. However, this contradicts our model assumptions

4 and 5 in Chapter 4 that ensure that for all n ∈ {1, . . . , N}, all c(n) ∈ {1, . . . , C − 1}, and all

c ∈ {0, . . . , C − 1}, 0 ≤ P cc(n) ≤ Pmax < 1. Therefore, (A.0.5) is true.

Next, we show that the conditional loss probabilities in (A.0.5) are bounded below by a positive

constant that is independent of n. That is, for i, j in (A.0.5),

∃η > 0 such that pin(z) ≥ η and pjn(z) ≥ η. (A.0.9)

If Hi−1
c(n) = −∞, then (A.0.2), (A.0.3) and model assumption 6 in Chapter 4 give that

pin(z) = Φ

Hi
c(n) − βTnz√
1− βTnβn


= Φ

Φ−1
(
P ic(n)

)
− βTnz√

1− βTnβn

 . (A.0.10)

From (A.0.5) we see that for such i,

P ic(n) ≥ P+
min > 0, (A.0.11)

where

P+
min = min

c0,c1∈{0, ..., C−1}

{
P c1c0 : P c1c0 > 0

}
.

Otherwise, we would have P ic(n) = 0, implying pin(z) = 0, which contradicts (A.0.5). Thus, (A.0.2),
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(A.0.10), (A.0.11) and model assumption 6 in Chapter 4 ensures that

pin(z) ≥ η1 > 0, (A.0.12)

where

η1 = Φ

(
Φ−1

(
P+
min

)
− SM

α

)
,

α =


1, if Φ−1

(
P+
min

)
≥ SM,

√
1− βmax if Φ−1

(
P+
min

)
< SM,

S is the number of systematic factors.

On the other hand, if Hi−1
c(n) > −∞, then (A.0.3) and the mean value theorem gives that

pin(z) = φ

 x− βTnz√
1− βTnβn

 Hi
c(n) −Hi−1

c(n)√
1− βTnβn

for some x ∈
[
Hi−1
c(n), H

i
c(n)

]
, where φ(x) is the PDF of the standard normal distribution. Since φ(x) is

always positive and decreases as |x| increases, it follows from (A.0.2) and model assumption 6 in Chapter

4 that

φ

 x− βTnz√
1− βTnβn

 ≥ φ (θ) > 0,

where

θ =


Hic(n)+SM√

1−βmax , if φ
(
Hi
c(n)

)
≤ φ

(
Hi−1
c(n)

)
,

Hi−1
c(n)
−SM

√
1−βmax , if φ

(
Hi
c(n)

)
> φ

(
Hi−1
c(n)

)
.

Consequently,

pin(z) ≥ φ (θ)
(
Hi
c(n) −Hi−1

c(n)

)
. (A.0.13)

Notice that, by (A.0.8) and the mean value theorem, we have

Hi
c(n) −Hi−1

c(n) = Φ−1

∑
γ≤i

P γc(n)

− Φ−1

 ∑
γ≤i−1

P γc(n)


=

d

dx
Φ−1

 ∑
γ≤i−1

P γc(n) + κ

P ic(n), (A.0.14)
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where κ ∈
[
0, P ic(n)

]
. Notice that, since

d

dx
Φ
(
Φ−1(x)

)
=

d

dx
x = 1,

and
d

dx
Φ
(
Φ−1(x)

)
= φ

(
Φ−1(x)

) d

dx
Φ−1(x),

thus we have
d

dx
Φ−1(x) =

1

φ (Φ−1(x))
≥ 1

φ (0)
=
√

2π.

Therefore,

d

dx
Φ−1

 ∑
γ≤i−1

P γc(n) + κ

 ≥ √2π. (A.0.15)

For P ic(n), if P
i
c(n) = 0, then Hi

c(n) = Hi−1
c(n) implying pin(z) = 0, which contradicts (A.0.5). Therefore,

(A.0.11) also holds for the case Hi−1
c(n) > −∞. By (A.0.11), (A.0.14) and (A.0.15), we have

Hi
c(n) −Hi−1

c(n) ≥
√

2πP+
min > 0. (A.0.16)

Consequently, (A.0.13) and (A.0.16) give

pin(z) ≥ η2 > 0, (A.0.17)

where η2 , φ (θ)
√

2πP+
min > 0.

Let η = min (η1, η2) . Then (A.0.12) and (A.0.17) give that, there exists η > 0, such that pin(z) ≥ η.

Similarly, we can show pjn(z) ≥ η > 0. Therefore, (A.0.9) is true. As a consequence of (A.0.4), (A.0.9),

and model assumption 3 in Chapter 4 which ensures that
∣∣LGCin − LGCjn

∣∣ ≥ ξ > 0 if i 6= j for all

n ∈ {0, . . . .N − 1}, we have

V [Ln(z,E)] ≥
(
LGCin − LGCjn

)2
pin(z)pjn(z)

≥ ξ2η2

> 0.

Therefore, we conclude that there exists σ2
min(z) = ξ2η2 such that V [Ln(z,E)] ≥ σ2

min(z) > 0.
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Next we use the two lemmas above to prove Theorem 4.1. First, note that

E
[
L̃2
n(z,E)

]
= ω2

n

(
C−1∑
c=0

(LGCcn)
2
pcn (z)

)

=

(
EADn∑N−1
n=0 EADn

)2(C−1∑
c=0

(LGCcn)
2
pcn (z)

)
. (A.0.18)

From

pcn (z) = Φ

Hc
c(n) − βTnz√
1− βTnβn

− Φ

Hc−1
c(n) − β

T
nz√

1− βTnβn

 ∈ [0, 1]

and model assumptions 1, 2 and 7, which ensure that LGCcn ≤ LGCmax <∞, |EADn| ≤ EADmax <∞,

and
∑N
n=1 EADn 6= 0, we see that (A.0.18) is finite. That is, L̃n(z,E) has a finite second moment.

Next, we show that Linderberg’s condition (A.0.1) is satisfied with Xn = L̃n(z,E). To this end,

choose any ε > 0 and let

K(N) =
1(

σ(N)(z)
)2 N−1∑

n=0

ˆ
{|x−µ̃n(z)|≥εσ(N)(z)}

(x− µ̃n(z))
2
dFn(x)

=
1(

σ(N)(z)
)2 N−1∑

n=0

E
[(
L̃n(z,E)− µ̃n(z)

)2

I{|L̃n(z,E)−µ̃n(z)|≥εσ(N)(z)}
]
,

where

µ̃n (z) = E
[
L̃n(z,E)

]
= ωn

(
C−1∑
c=0

LGCcnp
c
n (z)

)
,

(
σ(N)(z)

)2

(z) = V
[
L(N)(z,E)

]
=

N−1∑
n=0

ω2
nV [Ln(z,E)] .

Since

∣∣∣L̃n(z,E)
∣∣∣ = |ωn|

∣∣∣∣∣∣∣
C−1∑
c=0

LGCcnI{H
c−1
c(n)
−βnzs(n)√
1−β2

n

≤En<
Hc
c(n)
−βnzs(n)√
1−β2

n

}
∣∣∣∣∣∣∣

≤ sup
n
{|ωn|}LGCmax,

and

|µ̃n (z)| = |ωn|
∣∣∣∣∣
C−1∑
c=0

LGCcnp
c
n (z)

∣∣∣∣∣
≤ sup

n
{|ωn|}LGCmax,
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it follows that

∣∣∣L̃n(z,E)− µ̃n(z)
∣∣∣ ≤ ∣∣∣L̃n(z,E)

∣∣∣+ |µ̃n(z)|

≤ 2 sup
n
{|ωn|}LGCmax.

Therefore,

K(N) ≤ 4LGC2
max (supn {|ωn|})2(
σ(N)(z)

)2 N−1∑
n=0

E
[
I{|L̃n(z,E)−µ̃n(z)|≥εσ(N)(z)}

]

=
4LGC2

max (supn {|ωn|})2(
σ(N)(z)

)2 N−1∑
n=0

P
{∣∣∣L̃n(z,E)− µ̃n(z)

∣∣∣ ≥ εσ(N)(z)
}
.

By the generalized Chebyshev’s inequality,

∀ ε > 0, P
{∣∣∣L̃n(z,E)− µ̃n(z)

∣∣∣ ≥ εσ(N)(z)
}
≤

V
[
L̃n(z,E)

]
ε2
(
σ(N)(z)

)2 .
Thus,

K(N) ≤ 4LGC2
max (supn {|ωn|})2

ε2
(
σ(N)(z)

)2 N−1∑
n=0

V
[
L̃n(z,E)

]
(
σ(N)(z)

)2
=

4LGC2
max (supn {|ωn|})2

ε2
(
σ(N)(z)

)2 .

Lemma A.2 gives that
(
σ(N)(z)

)2 ≥ σ2
min(z)

∑N−1
n=0 ω

2
n, whence

K(N) ≤ 4LGC2
max

ε2σ2
min(z)

· (supn {|ωn|})2∑N
n=1 ω

2
n

.

Using Cauchy-Schwartz inequality, we have

N−1∑
n=0

ω2
n ·

N−1∑
n=0

12 ≥
(
N−1∑
n=0

ωn · 1
)2

,

from which it follows that
N−1∑
n=0

ω2
n ≥

1

N
,

since
∑N−1
n=0 ωn = 1. Hence,

K(N) ≤ 4LGC2
max

ε2σ2
min(z)

(
sup
n
{|ωn|}

)2

N.
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The hypothesis of Theorem 4.1 ensures that there exists a δ > 0 such that supn {|ωn|} = O
(
N−(1/2+δ)

)
.

This implies that (supn {|ωn|})2
N = O

(
N−2δ

)
for some positive δ, whence

K(N) ≤ 4LGC2
max

ε2σ2
min(z)

O
(
N−2δ

)
.

Since LGCmax <∞ and σ2
min(z) > 0, for any fixed ε > 0, we have

K(N)→ 0 asN →∞.

Thus we have shown that Linderberg’s condition (A.0.1) holds. Therefore, as a consequence of Lemma

A.1, we have
L(N)(z,E)− E

[
L(N)(z,E)

]√
V
[
L(N)(z,E)

] d→ N (0, 1), as N → +∞.
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Appendix B

Proof of Theorem 4.2

We prove Theorem 4.2 for the 1-dimensional case, for which there is only one systematic risk factor

(S = 1). That is, for all l ∈ R,

P
{
L(N)(Z,E) ≤ l

}
−
ˆ
R

Φ

(
l − µ(N)(z)

σ(N)(z)

)
dΦ(z)→ 0 as N →∞, (B.0.1)

where Φ(z) is the CDF of the standard normal distribution. The proof can be generalized easily to the

multi-dimensional case.

To show (B.0.1), we prove below that

lim
N→∞

ˆ +∞

−∞
f (N)(z)dΦ(z) = 0,

where

f (N)(z) = P
{
L(N)(Z,E) ≤ l

∣∣∣Z = z
}
− Φ

(
l − µ(N)(z)

σ(N)(z)

)
= P

{
L(N)(z,E) ≤ l

}
− Φ

(
l − µ(N)(z)

σ(N)(z)

)
.

More specifically, we show below that

∀ l ∈ R, ∀ δ > 0, ∃ N∗ > 0 such that N ≥ N∗ ⇒
∣∣∣∣ˆ +∞

−∞
f (N)(z)dΦ(z)

∣∣∣∣ < δ.
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First, note that, for all M ∈ [0,∞), we have

∣∣∣∣ˆ +∞

−∞
f (N)(z)dΦ(z)

∣∣∣∣ =

∣∣∣∣∣
ˆ +∞

+M

f (N)(z)dΦ(z) +

ˆ +M

−M
f (N)(z)dΦ(z) +

ˆ −M
−∞

f (N)(z)dΦ(z)

∣∣∣∣∣
≤
ˆ +∞

+M

∣∣∣f (N)(z)
∣∣∣ dΦ(z) +

ˆ +M

−M

∣∣∣f (N)(z)
∣∣∣Φ(z) +

ˆ −M
−∞

∣∣∣f (N)(z)
∣∣∣ dΦ(z)

Since both of P
{
L(N)(z,E) < l

}
and Φ

(
l−µ(N)(z)
σ(N)(z)

)
are probability measures,

∣∣f (N)(z)
∣∣ ≤ 1. Hence,

ˆ +∞

+M

∣∣∣f (N)(z)
∣∣∣ dΦ(z) ≤

ˆ +∞

+M

dΦ(z) = 1− Φ(M).

Similarly,
´ −M
−∞

∣∣f (N)(z)
∣∣ dΦ(z) ≤ 1− Φ(M). Thus,

∣∣∣∣ˆ +∞

−∞
f (N)(z)dΦ(z)

∣∣∣∣ ≤ 2 (1− Φ(M)) +

ˆ +M

−M

∣∣∣f (N)(z)
∣∣∣ dΦ(z).

For any δ > 0, we can choose M > 0 such that 1 − Φ(M) < δ/4. For such an M , Theorem 4.1

implies that
∣∣f (N)(z)

∣∣ → 0 point-wise on the closed interval [−M,M ]. Also,
∣∣f (N)(z)

∣∣ ≤ g(z) = 1 and
´M
−M g(z)dΦ(z) = 2Φ(M)− 1 <∞. Thus, according to the Dominated Convergence Theorem, we have

lim
N→∞

ˆ +M

−M

∣∣∣f (N)(z)
∣∣∣ dΦ(z) =

ˆ +M

−M
lim
N→∞

∣∣∣f (N)(z)
∣∣∣ dΦ(z) = 0.

Therefore, ∀ δ′ = δ/2 > 0, ∃ N∗ > 0 such that ∀ N ≥ N∗

ˆ +M

−M

∣∣∣f (N)(z)
∣∣∣ dΦ(z) ≤ δ′ =

δ

2
.

Hence, ∀ l ∈ R, ∀ δ > 0, ∃M ∈ [0,+∞), ∃ N∗ > 0 such that ∀ N ≥ N∗

∣∣∣∣ˆ +∞

−∞
f (N)(z)dΦ(z)

∣∣∣∣ ≤ 2 (1− Φ(M)) +

ˆ +M

−M

∣∣∣f (N)(z)
∣∣∣ dΦ(z)

≤ 2 · δ
4

+
δ

2

= δ.

Therefore, we conclude that P
{
L(N)(Z,E) ≤ l

}
−
´
R Φ

(
l−µ(N)(z)
σ(N)(z)

)
dΦ(z)→ 0, as N → +∞.
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Appendix C

Proof of Theorem 4.3

Let X = X (Z) = P
{
L(N) (Z,E) ≤ l

∣∣Z}, X =
(
X
(
Z(1)

)
, . . . , X

(
Z(U)

))T
, and µX = E [X (Z)].

Then P {L (Z,E) ≤ l} = µX . SinceX
(
Z(u)

)
are independent and identically-distributed, the confidence

interval, [P−α (X ), P+
α (X )] , for µX at level 1− α, can be computed as

P±α (X ) = X̄ ± tU−1,1−α/2

√
S2
X /U, (C.0.1)

where X̄ =
∑U
u=1X

(
Z(u)

)
/U , tU−1,1−α/2 is the 1−α/2 critical value for the t distribution with U − 1

degrees of freedom, and S2
X is the sample variance of X(Z) defined by

S2
X =

1

U − 1

U∑
u=1

(
X
(
Z(u)

)
− X̄

)2

.

That is,

P
{
µX ∈

[
P−α (X ), P+

α (X )
]}

= 1− α.

Since we use the CLT approximation to estimate the conditional loss probability X
(
Z(u)

)
,

X
(
Z(u)

)
≈ Φ

 l − µ(N)
(
Z(u)

)
σ(N)

(
Z(u)

)
 , (C.0.2)

there is an asymptotic error associated with (C.0.2), δ
(
l,Z(u)

)
, mentioned earlier in (4.2.4). Therefore,

X
(
Z(u)

)
= Φ

 l − µ(N)
(
Z(u)

)
σ(N)

(
Z(u)

)
+ δ

(
l,Z(u)

)
.
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By (4.2.7), the error function δ
(
l,Z(u)

)
can be bounded:

∣∣∣δ (l,Z(u)
)∣∣∣ ≤ B

 l − µ(N)
(
Z(u)

)
σ(N)

(
Z(u)

)
 .

Therefore,

X
(
Z(u)

)
≥ Φ

 l − µ(N)
(
Z(u)

)
σ(N)

(
Z(u)

)
−B

 l − µ(N)
(
Z(u)

)
σ(N)

(
Z(u)

)
 ,

and

X
(
Z(u)

)
≤ Φ

 l − µ(N)
(
Z(u)

)
σ(N)

(
Z(u)

)
+B

 l − µ(N)
(
Z(u)

)
σ(N)

(
Z(u)

)
 .

Let

X±
(
Z(u)

)
= Φ

 l − µ(N)
(
Z(u)

)
σ(N)

(
Z(u)

)
±B

 l − µ(N)
(
Z(u)

)
σ(N)

(
Z(u)

)
 ,

X± =
[
X±

(
Z(1)

)
, . . . , X±

(
Z(U)

)]T
,

and

uα(X ) = P−α
(
X−

)
, vα(X ) = P+

α

(
X+

)
.

Han [23] has shown that both P+
α (X ) and P−α (X ) are non-decreasing functions with respect to each

element of X . Hence

uα(X ) ≤ P−α (X ) ≤ P+
α (X ) ≤ vα(X ).

That is, we find an observable interval [uα(X ), vα(X )] bracketing the interval [P−α (X ), P+
α (X )]:

[
P−α (X ), P+

α (X )
]
⊆ [uα(X ), vα(X )] . (C.0.3)

Since the set E = {µX ∈ [uα(X ), vα(X )]} can be partitioned as E = E1 ∪ E2, E1 ∩ E2 = ∅, where

E1 =
{
µX ∈ [uα(X ), vα(X )] , µX ∈

[
P−α (X ), P+

α (X )
]}
,

E2 =
{
µX ∈ [uα(X ), vα(X )] , µX /∈

[
P−α (X ), P+

α (X )
]}
,
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we have

P {µX ∈ [uα(X ), vα(X )]} = P {E1}+ P {E2}

≥ P {E1} .

Due to (C.0.3), we have P {E1} = P {µX ∈ [P−α (X ), P+
α (X )]}. Thus

P {µX ∈ [uα(X ), vα(X )]} ≥ P
{
µX ∈

[
P−α (X ), P+

α (X )
]}

= 1− α.
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Appendix D

Proof of Theorem 5.4

To prove Theorem 5.4, we need the following lemmas.

Lemma D.1. Let x and y be vectors of length Kx and Ky, respectively, where, without loss of generality,

we assume Kx ≥ Ky. Then

x ∗ y[k] =



k∑
j=0

x[j]y[k − j] =

k∑
j=0

x[k − j]y[j], k = 0, . . . ,Ky − 1,

k∑
j=k−(Ky−1)

x[j]y[k − j] =

Ky−1∑
j=0

x[k − j]y[j], k = Ky, . . . ,Kx − 1,

Kx−1∑
j=k−(Ky−1)

x[j]y[k − j] =

Ky−1∑
j=k−(Kx−1)

x[k − j]y[j], k = Kx, . . . , (Kx − 1) + (Ky − 1) .

(D.0.1)

Consequently, if Kx = Ky = K, then

x ∗ y[k] =



k∑
j=0

x[j]y[k − j] =

k∑
j=0

x[k − j]y[j], k = 0, . . . ,K − 1,

K−1∑
j=k−(K−1)

x[j]y[k − j] =

K−1∑
j=k−(K−1)

x[k − j]y[j], k = K, . . . , 2 (K − 1) .

(D.0.2)

Proof. First, we prove

x ∗ y[k] =

min{k,Kx−1}∑
j=k−min{k,Ky−1}

x[j]y[k − j]. (D.0.3)

The discrete linear convolution (5.1.10) is equivalent to

x ∗ y[k] =

Kx−1∑
j=0

x[j]y[k − j] (D.0.4)
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for k = 0, . . . , (Kx− 1) + (Ky − 1) with the added constraint that the indices j and K − j do not go out

of range. That is, 
0 ≤ j ≤ Kx − 1

0 ≤ k − j ≤ Ky − 1

(D.0.5)

Since the second pair of inequalities above is equivalent to

k − (Ky − 1) ≤ j ≤ k, (D.0.6)

(D.0.6) together with the first pair of inequalities in (D.0.5) imply

max{0, k − (Ky − 1)} ≤ j ≤ min{k,Kx − 1},

or equivalently,

k −min {k,Ky − 1} ≤ j ≤ min {k,Kx − 1} .

Therefore, (D.0.4) together with the constraints (D.0.5) on its indices is equivalent to

x ∗ y[k] =

min{k,Kx−1}∑
j=k−min{k,Ky−1}

x[j]y[k − j]. (D.0.7)

Similarly, we can prove

x ∗ y[k] =

min{k,Ky−1}∑
j=k−min{k,Kx−1}

x[k − j]y[j]. (D.0.8)

Finally, (D.0.7) and (D.0.8) are equivalent to (D.0.1) and (D.0.2).

Lemma D.2. Let x and y be vectors of length K, then

x ? y[k] =



k∑
j=0

x[j]y[k − j] +

K−1∑
j=k+1

x[j]y[K + k − j], k = 0, . . . ,K − 2,

K−1∑
j=0

x[j]y[(K − 1)− j], k = K − 1.

(D.0.9)

Proof. For convenience, we repeat the definition of the discrete circular convolution (5.2.1):

x ? y[k] =

K−1∑
j=0

x[j]y [(k − j)mod K]
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for k = 0, . . .K − 1. For j = 0, . . . , k, since 0 ≤ k − j < K,

(k − j)mod K = k − j. (D.0.10)

For j = k + 1, . . . ,K − 1, since −K < k − j < 0,

(k − j)mod K = K + k − j. (D.0.11)

Therefore, for k = 0, . . . ,K − 2,

x ? y[k] =

k∑
j=0

x[j]y [(k − j)mod K] +

K−1∑
j=k+1

x[j]y [(k − j)mod K]

=

k∑
j=0

x[j]y[k − j] +

K−1∑
j=k+1

x[j]y[K + k − j],

and for k = K − 1,

x ? y[k] =

K−1∑
j=0

x[j]y [(k − j)mod K]

=

K−1∑
j=0

x[j]y[(K − 1)− j].

Next we prove Theorem 5.4 by induction for K > N . One can use similar arguments to prove this

theorem for K ≤ N .

First notice that, for all n ∈ N+ = {n ∈ N : n ≥ 1} ,

Unk = max {u ∈ N |0 ≤ uK + k ≤ (n+ 1)(K − 1)}

= max

{
u ∈ N

∣∣∣∣0 ≤ u ≤ (n+ 1)− (n+ 1) + k

K

}
= (n+ 1)−

⌈
(n+ 1) + k

K

⌉
. (D.0.12)

For the base case of the induction, let N = 2. Since K > N ,

UN−1
k = 2−

⌈
2 + k

K

⌉
=


1, for k = 0, . . . ,K − 2,

0, for k = K − 1.
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Thus we need to prove

(
1
?
n=0
xn

)
[k] =


(

1

~
n=0
xn

)
[k] +

(
1

~
n=0
xn

)
[K + k], for k = 0, . . . ,K − 2,(

1

~
n=0
xn

)
[k], for k = K − 1.

(D.0.13)

Applying Lemma D.2, we have

(
1
?
n=0
xn

)
[k] = x0 ? x1[k]

=



k∑
j=0

x0[j]x1[k − j] +

K−1∑
j=k+1

x0[j]x1[K + k − j], k = 0, . . . ,K − 2,

K−1∑
j=0

x0[j]x1[(K − 1)− j], k = K − 1.

(D.0.14)

For k = 0, . . . ,K − 1, we have

(
1

~
n=0
xn

)
[k] = x0 ∗ x1[k] =

k∑
j=0

x0[j]x1[k − j] (D.0.15)

by the first equation in (D.0.2). For k = 0, . . . ,K − 2, we have K + k = K, . . . , 2(K − 1), whence, by

the second equation in (D.0.2),

(
1

~
n=0
xn

)
[K + k] = x0 ∗ x1[K + k] =

K−1∑
j=k+1

x0[j]x1[K + k − j]. (D.0.16)

Substituting (D.0.15) and (D.0.16) into (D.0.14), we obtain (D.0.13). Therefore, (5.2.5) is true for N = 2.

For the induction step, suppose (5.2.5) is true for some N ≥ 2 and N < K. That is

x̃?N−1[k] =

UN−1
k∑
u=0

x̃N−1[uK + k]. (D.0.17)

We prove below that (5.2.5) is true for N + 1. Denote x̃N−1
.
=
N−1

~
n=0

xn and x̃?N−1
.
=
N−1
?
n=0

xn. Since

(N+1)−1

?
n=0

xn = x̃?N−1 ? xN ,
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and both x̃?N−1 and xN are of length K, by Lemma D.2, we have

(
(N+1)−1

?
n=0

xn

)
[k] =



k∑
j=0

x̃?N−1[j]xN [k − j] +

K−1∑
j=k+1

x̃?N−1[j]xN [K + k − j], k = 0, . . . ,K − 2,

K−1∑
j=0

x̃?N−1[j]xN [(K − 1)− j], k = K − 1.

For k = 0, . . . ,K −N − 1,

(
(N+1)−1

?
n=0

xn

)
[k] =

k∑
j=0

x̃?N−1[j]xN [k − j]

+

K−N∑
j=k+1

x̃?N−1[j]xN [K + k − j] +

K−1∑
j=K−N+1

x̃?N−1[j]xN [K + k − j].

Substituting (D.0.17) into the equation above, we have

(
(N+1)−1

?
n=0

xn

)
[k] =

k∑
j=0

UN−1
j∑
u=0

x̃N−1[uK + j]xN [k − j]

+

K−N∑
j=k+1

UN−1
j∑
u=0

x̃N−1[uK + j]xN [K + k − j]

+

K−1∑
j=K−N+1

UN−1
j∑
u=0

x̃N−1[uK + j]xN [K + k − j].

From (D.0.12), we have

UN−1
j = N −

⌈
N + j

K

⌉
=


N − 1, j = 0, . . . ,K −N,

N − 2, j = K −N + 1, . . . ,K − 1.
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Therefore,

(
(N+1)−1

?
n=0

xn

)
[k] =

N−1∑
u=0

k∑
j=0

x̃N−1[uK + j]xN [k − j] (D.0.18)

+

N−1∑
u=0

K−N∑
j=k+1

x̃N−1[uK + j]xN [K + k − j] (D.0.19)

+

N−2∑
u=0

K−1∑
j=K−N+1

x̃N−1[uK + j]xN [K + k − j]. (D.0.20)

Make the change variable j∗ = k − j for (D.0.18) and j∗ = K + k − j for (D.0.19) and (D.0.20) to get

(
(N+1)−1

?
n=0

xn

)
[k] =

N−1∑
u=0

k∑
j∗=0

x̃N−1[uK + k − j∗]xN [j∗]

+

N−1∑
u=0

K−1∑
j∗=N+k

x̃N−1[(u+ 1)K + k − j∗]xN [j∗]

+

N−2∑
u=0

N+k−1∑
j∗=k+1

x̃N−1[(u+ 1)K + k − j∗]xN [j∗]

=

N−1∑
u=0

k∑
j=0

x̃N−1[uK + k − j]xN [j]

+

N∑
u=1

K−1∑
j=N+k

x̃N−1[uK + k − j]xN [j]

+

N−1∑
u=1

N+k−1∑
j=k+1

x̃N−1[uK + k − j]xN [j]

=

k∑
j=0

x̃N−1[k − j]xN [j]

+

N−1∑
u=1

K−1∑
j=0

x̃N−1[uK + k − j]xN [j]

+

K−1∑
j=N+k

x̃N−1[NK + k − j]xN [j]. (D.0.21)
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Similarly, for k = K −N , we have

(
(N+1)−1

?
n=0

xn

)
[k]

=

K−N∑
j=0

x̃?N−1[j]xN [(K −N)− j] +

K−1∑
j=K−N+1

x̃?N−1[j]xN [K + (K −N)− j]

=

N−1∑
u=0

K−N∑
j=0

x̃N−1[uK + j]xN [(K −N)− j] +

N−2∑
u=0

K−1∑
j=K−N+1

x̃N−1[uK + j]xN [K + (K −N)− j]

=

N−1∑
u=0

K−N∑
j∗=0

x̃N−1[uK + (K −N)− j∗]xN [j∗] +

N−1∑
u=1

K−1∑
j∗=(K−N)+1

x̃N−1[uK + (K −N)− j∗]xN [j∗]

=

N−1∑
u=0

K−N∑
j=0

x̃N−1[uK + (K −N)− j]xN [j] +

N−1∑
u=1

K−1∑
j=(K−N)+1

x̃N−1[uK + (K −N)− j]xN [j]

=

K−N∑
j=0

x̃N−1[(K −N)− j]xN [j] +

N−1∑
u=1

K−1∑
j=0

x̃N−1[uK + (K −N)− j]xN [j], (D.0.22)

and for k = K −N + 1, . . . ,K − 2, we have

(
(N+1)−1

?
n=0

xn

)
[k]

=

K−N∑
j=0

x̃?N−1[j]xN [k − j] +

k∑
j=K−N+1

x̃?N−1[j]xN [k − j]

+

K−1∑
j=k+1

x̃?N−1[j]xN [K + k − j]

=

N−1∑
u=0

K−N∑
j=0

x̃N−1[uK + j]xN [k − j] +

N−2∑
u=0

k∑
j=K−N+1

x̃N−1[uK + j]xN [k − j]

+
N−2∑
u=0

K−1∑
j=k+1

x̃N−1[uK + j]xN [K + k − j]

=

N−1∑
u=0

k∑
j∗=N−K+k

x̃N−1[uK + k − j∗]xN [j∗] +

N−2∑
u=0

N−K+k−1∑
j∗=0

x̃N−1[uK + k − j∗]xN [j∗]

+

N−1∑
u=1

K−1∑
j∗=k+1

x̃N−1[uK + k − j∗]xN [j∗]

=

k∑
j=0

x̃N−1[k − j]xN [j]

+

N−2∑
u=1

K−1∑
j=0

x̃N−1[uK + k − j]xN [j]

+

K−1∑
j=N−K+k

x̃N−1[(N − 1)K + k − j]xN [j], (D.0.23)
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and for k = K − 1, we have

(
(N+1)−1

?
n=0

xn

)
[k]

=

K−N∑
j=0

x̃?N−1[j]xN [(K − 1)− j] +

K−1∑
j=K−N+1

x̃?N−1[j]xN [(K − 1)− j]

=

N−1∑
u=0

K−N∑
j=0

x̃N−1[uK + j]xN [(K − 1)− j] +

N−2∑
u=0

K−1∑
j=K−N+1

x̃N−1[uK + j]xN [(K − 1)− j]

=

N−1∑
u=0

K−1∑
j∗=N−1

x̃N−1[uK + (K − 1)− j∗]xN [j∗] +

N−2∑
u=0

N∑
j∗=0

x̃N−1[uK + (K − 1)− j∗]xN [j∗]

=

N−2∑
u=0

K−1∑
j∗=0

x̃N−1[uK + (K − 1)− j]xN [j] +

K−1∑
j∗=N−1

x̃N−1[(N − 1)K + (K − 1)− j]xN [j]

=

N−2∑
u=0

K−1∑
j=0

x̃N−1[uK + (K − 1)− j]xN [j] +

K−1∑
j=N−1

x̃N−1[NK − 1− j]xN [j]. (D.0.24)

On the other hand, consider

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + k] =

UNk∑
u=0

x̃N−1 ∗ xN [uK + k].

For k = 0, . . . ,K −N − 1,

UNk = (N + 1)−
⌈

(N + 1) + k

K

⌉
,

Since N < K, then

⌈
(N + 1) + k

K

⌉
≤
⌈

(N + 1) +K −N − 1

K

⌉
= 1,⌈

(N + 1) + k

K

⌉
≥
⌈
N + 1

K

⌉
= 1.

Therefore, UNk = N and

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + k]

=

N∑
u=0

x̃N−1 ∗ xN [uK + k]

= x̃N−1 ∗ xN [k] +

N−1∑
u=1

x̃N−1 ∗ xN [uK + k] + x̃N−1 ∗ xN [NK + k]. (D.0.25)

Notice that, since x̃N−1 has length Kx = N(K−1)+1, xN has length Ky = K, and 0 ≤ k ≤ K−N−1 ≤
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Ky, by the first equality in (D.0.1),

x̃N−1 ∗ xN [k] =

k∑
j=0

x̃N−1[k − j]xN [j]. (D.0.26)

Also, for u = 1, . . . , N − 1,

uK + k ≤ (N − 1)K +K −N − 1 = N(K − 1)− 1 < Kx − 1,

and

uK + k ≥ K = Ky,

thus by the second equality in (D.0.1),

N−1∑
u=1

x̃N−1 ∗ xN [uK + k] =

N−1∑
u=1

K−1∑
j=0

x̃N−1[uK + k − j]xN [j]. (D.0.27)

Similarly,

NK + k ≤ NK +K −N − 1 = (N + 1)(K − 1) = (Kx − 1) + (Ky − 1),

and

NK + k ≥ NK ≥ N(K − 1) + 1 = Kx,

hence by the third equality in (D.0.1),

x̃N−1 ∗ xN [NK + k] =

K−1∑
j=NK+k−N(K−1)

x̃N−1[NK + k − j]xN [j]

=

K−1∑
j=N+k

x̃N−1[NK + k − j]xN [j] (D.0.28)
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Substituting (D.0.26), (D.0.27) and (D.0.28) into (D.0.21), we obtain

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + k] =

k∑
j=0

x̃N−1[k − j]xN [j]

+

N−1∑
u=1

K−1∑
j=0

x̃N−1[uK + k − j]xN [j]

+

K−1∑
j=N+k

x̃N−1[NK + k − j]xN [j],

which is the same as (D.0.21), implying

(
(N+1)−1

?
n=0

xn

)
[k] =

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + k]

for k = 0, . . . ,K −N − 1.

For k = K −N ,

UNk = (N + 1)−
⌈

(N + 1) + (K −N)

K

⌉
= (N + 1)−

⌈
K + 1

K

⌉
= N − 1,

thus,

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + (K −N)]

=

N−1∑
u=0

x̃N−1 ∗ xN [uK + (K −N)]

= x̃N−1 ∗ xN [K −N ] +

N−1∑
u=1

x̃N−1 ∗ xN [uK + (K −N)]. (D.0.29)

Since 0 ≤ K −N < Ky − 1, by the first equality in (D.0.1), we have

x̃N−1 ∗ xN [K −N ] =

K−N∑
j=0

x̃N−1[(K −N)− j]xN [j], (D.0.30)

Also, for u = 1, . . . , N − 1,

uK + k ≤ (N − 1)K + (K −N) = N(K − 1) < Kx − 1,
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and

K + (K −N) ≥ K = Ky,

thus, by the second equality in (D.0.1),

N−1∑
u=1

x̃N−1 ∗ xN [uK + (K −N)] =

N−1∑
u=1

K−1∑
j=0

x̃N−1[uK + (K −N)− j]xN [j]. (D.0.31)

Substituting (D.0.30) and (D.0.31) into (D.0.29), we obtain

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + (K −N)] =

K−N∑
j=0

x̃N−1[(K −N)− j]xN [j]

+

N−1∑
u=1

K−1∑
j=0

x̃N−1[uK + (K −N)− j]xN [j],

which is the same as (D.0.22), implying

(
(N+1)−1

?
n=0

xn

)
[k] =

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + k]

for k = K −N .

For k = K −N + 1, . . . ,K − 2, UNk = (N + 1)−
⌈

(N+1)+k
K

⌉
. Since K > N ,

⌈
(N + 1) + k

K

⌉
≤
⌈

(N + 1) +K − 2

K

⌉
= 1 +

⌈
N − 1

K

⌉
= 2,⌈

(N + 1) + k

K

⌉
≥
⌈

(N + 1) +K −N + 1

K

⌉
= 1 +

⌈
2

K

⌉
= 2.

Therefore UNk = N − 1, and

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + k]

=

N−1∑
u=0

x̃N−1 ∗ xN [uK + k]

= x̃N−1 ∗ xN [k] +

N−2∑
u=1

x̃N−1 ∗ xN [uK + k] + x̃N−1 ∗ xN [(N − 1)K + k]. (D.0.32)

Since 0 ≤ k ≤ K − 2 ≤ Ky, by the first equality in (D.0.1),
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x̃N−1 ∗ xN [k] =

k∑
j=0

x̃N−1[k − j]xN [j]. (D.0.33)

Also, for u = 1, . . . , N − 2,

uK + k ≤ (N − 2)K +K − 2 = NK −K − 2 ≤ N(K − 1) = Kx − 1,

and

uK + k ≥ K + (K −N + 1) ≥ K = Ky,

thus by the second equality in (D.0.1),

N−2∑
u=1

x̃N−1 ∗ xN [uK + k] =

N−2∑
u=1

K−1∑
j=0

x̃N−1[uK + k − j]xN [j]. (D.0.34)

Similarly, since K > N ,

(N − 1)K + k ≤ (N − 1)K +K − 2

= NK − 2 ≤ NK + (K −N)− 1

= N(K − 1) + (K − 1)

= (Kx − 1) + (Ky − 1),

and

(N − 1)K + k ≥ (N − 1)K +K −N + 1 = N(K − 1) + 1 = Kx,

hence, by the third equality in (D.0.1),

x̃N−1 ∗ xN [(N − 1)K + k]

=

K−1∑
j=(N−1)K+k−N(K−1)

x̃N−1[(N − 1)K + k − j]xN [j] (D.0.35)

=

K−1∑
j=N−K+k

x̃N−1[(N − 1)K + k − j]xN [j]. (D.0.36)
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Substituting (D.0.33), (D.0.34) and (D.0.35) into (D.0.21), we obtain

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + k] =

k∑
j=0

x̃N−1[k − j]xN [j]

+

N−2∑
u=1

K−1∑
j=0

x̃N−1[uK + k − j]xN [j]

+

K−1∑
j=N−K+k

x̃N−1[(N − 1)K + k − j]xN [j],

which is the same as (D.0.23), implying

(
(N+1)−1

?
n=0

xn

)
[k] =

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + k]

for k = K −N + 1, . . . ,K − 2.

For k = K − 1, since K > N ,

UNk = (N + 1)−
⌈

(N + 1) + (K − 1)

K

⌉
= N −

⌈
N

K

⌉
= N − 1,

and

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + (K − 1)]

=

N−1∑
u=0

x̃N−1 ∗ xN [uK + (K − 1)]

= x̃N−1 ∗ xN [K − 1] +

N−2∑
u=1

x̃N−1 ∗ xN [uK + (K − 1)] + x̃N−1 ∗ xN [(N − 1)K + (K − 1)].

= x̃N−1 ∗ xN [K − 1] +

N−2∑
u=1

x̃N−1 ∗ xN [uK + (K − 1)] + x̃N−1 ∗ xN [NK − 1]. (D.0.37)

Since 0 ≤ K − 1 < Ky − 1, by the first equality in (D.0.1), we have

x̃N−1 ∗ xN [K − 1] =

K−1∑
j=0

x̃N−1[(K − 1)− j]xN [j], (D.0.38)

Also, for u = 1, . . . , N − 2,

uK + k ≤ (N − 2)K + (K − 1) = NK −K − 1 < N(K − 1) = Kx − 1,
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and

K + (K − 1) ≥ K = Ky,

thus by the second equality in (D.0.1),

N−2∑
u=1

x̃N−1 ∗ xN [uK + (K − 1)] =

N−2∑
u=1

K−1∑
j=0

x̃N−1[uK + (K − 1)− j]xN [j]. (D.0.39)

Also, since K > N

NK − 1 ≤ NK + (K −N)− 1 = N(K − 1) + (K − 1) = (Kx − 1) + (Ky − 1),

and since N ≥ 2

NK − 1 ≥ NK − (N − 1) = N(K − 1) + 1 = Ky,

hence, by the third equality in (D.0.1),

x̃N−1 ∗ xN [NK − 1] =

K−1∑
j=NK−1−N(K−1)

x̃N−1[NK − 1− j]xN [j]

=

K−1∑
j=N−1

x̃N−1[NK − 1− j]xN [j]. (D.0.40)

Substituting (D.0.38), (D.0.39) and (D.0.40) into (D.0.37), we obtain

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + (K −N)]

=

N−2∑
u=0

K−1∑
j=0

x̃N−1[uK + (K − 1)− j]xN [j]

+

K−1∑
j=N−1

x̃N−1[NK − 1− j]xN [j],

which is the same as (5.2.6), implying

(
(N+1)−1

?
n=0

xn

)
[k] =

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + k]

for k = K − 1.
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Therefore, we have proved that

(
(N+1)−1

?
n=0

xn

)
[k] =

U
(N+1)−1
k∑
u=0

(
N

~
n=0
xn

)
[uK + k]

for k = 0, . . . ,K − 1, which implies (5.2.5) is true for N + 1. This completes the proof.
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