TRACING CODE:
THE MEMORY MODEL

36

Areas of Memory

There are two areas of computer memory for
a running program:

Run-Time Stack: (a.k.a. call stack):

e Holds information that is local to method
calls, like parameters, local variables, and
which line of code is being executed.

e When a method terminates, all this infor-
mation is erased.

Heap:
e Holds longer-lived information, like:

— Objects and their contents
(anything created with new)

— static information.

The memory model traces how the computer

uses these two areas while running a program.*
*The memory model rules deal only with running code.
They do not describe what happens at compile time,

such as figuring out whether a private variable can be
accessed.

37

(‘Buiuuny J0u InQg ‘s|ge|ieae
2Je spoyjaw 9say_]) 'Spoylaw aduUelsul pue sa|qelen
2ouelsul bululequod ‘109fqo BuIlsixs Yyoes Jo) Xog auQ

2oeds 109lqO :deoH

"UOITNDDXD
weldboid Bulnp 4oy paleaud a4k SeXoq Mmau ON

(*Buiuuni 30U 1INnq
‘Dlge|ieAe 24 Spoylaw @say]) ‘Spoyiaw Di1els pue
sa|qelJeA 211e31s Bululejuod ‘ssejd yoes Jo) Xog auQ

2oeds oijels :deoH

‘sa|qellen
|eoo] pue sialaweled s,poylawl
1eyl sulejuod awed) yoe3

‘poyraw buluunu
yoea Joy (,2wels poyiaw,,
1O ,2wel) Moels,) xoq auQ

(>oe3s awil-unJd ay3l)
2o3eds poylon
joels

38

SpoylaW pue sajgelreA asueisul :Sjusuo)

()anes pion

()aneb i

T86/9SSE pi jul

JuspnIS 0TOT

(ssejo sy jo awreu) ssa.ppe AlowaN
103lqo Jo adAL
‘20URISU |
()sqe aignop spoyiow pue
OX@E ul Sa|gelieA dnels Ssjusauod
TBSTVTE |19 a|gnop
1090 Uren
ssejoladns SSep J0 aweN

a1 Jo aweN :X0Q 2118IS

Sa|gelieA [ed0| pue sia)aweled :Sjusiuod

Sse|DUIR\ T : urew

sse|o sl
10 sweN

aul Bunnoaxa-Apualind
pue poylaw Jo sweN

BWR 1) poyP N

39

Tracing Program EXxecution

1. Load the classes and interfaces.

Load each class and interface by drawing
its static space.

Follow the rules on the upcoming slides.

2. Call method main.

Begin execution by tracing a call to method
main().

3. Trace each statement line by line.

Follow the rules on the upcoming slides.

40

Step 1: Loading the Classes and

Interfaces

For each class or interface:

1.

2.

Draw a box in the static space.

Write the name of the class or interface in
the top-left corner.

. Write the name of the parent class in the

top-right corner, along with any interfaces
that the class implements.

. Draw:

e Static variables: type, name and value
e sStatic methods: return type and name

Note that only one copy of each static mem-
ber exists, no matter how many objects are
created.

Example: Trace the loading process for this
program ...

41

TestFrac program*

public class TestFrac {
public static void main(String[] args) A{
Frac f1 = new Frac(3, 4);
Frac f2 = new Frac(2, 3);
Frac £f3 = new Frac(1l, 2);
Frac f4 = Frac.max(f1, Frac.max(f2, £3));

}

public class Frac {
private int numer, denom;
private static int numCreated;

public Frac(int n, int d4)
{ numer = n; denom = d; numCreated++; 1}

public static Frac max(Frac a, Frac b) A
int aSize = a.numer*b.denom;
int bSize = b.numer*a.denom;
if (aSize > bSize) return a;
else return b;

+

public Frac mult(Frac f) A
return new Frac(this.numer * f.numer, this.denom * f.denom);

+

public String toString()
{ return numer + "/" + denom; }

*Apologies for the names: they are abbreviated to make
the code fit on one page.

42

Step 3: Tracing statement
execution

These are the types of statements we have to
trace.

Statement type | Syntax
method call expression.methodname(args) ;

(args is a comma-separated list
of expressions)

Example: s.substring(3,5);
declaration type identifier;

Example: String s;

assignment identifier = expression;
Example: t = -55;
initialization type identifier = expression;

(initializations combine
declarations and
assignment statements)

Example: int i = 3;
return return expression;

Example: return £();

43

Example

class Simple {
public static int zonkest(int one, int two)
if ((one > 0) && (one < two))
return one;
else
return two;

}

public static void main(Stringl[] args){
int 1 = 7;
int j = 4;
int k = -2;
int 1 = zonkest((i+j)/k, j*k);

A very complex method call

zonkest(Math.max(s.length(), t.length()+1),

((String) (v.elements() .nextElement()))
.length()

)

{

44

Tracing Rules

Method call:

1.

In the code for the method call, label the expres-
sions with Roman numerals to indicate the order in
which they will be evaluated.

. In order, evaluate each argument and draw a box

on the top of the stack to hold the argument value.

Draw a frame for the method on top of the stack;
include the argument boxes from step 2 inside the
new frame.

. Write the method name in the top-left corner and

the method scope in the top-right corner.*

. Any argument values will be on top of the method

stack from step 1. Rename the box for each value
to the corresponding parameter name.

. Write :1 (the line number) after the method name.

Execute the method line-by-line, incrementing the
line number.

*The method scope is the address of an object if the
method is non-static, and is the name of a class if the
method is static.

45

Declaration:

In the current frame, write the variable type
and name, and draw a box to hold the value.

Assignment:

1. Evaluate the expression on the right side
of =.

2. Write the result in the variable referred to
on the left side.

Do not create a new box.

Initialization: Do the declaration and then the
assignment (as above).

return: Evaluate the expression and replace
the current method frame with the result value.

Tracing statements involves evaluating expres-
sions (inside-out and left to right).
46

“new” expression _
(special because it creates an object):

1. Draw a new object in the object space.

Use a stack of boxes to represent the object’s class
and its ancestors in the inheritance hierarchy.

For each box:

e Write the class name in the top-right corner,
along with any implemented interfaces.

e Draw:

— instance variables: type, name and default
value

— instance methods: return type and name

2. In the topmost box, write the address of the object
in the top-left corner.
Represent the address with an arbitrary four-bit
number (e.g., 0010, 1010).

3. Execute the constructor call.
The constructor’s scope is the new object.

4. When the constructor is done, the value of the new
expression is the address of the new object.

Example: Frac f1 = new Frac(3, 4);
47

Special cases with ‘“hew”

You can create a String object without saying
“neW” .

Example:

String s = "Wombat"; // Shorthand.
String s = new String("Wombat"); // What it means.

What about drawing an instance of a class that
you didn’t write, such as String?

e You probably don’t know what the instance
variables are.

e Yet you need to keep track of the contents
of the object somehow.

Just make up a sensible notation.

Examples:

String s = new String('"Wombat");
Integer i = new Integer(27);
Vector v = new Vector();
v.addElement(s) ;
v.addElement (i) ;

48

Simplifications
When tracing, simplifications such as these may
be justified:

e If a class contains nothing static, omit its
static box.

e When drawing an object, include boxes for
only those ancestor classes that you wrote
yourself.

e Omit variable types.

Make simplifications only where you are confi-
dent about the code. In the places where you
are unsure, include all the detail.

49

TestFrac Program
Now trace this fully.

public class TestFrac {
public static void main(String[] args) {
Frac f1 = new Frac(3, 4);
Frac f2 = new Frac(2, 3);
Frac £f3 = new Frac(1l, 2);
Frac f4 = Frac.max(f1, Frac.max(f2, £3));

}

public class Frac {
private int numer, denom;
private static int numCreated;

public Frac(int n, int d4)
{ numer = n; denom = d; numCreated++; 1}

public static Frac max(Frac a, Frac b) {
int aSize = a.numer*b.denom;
int bSize = b.numer*a.denom;
if (aSize > bSize) return a;
else return b;

+

public Frac mult(Frac f) A
return new Frac(this.numer * f.numer, this.denom * f.denom);

+

public String toString()
{ return numer + "/" + denom; }

50

- ()3nw oea

oeld

c

wiousp 1ul

T

Jouwinu jul

OTOO0

oel

o (O)31nw oeud

€

c

wiouap Jul
Jouwinu jul

- ()3nw deua

1000

oel

14

wiousp 1ul

€

Jouwinu jul

0000

OTOO0

1000

0000

1seL

i okl
€4 oeud
¢4 dkld
T4 Oeld

:ulew

199[q0O

(Jurew pioa

sl

199[q0O

()xew 2eu

¢ | paieasdDwnu jul

oel

51

- ()3nw oea

c

wiousp 1ul

T

Jouwinu jul

oeld

OTOO0

oel

o (O)31nw oeud

€

c

wiouap Jul
Jouwinu jul

- ()3nw deua

14

wiousp 1ul

€

Jouwinu jul

1000

oel

i okl

OTOO0

€4 oeld

1000

¢4 oeld

0000

T4 oedd

sl

:ulew

0000

0000

1000 ke

OT00 :9

199[q0O

(Jurew pioa

sl

oeld

9Z1Sq Ul
9ZISe 1ul

c:xew

€

()xew 2eu

pailealDwWwnu Jul

199[q0O

oel

52

- ()3nw oea

oeld

c

wiousp 1ul

T

Jouwinu jul

OTOO0

oel

o (O)31nw oeud

€

c

wiouap Jul
Jouwinu jul

- ()3nw deua

1000

oel

14

wiousp 1ul

€

Jouwinu jul

i okl

OTOO

€4 oeJd

1000

¢4 oeid

0000

T4 oedd

sl

:ulew

0000

0000 :®e

1000 9

199[q0O

(Jurew pioa

sl

oeld

9Z1Sq Ul
2ZISe 1ul

c:xew

199[q0O

()xew 2eu

¢ | paieasdDwnu jul

oel

53

- ()3nw oea

c

wiousp 1ul

T

Jouwinu jul

oeld

OTOO0

oel

o (O)31nw oeud

€

c

wiouap Jul
Jouwinu jul

- ()3nw deua

14

wiousp 1ul

€

Jouwinu jul

1000

oel

0000

0000

OTOO0

1000

0000

s

¥4 oeud
¢4 oeud
¢4 doedd
13 oeld

:ulew

(Jurew pioa

199[q0O

sl

€

()xew 2eu

pailealDwWwnu Jul

199[q0O

oel

54

What the heck does this print?

class Tricky A

public static void main(String[] args) A{

A a = new A(Q);

B b = new B();

Ii=()b; Pp=(P) i;
A.sm(); a.mQ);

b.sm(); i.m(); p.m(Q);
b.m() .sm();

public interface I A
static final int ANSWER = 42;
public P m(Q);

}

// Parent class P

public class P implements I {
static int sv = 9;
int v = 8;

public static void sm() A
System.out.println(
"P: sm(): sv = " + sv);

+

public P m() {
System.out.println("P: "
+ sV + " X " + v + n = mn
+ ANSWER) ;
return this;
+
}

// Sibling classes A and B

public class A extends P { }

public class B extends P {
static int sv = 6;
int v = 7;

public static void sm() A
System.out.println(
"B: sm(): sv = " + sv);

+

public P m() {
System.out.println("B: "
+ SV + " X " + v + n = mn
+ ANSWER) ;
return this;
}
}

55

Good use of static information

Even now, the Tricky program is hard to fol-
low. It is easier to trace code that obeys the
following stylistic rule.

Rule: When accessing a static member of a
class, always use that class name.

Examples:
// Bad: // Better:
b.sm(); P.sm();
A.sm(); P.sm();

Exception: When the static information is in
the current class, you may omit the class name.
Example:

// Inside method m() of class P, we can access
// P’s method sm() this way:
P.sm();

// It’s also okay to access it like this:
sm() ;

The remaining slides assume that code follows

this rule.
56

Tracing EXxpressions

Some expressions in a program

e refer to a variable
— Examples: I.ANSWER, P.sv, and b.v

— We need to know exactly which variable
such an expression refers to before we
can find its value.

e Or refer to a method
— Examples: P.sm(), and b.m().

— We need to know exactly which method
such an expression refers to before we
can call it.

The variable or method referred to by an ex-
pression is called its target.

57

Finding the Target

One of the problems with tracing a program
like Tricky is that the target of some expres-
sions is not obvious! We need a technique.

Expressions of the form e.mem

If we see an expression of the form e.mem,

such as,
(s.foo(3)) .count

we know that:
e ¢ IS itself an expression.
If it is the name of a class, mem is static.

Otherwise, it evaluates to the address of
a box on the heap. In that case, it has a
type, which identifies a part of that box.

e mem is a variable or method call.
That variable or method is our target.

58

Algorithm

To find the target of a compound reference
e.mem:

e if e is a class or interface name, mem is
static:
Look for mem in the static box for e.

e if €'s value is the address of an object and
mem is a variable:
Find e's type T and look for mem first in
the T part of that object. If mem is not
there, go up the inherited boxes until you
find it.

e if €'s value is the address of an object and
mem is a method:
Look for mem first in the bottom part of
that object, regardless of e€'s type. If mem
IS not there, go up the inherited boxes until
you find it.

59

Special Cases

To find the target of a simple variable reference
Vi

e Look for vin the topmost stack frame. If
v is there, that's the target (and v is a
local variable). If v is not there, treat the
expression as if it were this.v.

To find the target of a simple method reference
p(args):

e Treat the expression as if it were this.p(args).

We’'ve seen that the target of e.m depends on
e’'s type. Casting can affect that ...
60

Casting

The type of an object

The type of an object is the most specific
classname in it.

Example: When we say ‘“new AQ);” we con-
struct an object that has an A part and a P
part, but the object’s type is A.

Widening is automatic

The rules we've just seen for finding a target
allow us to automatically go up to the higher
and more general sub-parts of an object.
Examples:

// The object has a B part and a P part, and its type

// is B. This is widened to match fum’s type, P:
P fum = new B();

// v is found up in the P part of this object:

A fee = new A();

fee.v = 21;

Same as automatic widening with primitives.
Example: double d = 3;

61

Narrowing requires a cast

To go down to the lower and more specific
sub-parts of an object, we must explicitly cast.

Example: Suppose class B also had a variable
t that class P lacked.

// The object has a B part and a P part, and its type
// is B:
P fum = new B();

// "((B)fum)" has type B, so we look in the B part of
// the object and work up. t() is found in the B part:
((B)fum) .t = 7;

This is the same as explicit narrowing with

primitive variables.
Example: int = (int) 4.27;

62

Precedence

The precedence of the dot operator *“.” is
higher than the precedence of the casting brack-
ets. So this won't work:

(B)fum.t = 7;

That’'s why we need extra brackets:

((B)fum) .t = 7;

What we can cast to

We can cast to any type that appears in the
object: the class of the object, any superclass
or subclass, and any interface that any class of
the object implements.

Although we can, we never need to cast to a
superclass, because of widening.

63

What casting does

Casting changes the type of an expression. It
does not change the address of an object or
the type of an object.

Example:
B b = new B(); // The new object never moves and
// always has type B.
P p = b; // The expression "p" has type P.

B otherB = (B) p; // But the expression "(B) p"
// has type B.

More examples with casting

EXxercise: For each assignment below, explain
why a cast is or is not required.

Object o = b; // Cast not required.

p = (P) o; // Cast required.
Ii=p; // Cast not required.
b = (B) i; // Cast required.

64

Shadowing and Overriding

In object oriented languages it is possible to
override methods:

e If there are several instance methods with
matching names and arguments in an ob-
ject then, no matter what type of reference
IS used, the bottom-most method body in
the object is invoked.

e For example, b.m(), ((P) b).m(), and ((I)
b).m() all refer to the same method body,
namely the m() in the class B part of the
object.

Instance variables behave differently:

e An instance variable is said to shadow a
variable of the same name in a superclass.
Unlike method overriding, the shadowed vari-
able in the superclass can be referenced by
casting, as in ((P) b).v.

65

Targets in our Tricky Program

Remember that to find the target of an expres-
sion r.v or r.m(), we need to know not only the
value of r, but its type.

Expression Type Value Target var Value of

of r of r the expn
b.v B 0101 v in B at 0101 V4
a.v A 0100 v in P at 0100 8
((P) b).v P 0101 v in P at 0101 8
b.sv B n/a svinB 6
a.sv A n/a svinpP 9
((P) b).sv P n/a svinpP 9
Expression Type Value Target method

of r of r

b.m() B 0101 m() in B at 0101
a.m() A 0100 m() in P at 0100
((P) b).mO P 0101 m() in B at 0101
((I) B).mO I 0101 m() in B at 0101
b.sm() B n/a sm() in B
a.sm() A n/a sm() in P
((P) b).sm(Q) P n/a sm() in P

Question: Which expressions above are disal-
lowed by our style rule for static variables?

66

1000

dd

1000

Il

1000

0000

Ao

qd
ev

G:u

lewl

Ow d
L| AUl
\
g Ow d
Ow d 8| A 1ul
8| A Ul
I'd 0000
I'd 1000
(Jws ploA
9 | As Ul
d v
d S|
(Qws pioA (Jws pioA
6 | AS Ul Z¥ | 93IMSNV Ul
399[q0O d I

67

Keywords this and super
Now it's easy to understand this and super.

this:

e Always refers to the address in the top-
right of the top stack frame.
(If it contains a class name instead of an
address, using this is illegal.)

e Its type is the part of the object where the
method is.

super:

e Always refers to the address in the top-
right of the top stack frame.

e But its type is one up.

e \We can use super to get at an overridden
method.

Trace the following examples ...
68

Super example

// Suppose class B had this additional method:
public void newMethod() {
super.m() ;

}

// Now in Tricky’s driver we can say:

B fo = new B();

fo.m(); // Calls the m() in class B.
fo.newMethod(); // Lets us call the m() in P.

69

This example

public class TestThis {
public static void main(Stringl[] args) {
Top t = new Top(); Bot b = new Bot();
t.topMeth();
b.botMeth(); b.topMeth();

}
}
class Top {
int v = 3;
void topMeth() {
System.out.println("In topMeth: " + this.v);
}
}

class Bot extends Top {
int v = 4;
void botMeth() {
System.out.println("In botMeth: " + this.v);
}

70

