4Chapter 2

4Related Works

42.1 XML and related technologies

52.1.1 SGML and XML

52.1.2 DOM

52.1.3 XSLT

52.1.4 DTD

52.2 Web Services and Technologies

52.2.1 SOA

52.2.2 SOAP

52.2.3 WSDL

52.2.4 UDDI

52.2.5 WSFL

6Chapter 3

6System Architecture

63.1 Use Cases

73.2 System Overview

93.3 System Interactions

103.3.1 Invoking Web Service using SOAP

103.3.2 Invoking Web Service utilizing the UDDI Registry

113.3.3 Querying UDDI registry in a DNS manner

123.3.4 Category Search and Service Selection based on User Profile

133.4 Major Components

133.4.1 Deployment Environment

163.4.2 Web Service Flow Control System

173.4.3 Rule Evaluation Unit

183.4.3.1 Event Matcher and Rule Manipulator

183.4.3.2 Condition Verifier

203.4.4 Data Manipulator

213.4.5 Task Enactment Engine

223.4.5.1 SOAP Service

233.4.5.2 Service utilizing the UDDI Registry

253.5 Exception

253.5.1 Script Level Exception Handling

263.6 Services

273.6.1 SOAP Service

283.6.2 Service publishing in the UDDI Registry

29Chapter 4

29Web Service ECA Language

304.1 ECA Language

304.1.1 Language Implementation

314.1.2 Design Choices

314.1.3 Rules Structures

324.2 Events

344.2.1
Invocation Event

344.2.2
Result Event

354.2.3
Registration Event

374.2.4
Withdrawal Event

384.2.5
Status Event

384.2.6
Acknowledgement Event

394.2.7
Termination Event

404.2.8
Exception Event

404.3 Conditions

414.3.1 Data Condition

434.3.2 Flow Order Condition

444.4 Actions

454.4.1 Service Invocation

474.4.2 Service Registration Action

484.4.3 Service Withdrawal Action

494.4.4 Service Localization Action

504.4.5 Service Selection Action

514.4.6 Service Status Action

514.4.7 Exception Handling Action

524.4.8 Termination Action

53Chapter 5

53Algorithms

545.1 Resource Localization

575.2 Service Localization in the Service Oriented Architecture

575.2.1 Service Oriented Architecture

595.2.2 Distributed directory of services

595.2.3 Recursive Queries

595.2.4 Iterative Queries

615.3 Service Selection and Matching

625.3.1 User Profile Matching

695.3.2 Issues in Service Evaluation

695.3.3 Publication of Service Characteristics

705.3.4 Service Evaluation Program Deployment

Chapter 2
Related Works
2.1 XML and related technologies

Markup is the term applied to any set of codes or tags added to the contents of a document in order to indicate its meaning or presentation in a structural manner. Without markup, documents are limited to the mere presentation of content data. Since the data content is not self-defined in the document, any special meaning or process that may be applied to the data must be encoded outside of it.

Markup allows the inclusion of metadata in the document itself. However, this does not imply that the document will be semantically richer, or easier to work with. Proprietary markup mechanisms have been around for a long time, each adopting different conventions and meanings for the vocabularies they define, examples include GhostScript and Rich Text Format. However, these markup structures are totally proprietary to a particular application, there are not that many applications can use the same markup language.

2.1.1 SGML and XML

Standard Generalized Markup Language (SGML), a generalized markup metalanguage that allows people to create their own tags to describe their own data, was clearly a necessity, but it was too complicated for most purposes. This is why, in September 1998, a special W3C (the World Wide Web Consortium) group headed by Jon Bosak began working on a simplified version of SGML, which could capture most of its power, while avoiding the complications that make it unpopular until then. The result was the eXtensible Markup Language, XML.

XML's strongest point is its ability to do data interchange. Because different organizations (or even different parts of the same organization) rarely standardize on a single set of tools, it takes a significant amount of work for two groups to communicate. XML makes it easy to send structured data across the Web so that the meaning of the data does not get lost in translation. XML has significantly simplified business-to-business transactions on the web.

2.1.2 DOM

2.1.3 XSLT

2.1.4 DTD

2.2 Web Services and Technologies

2.2.1 SOA

2.2.2 SOAP

2.2.3 WSDL

2.2.4 UDDI

2.2.5 WSFL

Chapter 3
System Architecture
3.1 Use Cases

Before going into the technical and architectural discussion of the system, it is more beneficial to define the four primary user types for the whole system.

1. Service Providers are the internal or external parties who create the Web Service that can be invoked. These individuals should also hold the responsibilities to publish their services.

2. A System Administrator who manages the run-time environment of the system and also the local UDDI registry.

3. Service Integrator defines the business rules and encapsulates it in the form of rule script in the rule repository.

4. The client of the system is the person who sends a request to the system and receives the results by the Web Services.

[image: image11.wmf]ECA Script

Rule

1

1..*

Event

Condition

Action

1..*

0..*

0..*

Name

Type

Evaluation Expression

Name

Type

Action Definition

Name

1

Figure 3.1: Use Cases for the system

3.2 System Overview

In this section, we describe the overall architecture of the system and the manner in which individual system components interact. The system normally resides in the application service provider environment. This can be viewed as a domain which contains every components of the Service Oriented Architecture. In the application service provider environment, there can exist local services provided by the local service provider. An UDDI registry can also be useful to keep track or local or even remote services. The system connects to the remote service providers and UDDI registries through the Internet.

In the local domain, the system can be a run-alone application and also a Web Service deployed in a SOAP enabled web server. The later deployment is shown in Figure 3.2. As being defined in the SOAP standard, the request and the reply are encoded in XML. The underlying protocol being used in this case would be HTTP. The role of the Web server is to intercept events in HTTP request format and routes the Event to the ECA Rule Engine.

[image: image12.wmf]Condition

Data

Condition

Numerical

Condition

Structural

Condition

Flow

Condition

Happen

Before

Condition

Happen After

Condition

Figure 3.2: Deployment of the Rule Engine

The rule engine system is event-driven and only reacts to incoming events in the form of SOAP requests. Within the rule engines, there resides a set of rules. These rules define the exact behavior of the system. These rules contain three basic elements, events, conditions, and actions which are defined in XML.

When it is being deployed as a service, the system is connected with the outside world through the SOAP request dispatcher. When the dispatcher receives a SOAP event for the system, it routes the request to the System. This is considered an event. Other than job routing, the dispatcher also responsible for parameter passing.

In brief, the Event clause defines a triggering event which corresponds to an incoming SOAP message in our case. The Condition clause determines whether the action should be executed based on the data contents within the SOAP message. The Action clause defines the set of web services to be called when the rule is triggered. The web service description embedded within the action clause can be a complete SOAP description or some partial information. In the case of partial information, our system would query an UDDI registry and try to fill out all the information needed at run time.

The rule engine can then process the event, verify the rule and invokes a SOAP service if all the conditions are satisfied. On the other hand, the system also supports UDDI technology. Instead of specifying the full information of the intended service, the system can look up the service in the UDDI registry. All these are being handled by the execution core in the rule engine. Results are returned and data integrator is responsible for data transformation and integration.

Extensions in the current UDDI architecture has also been proposed and implemented in the system. Service selection does not only based on static characteristics such as name or category, dynamic nature also plays an important role in the service selection process. At run time, a user specification profile would be matched against service characteristics and only the most desired service would be invoked. Another extension is the publishing of remote UDDI registries in the local UDDI registry, the system is capable of recursive querying in such an environment.

In some situations, meta-service would be desired. By combining several existing services together usually can result in a more powerful, flexible service. Our system can fully taking advantages of using meta-service and easily integrate to the architecture. The system is SOAP enabled and seeing from outside, it is just another service. In other words, by fully utilizing the session control capability, the system can have two different sets of rule scripts loaded up at the same time.

The system can provide the just in time service integration and does not require recompiling any source programs. Once it is put into place, it learns the web services within the domain using the UDDI Registry. The System integration programmer only needs to write the script to represent the flow logic of the system and instead of letting the user to call these services separately, it becomes a one-stop invocation process.

3.3 System Interactions

We are going introduce the overall architecture briefly using some scenarios. The first one involves the less interacting parties, only the Service Requester, Rule Engine, and the Web Service. In the subsequent situations, other components in the Web Service Paradigm will come into place.

3.3.1 Invoking Web Service using SOAP

[image: image13.wmf]Client

Sends Request to

the System

Receive Result

from the system

System

Administrator

Start System

Stop System

Service

Provider

Publish Service

Unpublish

Service

Create Service

Deploy Service

Undeploy

Service

Start local UDDI

Registry

Stop local UDDI

Registry

Service

Integrator

Compose ECA

Web Service Rules

Delete Rule from

Repository

Add Rule to

Repository

Modify Rule in the

Repository

The first scenario is the base case in which all information is embedded in the script. Upon receiving a service event from the client, the system invokes the web service corresponding to the incoming event. When the service is executed and result being returned to the system as an event. The event causes another service to be invoked. When the final result being returned to the system corresponding to the termination event of the business process, the results are passed back to the client.

Figure 3.3: Message Sequence diagram of SOAP interaction

3.3.2 Invoking Web Service utilizing the UDDI Registry

The second scenario requires the utilization of the UDDI registry. In this case, full information is not included in the script reside in the rule repository. Some more general information such as the specific service name or even the service type is included in the rule. From the viewpoint of the client, the system behaves exactly the same, it just stands there and waits for request from client. Whenever a rule is triggered by an incoming event, the system first sends a request to the UDDI registry querying the registry on the service. The information being returned includes the location of the service and how to invoke it. The system can then use the information to invoke the service directly.

[image: image14.wmf]Idle

Evaluate Condition

Execute Action

Catches Event

[Condition False]

[Condition False]

System Start

System

Terminate

Figure 3.4: Message Sequence diagram for service invocation involving UDDI

3.3.3 Querying UDDI registry in a DNS manner

There is a trend where corporations begin to merge in order to save cost. In this case, it is not possible to merge all the existing infrastructures such as the local UDDI registry at once. Give another example, a local UDDI registry usually contains entries for the local services, and it cannot keep track of all the remote services in every external domain. In order to adapt to these situations, we proposed an extension to the existing UDDI architecture. Every UDDI registry is only responsible for the local services, but each registry contains entries for other remote registries as services.

When the client submits a request to the system, the system queries the UDDI registry for the requested service but this particular registry does not contain any information about this service. Instead, the UDDI registry returns a list of UDDI registries that might contain information about the requested service. After the system obtains the list of registries, it would query them one by one recursively and try to localize the details of that service. This implementation is very similar to what a Domain Name Server would do to keep track of the host names within a particular domain.

Figure 3.5: Message Sequence diagram for querying UDDI registry in a DNS manner [image: image15.wmf]Event

Invocation

Event

SOAP Event

UDDI Query

Event

Result Event

Status Event

Exception

Event

Registration

Event

Achnowledgement

Event

Withdrawl

Event

Interface

Registration

Event

Implementation

Registration

Event

Interface

Registration

Event

Implementation

Registration

Event

3.3.4 Category Search and Service Selection based on User Profile

In some cases, services are classified in categories. The exact fingerprint such as the service name is not even known. Our system can adapt to this scenario by doing a category search on a particular category of service. Please keep in mind that since we are searching a category of service, the results usually come back as a list of available services. We also make one step further to screen these services by incorporating the ideas of end point description language as well as a user profile. Each user is mapped to a set of attributes within the system. Such attributes usually describe the requirements of the user, such as the cost constraints, desired performance level, user privilege, etc.. If an UDDI query returns more than one matches, such information would be used to invoke a service evaluation service. This particular service would analyze the user profile data with the service endpoint description. The level of compatibility of both would be returned as a score. At run time, the service with the highest score would be invoked by the system.

[image: image16.wmf]Action

Invocation

Action

SOAP Action

UDDI Query

Action

Status Action

Exception

Action

Registration

Action

Exception

Action

Withdrawl

Action

Interface

Registration

Action

Implementation

Registration

Action

Interface

Registration

Action

Implementation

Registration

Action

Service

Selection

Action

Service

Evaluation

Action

Figure 3.6: Message Sequence diagram for service selection based on User Profile

3.4 Major Components

3.4.1 Deployment Environment

As we discussed earlier, the system uses a Web server to connect with its external environment. The SOAP dispatcher usually resides in the Web Server. When an SOAP request comes in, it dispatches the event accordingly. To integrate in this environment, our rule engine must register itself in the SOAP dispatcher. External events arrive as SOAP requests over HTTP are directed to the rule engine.

There are many SOAP implementations available. In our case, we are using the Apache SOAP version 2.2, this is a free tool which can be integrate with the Apache Tomcat Servlet Engine. At run time, the SOAP implementation is yet another Java Servlet running in the Servlet engine. Every SOAP request arrives as a HTTP Post request to the server, the SOAP Envelope is embedded in the body of the request.

The deployment of the Web Service to the server basically involves exporting the Java Class to a directory set up as the run-time classpath of the server. A deployment descriptor must also be sent to the server during deployment so that the SOAP request dispatcher stores the mapping and methods visible to the outside world. Figure 3.7 shows the deployment descriptor for the rule engine. The key information is the Java class name and which is eca.ruleEngine.ECARuleEngineClass and the method exposed to the external environment, which is incomeEvent.

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"

 id="urn:eca-rule-engine">

 <isd:provider type="java"

 scope="Application"

 methods="incomeEvent">

 <isd:java class="eca.ruleEngine.ECARuleEngineClass"/>

 </isd:provider>

 <isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>

</isd:service>

Figure 3.7: Deployment descriptor for the Rule Engine
Once the SOAP engine receives the descriptor, it stores the information in an internal data structure permanently and the ECA Rule Engine service is ready to get activated. The overall runtime structure is as illustrated in Figure 3.8 The web server lietens for HTTP request and when it got any Java Servlet request, it forwards the request to the Servlet Engine (Apache Tomcat in our case). The Servlet engine loads the requested servlet and dispatches the HTTP request to that instance of the Servlet class for processing. Since the Apache SOAP Engine is servlet based, the SOAP engine is being loaded by the Servlet Engine when the web server receives a request to the servlet in which the payloads of the request is an SOAP Envelope. A complete HTTP request to the rule engine is shown in Figure 3.9. The SOAP Engine does another class load up and in this case, it is the SOAP Service class, any implementation of Web Services or even our Rule Engine.

[image: image17.wmf]Initial State

Low

Medium

High

Low

Medium

Low

Medium

High

Low

Low

Medium

High

Low

Medium

Low

Medium

Low

Low

Medium

High

Low

Quality 1

Quality 2

Quality 3

Figure 3.8: Deployment environment for the Rule Engine
POST /soap/servlet/rpcrouter HTTP/1.0

Host: tazdevil

Content-Type: text/xml; charset=utf-8

Content-Length: 666

SOAPAction: ""

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance" xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:incomeEvent xmlns:ns1="urn:eca-rule-engine" SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<param xsi:type="xsd:string">

……

</param>

</ns1:incomeEvent>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 3.9: HTTP Request to the Rule Engine

3.4.2 Web Service Flow Control System

The entire system is represented as a class diagram in Figure 3.10. Rules that control the integration of services may be written manually or they can be composed with tools. These scripts are stored in the script repository where they may be accessed by the rule engine. Once the rule engine has parsed the scripts containing the rules, it can then receive events from services and look for rules that should be triggered.

Figure 3.10: Class Diagram for the ECA Rule Engine [image: image18.wmf]Event sent to the System

System processes the event and queries the UDDI

Registry.

Results are used to construct a SOAP Envelope.

System invokes the Web Service based on the

information fetched from the UDDI Registry

Final result returns to the calling party

Service

Requester

Rule Engine

UDDI

Registry

Web Service

SOAP Result

SOAP Request

UDDI Query

UDDI Result

Service Event

Service Result

When rules are triggered, the rule engine passes a service request list to the task enactment engine. This list consists of all the services that were specified within the action component of the triggered rule. It uses the UDDI Registry to find the WSDL documents of the specified service. Upon receiving the documents, the task enactment engine parses the WSDL documents and invokes the service based on the definition.

Note that Figure 3.10 shows one ECA Rule Engine for simplicity. In fact, one instance of the Rule Engine can be viewed as a piece of Web Service from the outside.

When the system starts, all the classes are instantiated by the SOAP environment. At this time, the script in the rule repository is parsed and a DOM tree is built. We will discuss how the rule engine processes event and requests services in next section.

Each new event is forwarded by the SOAP enabled Web Server to the ECA Rule Engine class. The incoming event is represented an internal data structure for processing. This object holds the event’s name, type, and parameters that are all received as part of the SOAP request. An event satisfying a rule coarse usually results in triggering an action.

The main architecture of the Rule Engine contains four major components, Event Matcher, Condition Verifier, Data Manipulator. After a Service Request passes through all these blocks and identified as triggered, it would be passed to the Task Enactment engine for action invocation.

3.4.3 Rule Evaluation Unit

The basic building blocks in the rule engine are rules, this Rule Evaluation Unit block is responsible for accessing incoming event and marks the rule in the rule engine as a triggered event. For each rule, there are two main criteria to be satisfied, first the event(s) specified in the rule must be received, and second, the condition must be evaluated true. Two main modules, the event matcher and the condition evaluator handle these requirements.

Figure 3.11: Class Diagram for the [image: image19.wmf]Event sent to the System

System queries UDDI Registry 1 and finds no matches.

Subsequent queries for remote UDDI registries.

System queries UDDI Registry 2 since it is listed as

remote registries in UDDI Registry 1.

System finds a match for the service.

Final result returns to the calling party

Service

Requester

Rule Engine

UDDI

Registry 1

Web

Service

UDDI

Registry 2

System invokes the Web Service based on the

information fetched from the UDDI Registry

Service Event

UDDI Query

UDDI Query

UDDI Result

UDDI Result

SOAP Request

SOAP Result

Service Result

Rule Evaluation Unit

3.4.3.1 Event Matcher and Rule Manipulator

When the system is initialized, a set of rules would be loaded to the system. Internally, this set of rules would be transformed into a DOM structure. In a nutshell, it is a tree structure storing all the information embedded in the script. Every rule usually contains three parts, event, condition and action. Internally, this data structure is being managed by the Rule Manipulator which provides an API for rule management. When an external event comes into the system, it is being matched against the event clause in the DOM structure. Whenever the Event Matcher finds a match for the event, it would signal the Condition Verifier to verify the condition.

3.4.3.2 Condition Verifier

The rule is then passed to the Condition Verifier and the condition clause in the rule would be evaluated. Generally, the Event Matcher only evaluates static information such as the event name. The Condition Verifier is responsible all the dynamic condition verifications. There are two aspects in this, data content checking and flow logic checking.

In data content verification, the Condition Verifier basically checks the data being passed in with the event. If we take checking the stock quote for an example, data checking can be a test to check whether the stock price is higher than a certain amount. If it is higher, system can initiate a sell order and if not, the stock would be held.

This check is implemented using the XSLT technology. XSLT can transform an XML document and has a full data manipulation capability. As a result, by conforming to the standard, the system does not need to implement its own data manipulation scheme. Furthermore, it is easier for the script writer since XSL is an open standard.

A condition clause defined in the ECA Script appears as in Figure 3.12. It always points to an XSL file and in the example, it is the CountListSize.xsl. The example shows that that a Bubble Sort service which only provides service if and only if the list contains less than 30,000 elements. The corresponding XSL file is illustrated in Figure 3.13.

<ECARule name=“BubbleSortRPC">

 <Events>……</Events>

 <Conditions>

 <Condition type=“data“ URL=“CountListSize.xsl” />

 </Conditions>

 <Actions>……</Actions>

</ECARule>

Figure 3.12: Condition Definition in the ECA Script
<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform“

version="1.0">

 <xsl:output method="text" indent="yes"/>

 <xsl:template match="/result/param">

 <xsl:choose>

 <xsl:when test="count(vectorParam)<=30000">true</xsl:when>

 <xsl:otherwise>false</xsl:otherwise>

 </xsl:choose>

 </xsl:template>

</xsl:stylesheet>

Figure 3.13: Condition Scheme in an XSL file
The Condition Verifier would fetch the file and uses this to transform the input data passed in with the event. Using the XSLT and the same core technology with the data integrator, the condition evaluator can produce results either true or false. Based on this result, the Condition Evaluator would decide whether the rule should be triggered and create a Service Request out of it.

The system also checks for flow logic. The system keeps a history list such as incoming event and triggered rule. As a result, a condition clause can specify an event if to safeguards the flow logic at run time. This kind of condition checking is best to arrange services to be called in a strict sequence and synchronization use.

<ECARule name=“QuickSortRPC">

 <Events>

 …

 </Events>

 <Conditions>

 <Condition type=“control“

 activity=“GenerateRandom” term=“after-action” />

 </Conditions>

 <Actions>

 …

 </Actions>

</ECARule>
Figure 3.14: Flow Order Condition definition in the rule script

3.4.4 Data Manipulator

In the flow engine, the system determines the control flow of the whole business process. In most of the cases, services provide data contents which need to be forwarded to the next service down the road. Given all the different paradigms of implementation, it is impossible to provide a super set of data that can be used for all the services. Some services might only take a subset of a modified set of data items in XML format. It is not hard to imagine that services from different domain might require the same data item with a slightly different name. For example, some stock quote system expect a parameter name as “StockQuote” but some might want “Quote”.

Changing the tag or the element name is a simple transformation. In other cases, some other forms of transformations have to be achieved. The complete set of requirements include structural changes of the whole XML documents, arithmetic computation and manipulation of numerical values, string manipulation functions, and transformation based on run time decision (if-else based on data contents).

Instead of implementing a full data transformation engine in the rule engine fulfilling all the above requirements, a more dynamic plug-and-play approach is being employed. The script would specify an external XSL file whenever data integration is needed. The Data Manipulator would invoke an XSL Transformer which takes the parameter as one input and the XSL file as another and carries out the transformation. The end result is therefore an XML document which would be put in the Service Request object and pass to the Task Enactment Engine.

3.4.5 Task Enactment Engine

The purpose of the task enactment engine is to take a request for a service and actually execute that service. The classification of service usually falls into two main categories, either it is a fully defined SOAP service or a service that needs to be looked up in the UDDI Registry and invoke when all the information is available. The Task Enactment Engine takes a service request and calls the invoke method for that object. The implementation of the Service Request is that Service Request is the base class with protected parameters such as the input parameters, each child class would implement the virtual method invoke and carry out any preparations, such as service look up, for that service. The class diagram is given in Figure 3.15. This approach gives a certain degree of extendibility in the architectural level. When there is a new kind of service to be supported in the system, a new class extending the Service Request class and the corresponding handling functions when the script is parsed.

[image: image20.wmf]Event sent to the System

System queries UDDI Registry for a particular category

and finds multiple matches.

The result set also contains service endpoint

descriptions.

System sends the user profile as well as the service

descriptor to the Service Evaluation Service.

It does that for every listing in the result set and a degree

of compatibility is returned.

Final result returns to the calling party

Service

Requester

Rule Engine

UDDI

Registry

Web

Service

Service

Evaluation

Service

System invokes the Web Service with the highest score

of compatibility.

Service Event

UDDI Query

UDDI Result

SOAP Request

SOAP Result

Service Result

Service Evaluation Request

Service Evaluation Result

Figure 3.15: Class Diagram of the Task Enactment Engine

3.4.5.1 SOAP Service

A SOAP service usually is a fully defined service with enough information that it can be invoked alone without requesting information from any external system. The system supports two different kinds of definitions in the script. The Script can either embed all the information or can include a WSDL document for the targeted service.

An example for the first case is shown in Figure 3.16. It shows an action definition for a Quick Sort service. All the information needs to invoke this service is fully specified, for example, the URL is specifying the SOAP server as well as the service id which identifies the service.

 <ECARule name="QuickSortRPC">

 <Events>…</Events>

 <Conditions>…</Conditions>

 <Actions>

 <Action name="sort" id="urn:ecasamples-sort-quick" returnEvent="terminate"

 exception="BubbleSortRPC" type="SOAP-RPC" URL="http://host/SoapRouter">

 <Param type="pass-thru"/>

 </Action>

 </Actions>

 </ECARule>
Figure 3.16: Action Definition in the ECA Script

A corresponding example for the second case is as Figure 3.17 and 3.18. The script specifies the service, method, and the WSDL file. This effectively separates the interface and implementation of the service and takes the object oriented approach. There is no particular advantages of one approach over another but rather depends heavily on the nature of the service.

<ECARule name=“QuickSortRPC">

 <Events>……</Events>

 <Conditions>……</Conditions>

 <Actions>

 <Action method="sort" definition=“QuickSort.wsdl"

 returnEvent="terminate" exception="BubbleSortRPC“ >

 <Param type=“transform“ URL=“ParamTransfrom.xsl”/>

 </Action>

 </Actions>

</ECARule>

Figure 3.17: Action Definition in the ECA Script referring to a WSDL document
<service name="QuickSort">

 <port binding="QuickSortBinding“ name="QuickSortPort">

 <soap:address location="http://host/SoapRouter"/>

 </port>

</service>

Figure 3.18: Part of a WSDL document defining invocation mechanism

No matter the approach taken in defining the action in the script, this kind of definition is very easy to integrate because everything is known when the script is first written. However, the same feature does pose some limitations. Since every piece of information must be filled in at compose time, the Service Integrator must have knowledge of the services available for the whole domain. Some dynamic features, such as load balancing and choice of service based on quality cannot be handled easily.

3.4.5.2 Service utilizing the UDDI Registry

With the growth of UDDI registry, a more flexible approach can be achieved. UDDI registries are basically service repositories with a public interface to get queried and return search results. The registry usually classifies services into categories and serves WSDL documents when being queried. In other words, a client can send a query to a UDDI registry for a web service based on some criteria ranges from the service name to something more general such as the service category.

An example of search based on name is shown in Figure 3.19:

 <ECARule name="QuickSortSearch">

 <Events>

 </EventExpr>

 </Events>

 <Conditions>

 </Conditions>

 <Actions>

 <Action name="sort" id="SortingQuickSort" returnEvent="Terminate"

 type="UDDI-NAME" URL="http://uddi-registry/services/uddi/servlet/uddi">

 <Param type="pass-thru"/>

 </Action>

 </Actions>

 </ECARule>

Figure 3.19: Action definition involving UDDI registry

The UDDI Service Request class would first query the UDDI registry and upon getting back the information, it fills up the SOAP request when the invoke method being called. In the current standards, an UDDI registry only contains information about the interface and the implementation of the Web Services. We envisioned that there would be significant extensions in this respect. A very obvious would be the end-point description language which gives information about the quality, and dynamic nature of the service. Coupled with a user profile domain model, the system can match the need of the user to the service at run-time. This ensures the system can find the most suitable service for each client.

In a category search such as the example listed in Figure 3.20. It usually produces a list of services matching satisfying the query. This is where the service end-point description comes into place, instead of selecting a service out of the pack randomly, a service evaluator is invoked. Basically, the service evaluator takes the user profile submitted by the system, and returns a score given each of the service end-point description. When the invoke of the UDDI Category Service Request is being called, only the service with the highest score would be invoked.

 <ECARule name="SortSearch">

 <Events>

 <EventExpr>

 <Event name="SortSearch">

 </Event>

 </EventExpr>

 </Events>

 <Conditions>

 </Conditions>

 <Actions>

 <Action name="sort" id="Sorting" returnEvent="terminate"

 type="UDDI-CAT" URL="http://tazdevil:9090/services/uddi/servlet/uddi">

 <Param type="pass-thru"/>

 </Action>

 </Actions>

 </ECARule>

Figure 3.20: Action definition for a category search

Given all these advantages, this approach does contain some potential problems. Since the UDDI registry is the brain of the design, it would be the single point of failure except multiple UDDI registries are used. Although this design is flexible enough, the system must still have knowledge of at least one UDDI registry. It also increases the traffic and network delay by a factor of two. Fortunately, with the advance of computer hardware and locating a relatively close UDDI registry, the negative impacts of this should be able to be minimized.

3.5 Exception

Since services are generally at remote locations, it may happen that they may not execute or return a value (in the form of a new event). We have based our system on at-most-once call semantics which means that if a service does not return a value within a specified amount of time, we raise an exception.

3.5.1 Script Level Exception Handling

Exception can be caught whenever an action is carried out, instead of building a class handling all the exceptions or stopping the whole business process in the middle, there is an exception handling mechanism in the script level. In the action clause of the script, it can specify an Exception clause. This is just a simple tag which specifies the event the Task Enactment Engine would fire when an execution occurs at run time. It is up to the script writer whether this feature is utilized in the script.

<ECARule name=“QuickSortRPC">

 <Events>……</Events>

 <Conditions>……</Conditions>

 <Actions>

 <Action method="sort" definition=“QuickSort.wsdl" returnEvent="terminate"

 exception="QuickSortSearch“ >

 <Param type=“transform“ URL=“ParamTransfrom.xsl”/>

 </Action>

 </Actions>

</ECARule>

Figure 3.21: Exception event in an Action definition
A very simple example is shown in Figure 3.21. In this example, the action is the Quick Sort Service, and when it raises an exception, the anticipated problems can be the service being relocated or temporary unavailable. The Task Enactment Engine sends back the “QuickSortSearch” event back to the system. This event would eventually causes the execution of the Exception Handling Routine defined in the script as in Figure 3.22.

 <ECARule name="QuickSortSearch">

 <Events>

 </Events>

 <Conditions>

 </Conditions>

 <Actions>

 <Action name="sort" id="QuickSort" returnEvent="terminate"

 type="UDDI-NAME" URL="http://tazdevil:9090/services/uddi/servlet/uddi">

 <Param type="pass-thru"/>

 </Action>

 </Actions>

 </ECARule>

Figure 3.22: Exception handling rule definition

This exception event takes the format of the normal event, in other words, an exception handling needs not to be a special event but rather an existing event definition. However, special attention should be paid to raise exception in the exception handling rule. Cycles can occur and the current implementation does not contain any detection against such situation. It is recommend that an exit exception handling rule be which put the system in a it is strongly recommends that an exception handling event should not use another exception event which may result in cycles.

3.6 Services

As we have mentioned, the action component in the rule is typically used for invoking distributed services. We have not said much about these services aside from the fact that they are programs or distributed objects and that the system, not the script writer, determines how to invoke them. In this section, we will take a closer look at services that can become make up the whole service web paradigm.

3.6.1 SOAP Service

A SOAP service is defined as a process that can be invoked using the SOAP over HTTP protocol. Parameters can be passed within the invocation SOAP envelope in XML format. Results are being passed back in the return SOAP envelope also in XML format. A typical service can be anything from a re-engineered legacy system module to a brand new software component that has been built specifically for our system. There are no limitations on what these services are implemented, they can be written in C/C++, Java or even Perl.

If using Java technology, in order to build a service, a SOAP service class is created which is a wrapper for the actual service that is to be invoked. This service class is being invoked by the SOAP service dispatcher in the Web Server and is responsible for parameter handling. The actual service may be business logic that is contained within this same class, but would more likely be an external call from this class. This class is then deployed in an SOAP service provider usually in the form of a Web Server. A simple deployment descriptor is being shown in Figure 3.23. The example provided is to deploy a service in the SOAP implementation of the Apache Web Server.

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"

 id="urn:ecasamples-sort-quick">

 <isd:provider type="java"

 scope="Application"

 methods="sort">

 <isd:java class="samples.sorting.QuickSort"/>

 </isd:provider>

 <isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>

</isd:service>

Figure 3.23: Deployment descriptor for a Web Service in a SOAP platform

There are many tools that aid the whole deployment process. For example, the IBM Web Service Toolkit provides a GUI-based tool wsdlgen. This is a tool that takes either a Java class, EJB Jar files, or even a COM Dispatch Interface and creates the corresponding WSDL files and the deployment descriptor for that service.

[image: image1.jpg]{WSDL Generation Tool

WSDL Generation Tool

Please select the senvice creation tyne:
© fava Class
C EBJarFile

£ COM Dispatch Inerface

Help

Figure 3.24: Screen shot of the WSDL Generation tool

3.6.2 Service publishing in the UDDI Registry

All the services published in the UDDI Registry require service description document (WSDL). However, services do not needed to be SOAP-enabled, but rather SOAP is only one of the service binding methods. SOAP is the most popular binding method and widely used today. Our system focuses on invoking services using SOAP.

Service is ready to be published when the WSDL files are ready, in practice, there are two WSDL files, one refers to the interface and the other refers to the implementation. The interface document defines the input, output message format and how the exporting method utilizes theses messages. The implementation defines a binding method for that particular interface, for example, a SOAP binding usually gives the location (URL) of where the service can be invoked. These documents can be hand-written or using tool such as the WSDL Generator.

Chapter 4
Web Service ECA Language

In this chapter, we will discuss the heart of our system: the rule engine. In a nutshell, the rule engine reacts to incoming events issued either by external environment or by the rule engine itself. These events are transformed to service requests and usually result in more events being pushed back into the rule engine.

All the causes and effects of the events and the resulting actions are encapsulated in the form of rules. These rules are part of a scripting language based on the Event-Condition-Action paradigm and control the interactions between distributed services. The basic idea is simple: at the occurrence of an event, any number of rules may be triggered. If the condition clause is satisfied for that rule, then the actions contained within the rule are carried out.

[image: image21.wmf]Event sent to the System

System invokes the Web Service 1 based on the

information defined in the script.

The result from Web Service 1 returns as an event and

causes the system to invoke Web Service 2 based on the

information defined in the script.

Final result returns to the calling party

Service

Requester

Rule Engine

Web

Service 1

Web

Service 2

SOAP Result

SOAP Request

SOAP Query

SOAP Result

Service Event

Service Result

Figure 4.1

We have named our scripting language Extensible Web Service Work Flow Language. This language is base on the Extensible Service Integration Language but with some major enhancements tailored for the Web Services Environment powered by the most up to date standards technologies. We will discuss in full details of the language which leads to the implementation of the rule engine.

4.1 ECA Language

Within the rule engine, the script is primarily a collection of ECA rules. The rule engine can have several of these scripts loaded at any time, so a script requires a name. The rule engine also keeps a session ID to each instance of the script. This information is not used directly as part of the rule invocation mechanism, but can be useful for referencing and managing scripts. Once a script is created, it is stored in the script repository and the rule engine retrieve and parse the scripts during initialization phase.

We have chosen Event-Condition-Action paradigm because we feel that it closely models the interaction of web services. Moreover, the concept of state transition and the invocation of services, given pre-conditions and triggering events, has solid theoretical support and has been investigated within the concept of Extended Finite State Machines, Petri-Nets and Logic specifications. (??? Contained in richard’s thesis)

4.1.1 Language Implementation

We have chosen to encode scripts in XML because text based XML document allows for scripts to be passed between servers using the HTTP protocol, and can be easily represented using the Document Object Model. Other advantages of using XML include efficient parsing of the script by an XML parser, portability and expressiveness of the scripts, and ease of use in language design and implementation.

Using XML to represent the ECA language allowed us to specify the grammar for the script by creating a DTD or an XML schema. XML parser such as Xerces (maintained by Apache) can be used to detect syntax and grammatical errors before they reach the rule engine. Within the rule engine, the XML Script is parsed and turned into a data structure known as the DOM tree. This structure can be managed handily by using the API’s provided by the parser.

Another advantage of using XML is that it provides ease of change as the language evolves. As we determine that more information or language features should added to the rule scripts, new attributes or tags can be added to the DTD and then included in the script.

Despite of all these overwhelming advantages, there are some limitations to the whole design. For example, the System Administrator is the person in charge of maintaining the system components such as the XML parser and XSL Transformer. This person must be extremely familiar with XML technologies and the API related to the parser being used. Since all these are standards maintained by outside parties, it definitely some learning time and efforts to keep up with these on-going changing standards. The Service Integrator in turn must know and adhere to the syntax and schematic of the rule script that defines the behavior of the rule engine.

4.1.2 Design Choices

Our language consists of a fair mix of attributes and elements. We have followed the general guidelines of XML for placing data contents within attributes and elements. In other words, elements are used to specify components of another element while attribute represents an aspect, or characteristic of an element.

4.1.3 Rules Structures

A rule is the most basic structure and the core building block of the work flow language. A rule consists of three main components, events, conditions and actions, which would be discussed in detail in the following sections. A basic overview between the three components is illustrated in figure 4.2. Within a rule, there can consist of a number of events, these events form an event expression which would either evaluated to be true or false at any given time. The same structure also applies to the condition clause in each rule. When the rule engine intercepts an event and if the event expression is evaluated to be true, the conditions would then be checked upon and evaluated. If the conditions turn out to be true, the actions listed in the rule would be executed.

[image: image22.wmf]SOAP Enabled Web Server

ECA Rule Engine

UDDI

Registry

(Local)

Client

UDDI Registry

Service Provider

Internet

Service

Provider

(Local)

1

*

1

*

*

1

Application Service Provider

Service

Request

Figure 4.2: Structure of the ECA Script

4.2 Events

The event component of a rule is a logic formula containing one or more expressions that are composed of individual events and the logical connectives, AND and OR, and is defined as

<?xml encoding="UTF-8"?>

<!ELEMENT Events (EventExpr)+>

<!ELEMENT EventExpr (EventBooleanOp|Event)>

<!ELEMENT Event (#PCDATA)>

<!ATTLIST Event name CDATA #REQUIRED >

<!ELEMENT EventBooleanOp (#PCDATA)>

Figure 4.3: DTD for ECA Event

An event expression may itself contain expressions (for clarity, we refer to them here as sub-expressions, each of which may be composed of further sub-expressions). An expression containing an OR is satisfied if one of its subexpressions are satisfied. An expression containing AND is satisfied if and only if both of its subexpressions are satisfied. As expected, this definition applies recursively to each subexpression.

In this version of the language, we have only allowed binary operators to be used as connectives between sub-expressions. The grammar (DTD) can easily be changed to allow a sequence of sub-expressions separated by either AND or OR operators. It was easier to implement the rule engine using only binary operators, although with a little bit of work this can be changed. In any case, binary boolean operators are just as expressive, and there is no question as to operator precedence. For example, (a ^ b ^ c) can be written as (a ^ (b ^ c)).

The system recognizes a set of events and each event usually represents a function of the system. In this section, a detail discussion would be carried on every type of event in the system.

[image: image23.wmf]Servlet Engine (Apache Tomcat)

SOAP Engine Servlet

SOAP

Request

Dispatcher

Servlet

Request

Dispatcher

: SOAP

Service

: ECA Rule

Engine

Apache HTTP

Server

Client

+HTTP Request

*

1

1

1 Instantiate

*

*

1

*

Forward Request

:Java Servlet Class

Figure 4.4: Event Classification

4.2.1 Invocation Event

This is the event to signal the system to invoke a Web Service. This event usually contains parameters such as the Transaction ID, Service Name, and the Input Parameters. The service name is used to identify the service intended to invoke, and the input parameters are the data items that need to pass to the service. The Transaction ID is used to aid the system to maintain session-control at run-time.

	Parameter Name
	Data Type

	Event Type
	String

	Service Name
	String

	Input Parameters
	String (XML Format)

	Transaction ID
	Long Integer

	WSDL Document URL (optional)
	String

Figure 4.5: Parameter List for Invocation Event

A example of the invocation event is illustrate in Figure 4.6.

<ECA_Event type=”invocation”>

 <Service name=”?service_name” tranID=”?transaction_id”/>

 <Input>

 $input_parameters

 </Input>

</ECA_Event>
Figure 4.6: Body of the Invocation Event

4.2.2 Result Event

This is the event where the service returns results to the system. The parameters being carried are the Transaction ID, Service Name, and the Result. This event usually responds to an Invocation Event and represents the successful completion of the remote service. The Transaction ID is once again used by the system to map the result to the appropriate instance of rule waiting for that event.

	Parameter Name
	Data Type

	Event Type
	String

	Service Name
	String

	Result
	String (XML Format)

	Transaction ID
	Long Integer

Figure 4.7: Parameter List for Result Event

An example of the result event is illustrated in Figure 4.8.

<ECA_Event type=”result”>

 <Service name=”$service_name” tranID=”$transaction_id”/>

 <Result>

 $result

 </Result>

</ECA_Event>
Figure 4.8: Body of the Result Event

4.2.3 Registration Event
This is the event to signal the system to publish a Web Service in the UDDI Registry. This event can be classified into two cases based on the UDDI standards. For each Web Service listing, there exists two different description documents, the Interface and the Implementation.

The interface document contains information such as the Message Format, Port Type, and the Binding information. The Message part basically defines input and output message to the service for each method. The Port Type defines the methods exposed to the client and how the messages are utilized when the methods are being called. A combination of these two usually provide the complete details on the input and output parameters for each method provided by the service. The Binding part defines how the service can be bound, for example, through SOAP.

The implementation document contains information such as the Implementing Interface, and the Service Port. The interface part basically gives the location (URL) of the interface document which is being implemented by this document. The service port gives all the technical information to bind the service and how to invoke it. For SOAP, this definition usually contains the address (URL) of the service provider.

In order to register an interface, the Interface Registration Event gets fired. This event usually contains parameters such as the Interface Name, and the Web Service Interface Document.

Once the interface is published in the UDDI registry, the implementation can be published implementing this particular interface. Another event, the Implementation Registration Event is needed. For this event, the input parameters usually include the Service Name, and the Web Service Implementation Document.

	Parameter Name
	Data Type

	Event Type
	String

	Interface Name
	String

	Web Service Interface URL
	String

Figure 4.9: Parameter List for Interface Registration Event

An example of the interface registration event is illustrated in Figure 4.10.

<ECA_Event type=”interface registration”>

 <Interface name=”$interface_name” URL=”$interface_url”/>

</ECA_Event>
Figure 4.10: Body of the Interface Registration Event

	Parameter Name
	Data Type

	Event Type
	String

	Service Name
	String

	Web Service Implementation URL
	String

Figure 4.11: Parameter List for Implementation Registration Event

An example of the result event is illustrated in Figure 4.12.

<ECA_Event type=”implementation registration”>

 <Service name=”service_name” URL=”implementation_url”/>

</ECA_Event>
Figure 4.12: Body of the Implementation Registration Event
4.2.4 Withdrawal Event

This is the event to tell the system to delete a service’s listing in the UDDI Registry. As in the case of Service Registration, there are the Implementation and Interface withdrawal.

Withdrawing an implementation is more common, this is needed when a service being undeployed, re-implemented, or migrated. In the later two cases, service registrations are needed in order for the modified service to be functional. The Implementation Withdrawal Event usually takes parameters such as the Service Name. This is enough since eventually, the UDDI registry can do a search on the name and delete the corresponding listing.

There are cases where an interface needs to be undeployed, this usually caused by a change in the input-output parameters of a method, or the number of methods being exposed. By issuing the Interface Withdrawal Event, the system can trigger a service withdrawal action. This event usually includes the Interface Name as the lone parameter. Please keep in mind that unlike un-publishing an implementation, removal an interface can have some unforeseen side-effects. There might exist some implementations referencing to this particular interface. By removing the interface listing, the implementation would become useless.

	Parameter Name
	Data Type

	Event Type
	String

	Interface Name
	String

Figure 4.13: Parameter List for Implementation Withdrawal Event

An example of the Interface Withdrawal event is illustrated in Figure 4.14.

<ECA_Event type=”interface withdrawal”>

 <Interface name=”$interface_name”/>

</ECA_Event>

Figure 4.14: Body of the Implementation Registration Event

	Parameter Name
	Data Type

	Event Type
	String

	Service Name
	String

Figure 4.15: Parameter List for Implementation Withdrawal Event

An example of the Implementation Withdrawal event is illustrated in Figure 4.16.

<ECA_Event type=”implementation withdrawal”>

 <Service name=”$service_name”/>

</ECA_Event>

Figure 4.16: Body of the Implementation Registration Event

4.2.5 Status Event

The status event is issued when a service request is issued without any reply after a certain period of time. This event has very similar parameter list as Invocation Event since it can be considered as a scale down Invocation Event. The input parameters include Service Name, and Transaction ID. Please note that not all the services provide a status querying interface, this event cannot be applied to all the services.

	Parameter Name
	Data Type

	Event Type
	String

	Service Name
	String

	Transaction ID
	Long Integer

Figure 4.17: Parameter List for Status Event

An example of the Status event is illustrated in Figure 4.18.

<ECA_Event type=”status”>

 <Service name=”$service_name” tranID=”$transaction_id”/>

</ECA_Event>

Figure 4.18: Body of the Status Event

4.2.6 Acknowledgement Event

This event is the reply when a service receives a status check. This is equivalent as a heartbeat notifying the system that the service is still running. The event usually passes in the following parameters, Service Name and Transaction ID. Once again, if the service does not support the status check, this event is not available.

	Parameter Name
	Data Type

	Event Type
	String

	Service Name
	String

	Status
	String

	Time to Complete (optional)
	Long Integer

Figure 4.19: Parameter List for Acknowledgement Event

An example of the Acknowledgement event is illustrated in Figure 4.20.

<ECA_Event type=”acknowledgement”>

 <Service name=”$service_name” tranID=”$transaction_id”/>

 <Status status=”$status” expected-time-to-complete=”$time_to_complete”/>

</ECA_Event>

Figure 4.20: Body of the Acknowledgement Event

4.2.7 Termination Event

This event signals the system that the termination condition has been met. The system should release all the shared resources and return all the calculated results to the client. The lone parameter is the Result being passed back to the caller.

	Parameter Name
	Data Type

	Event Type
	String

	Result
	String (XML Format)

Figure 4.21: Parameter List for Termination Event

An example of the Termination event is illustrated in Figure 4.22.

<ECA_Event type=”termination”>

 <Result>

 $result

 </Result>

</ECA_Event>

Figure 4.22: Body of the Termination Event

4.2.8 Exception Event

This event is issued when an exception is caught. Exception handling can be defined in the script level where an exception handling rule can be defined explicitly. An exception event contains the service name the system tries to invoke but fails, an error status describing the problem, and the input parameters so that the system can reuse that again. The original transaction id is also included for transaction id handling purpose.

	Parameter Name
	Data Type

	Event Type
	String

	Service Name
	String

	Error Status
	String

	Input Parameters
	String (XML Format)

	Transaction ID
	Long Integer

Figure 4.23: Parameter List for Exception Event

An example of the Exception event is illustrated in Figure 4.24.

<ECA_Event type=”exception”>

 <Service name=”?service_name” tranID=”?transaction_id” error=”status”/>

 <Input>

 $input_parameters

 </Input>

</ECA_Event>

Figure 4.24: Body of the Exception Event
4.3 Conditions
Condition is the second component in the rule. Events usually signal the system to carry out specific tasks. However, in a highly dynamic and complex Web Service environment, there must exist some mechanism to verify the dynamic nature of the system to determine whether actions should be triggered. This is when the condition clause comes into place. Condition verification includes checking against data items passed in by an event as well as flow order checking to make sure events and actions happen in a pre-defined order. If the condition expression does not exist, or if it is satisfied, the action component of the rule would be executed. A Condition element is defined as

<!ELEMENT Conditions (ConditionExpr ?) >

<!ELEMENT ConditionExpr (ConditionBooleanOp | (UnaryBooleanOp ?, Condition)) >

<!ELEMENT ConditionBooleanOp (ConditionExpr,

BinaryBooleanOp , ConditionExpr) >

<!ELEMENT Condition (Data |Order) >

Figure 4.25: DTD for ECA Condition

The system recognizes two different categories of conditions and they are handled very differently at run time. Data verification needs a data verification engine to parse the parameter which is in XML format. Control Flow verification is done by comparing the occurrence of event or action in a history list kept by the system. The classification of the conditions is shown in Figure 4.26.

[image: image24.wmf]Quality

Low

Medium

High

Figure 4.26: Condition Classification

4.3.1 Data Condition

Data Content condition usually falls into two categories, numerical checking and also the structural checking of the XML parameters. Numerical checking usually verifies a particular data is within range, equal to a value, or satisfies certain numerical conditions (even and odd). Structural checking can verify the hierarchy of the XML parameter, or even the number of occurrence of a particular element.

During the design of the script, there is a dilemma of whether we should include Data Manipulation Construct directly in our script and implement a full data parsing and verification function in the rule engine. By examining the existing related standards and technologies, we came out with a more flexible and convenient approach. We decided that the system should not define its own data manipulation language but rather makes use of the XSL Transformation Engine. The XSL originates as a data transformation language which defines how an XML document can be transformed to another XML document. There is a ready set of functions to do structural manipulation which can be utilized as structural checking using the built-in if-else and the case statement in XSL. Numerical checking can also be achieved since XSL also includes a set of arithmetic functions.

With the condition checking utilizing XSL technology, the Condition Verifier block in the Rule Engine passes the XML data contents and the specified XSL file to an XSL Transformation Engine. A boolean value would be returned to the system. As a result, the input and output parameter sets for the two Data Content Condition are the same, the input parameters include the Input Parameter (from the event), and the XSL File (defined in the script).

	Parameter Name
	Data Type

	Input Parameters (from event)
	String (XML Format)

	XSL File (defined in script)
	String

Figure 4.27: Parameters used for Data Condition verification

An example of the condition definition and the corresponding XSL file are listed in Figure 4.28 and 4.29.

<ECARule name=“BubbleSortRPC">

 <Events>……</Events>

 <Conditions>

 <Condition type=“data“ URL=“CountListSize.xsl” />

 </Conditions>

 <Actions>……</Actions>

</ECARule>

Figure 4.28: Data Condition definition in the rule script
<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform“

version="1.0">

 <xsl:output method="text" indent="yes"/>

 <xsl:template match="/result/param">

 <xsl:choose>

 <xsl:when test="count(vectorParam)>=30000">true</xsl:when>

 <xsl:otherwise>false</xsl:otherwise>

 </xsl:choose>

 </xsl:template>

</xsl:stylesheet>

Figure 4.29: XSL file for condition checking (CountListSize.xsl)

4.3.2 Flow Order Condition

In cases where services have global effects, sequencing of events may be imposed. The system keeps a list of events received and actions completed in the current session. This list can be checked at run-time such that the triggering of a rule is strictly in the desired order. The check can range from checking whether an event or action has occurred or not. If the rule needs to get triggered after a particular reference point, then the reference event or action must appear in the history list. If not, it means that the reference event or action has not occurred and happen before is satisfied.

Once again, this condition checking returns either true or false and takes the same input parameters including Order Condition (before or after) and the Reference Point (either an event or action).

	Parameter Name
	Data Type

	Condition Type
	String

	Reference Point
	String

	Order Condition
	String {before | after}

	History List (internal data structure)
	String []

Figure 4.30: Parameters used for Flow Order Condition verification

<ECARule name=“$rule_name ">

 <Events>

 …

 </Events>

 <Conditions>

 <Condition type=“flow“

 activity=“$reference_point” term=“$order_condition” />

 </Conditions>

 <Actions>

 …

 </Actions>

</ECARule>
Figure 4.31: Flow Order Condition definition in the rule script

4.4 Actions
If the conditions, as we just described, hold after a rule is triggered, the final ECA rule component, the actions are executed. The action clause can be a remote method from a Web Service, query sent to an UDDI registry, service selection based on user profile, UDDI publication or withdrawal, and exception handling action. The Action is defined as:

<?xml encoding="UTF-8"?>

<!ELEMENT Actions (Action)+>

<!ELEMENT Action (Param)>

<!ATTLIST Action name CDATA #REQUIRED >

<!ATTLIST Action id CDATA #REQUIRED >

<!ATTLIST Action returnEvent CDATA #REQUIRED >

<!ATTLIST Action type CDATA #REQUIRED >

<!ATTLIST Action URL CDATA #REQUIRED >

<!ELEMENT Param EMPTY>

<!ATTLIST Param type CDATA #REQUIRED >

Figure 4.32: DTD for ECA Action

Actions usually got invoked in response to an incoming event. As a result, the action classification is very similar to the classification of event. After all, it is the event that provides most of the parameters in an action call. The classification of action is illustrated in Figure 4.33.

[image: image25.wmf]+GetScript()

+AddScript()

+RemoveScript()

-ECA Scripts

Script Repository

+Event

+Condition

+Action

ECA Script

1..*

1

+FindBusiness()

+FindService()

+AddBusiness()

+AddService()

+GetWSDL()

+AddWSDL()

+RemoveBusiness()

+RemoveService()

-Businesses

-Services

-WSDL Documents

UDDI Registry

+PublishService()

+InvokeService()

-LocalDataTypes

Web Service

+LoadScript()

+ParseScript()

+ProcessEvent()

+ProcessCondition()

-DOM Tree

ECA Rule Engine

+EventType

+EventName

+Parameters

ECA Event

-ServiceName

-Parameters

Service Request

+LocalizeService()

+InvokeAction()

Task Enactment Engine

1

+describes

1

-Servies

1

-Published in

*

-Query

1

*

0..*

-Sends

1

-Consumes

1

0..*

1..*

-Parses

1

-Creates

1

0..*

-Sent to

0..*

1

-Accesses

1

0..*

0..*

-Invokes

1

+Interface Description Document

+Implementation Description Documents

WSDL Documents

Figure 4.33: Action Classification

4.4.1 Service Invocation

In the current implementation, the system supports only one invocation mechanism and it is the Simple Object Access Protocol (SOAP). This protocol is application layer protocol which can run over HTTP, or even email. The transport protocol is not significant in any case. The only thing where the two end points care are the delivery of the SOAP Envelope. Figure 4.34 describes the major components in a SOAP Envelope when it is used a Remote Procedure Call situation. A corresponding example is illustrated in Figure 4.35.

	Parameter Name
	Description

	Method Name
	The function being called

	URN
	A identifier used to identify an application (service class) in the server

	Parameters
	Data passed to the remote service

	
	

Figure 4.34: SOAP Envelope Components for RPC usage

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance" xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:$method_name xmlns:ns1="urn:$urn" SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<param>

 $data_payload

</param>

</ns1:$method_name>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
Figure 4.35: SOAP Envelope example

If the call is over HTTP, the SOAP server URL must also be specified. Once the connection is established, the request SOAP envelope would be delivered. To define this piece of technical information, the ECA language can embed it or refer to a WSDL implementation document. Another key piece information that should be specified is the parameter manipulation scheme (if needed). This defines the input XSL file for the Data Manipulator at run time. In Figure 4.36, a brief description is given for each component in the Action clause, it is not very difficult to note the resemblance between this and the resulting SOAP envelope. This is not a coincidence since the task enactment engine actually assembles the SOAP envelope using all these information.

	Parameter Name
	Description

	Method Name
	The function being called

	URN
	A identifier used to identify an application (service class) in the server

	Parameters (from event)
	Data passed to the remote service

	Transaction ID
	

	WSDL File
	

	Exception Event
	

	Return Event
	

	Service URL (optional)
	URL for the SOAP server, does not need if WSDL is provided

	Parameter Transformation (optional)
	Parameter transformation scheme

Figure 4.36: Parameters used by the rule engine to build the SOAP Envelope
<ECARule name=“QuickSortRPC">

 <Events>……</Events>

 <Conditions>……</Conditions>

 <Actions>

 <Action method="sort" definition=“QuickSort.wsdl"

 returnEvent="terminate" exception="BubbleSortRPC“ >

 <Param type=“transform“ URL=“ParamTransfrom.xsl”/>

 </Action>

 </Actions>

</ECARule>

Figure 4.37: ECA Action Definition
<service name="QuickSort">

 <port binding="QuickSortBinding“ name="QuickSortPort">

 <soap:address location="http://host/soap//RPCRouterServlet"/>

 </port>

</service>

Figure 4.38: WSDL Implementation referenced by the Action script

4.4.2 Service Registration Action

The service registration action is a more complex action since it includes a number of message exchanges between the service publisher and the UDDI registry. The messages include submitting the user id and password for an authorization token and a subsequent message submitting the received authorization token with the actual publishing information. During implementation, there are some packages which accomplish this through API calls just like the UDDI for Java provided from IBM. From the standpoint of Script Writer, the script only needs to include the Service Definition to be published, URL of the UDDI Registry, User ID and the Password for that particular registry. The Task Enactment Engine would transform these information using the API and carries out the required registration process.

	Parameter Name
	Description

	Name
	The service or interface name being published

	WSDL Document URL
	The URL for the implementation or interface documents being published

	UDDI Registry URL (optional)
	The URL for the UDDI Registry, if using the system default registry, does not need to define in script

	UDDI User ID (optional)
	

	UDDI Password (optional)
	

Figure 4.39: Parameters used by the rule engine to do Service Registration

4.4.3 Service Withdrawal Action

The service withdrawal action is the process to un-publish a service from the UDDI registry. This carries a lot of resemblance of the service registration action and contains a subset of the parameters compare to its counterpart. The mechanisms are exactly the same except they use a slightly different API calls which completely shield the details from the script writer. The script only needs to specify the following information:

	Parameter Name
	Description

	Name
	The service or interface name being un-published

	UDDI Registry URL (optional)
	The URL for the UDDI Registry, if using the system default registry, does not need to define in script

	UDDI User ID (optional)
	

	UDDI Password (optional)
	

Figure 4.40: Parameters used by the rule engine to do Service Withdrawal
4.4.4 Service Localization Action
The service localization action is the action to query the UDDI registry and returns information about a particular service. There are two querying patterns supported in the system, a search based on name and a search based on category. The mechanisms are exactly the same except they use a slightly different API calls. Behind the scene, the system and the UDDI registry also undergo a sequence of message exchanges as in the case of service registration. Since the system already provides an abstraction layer on top of the whole process, the script only needs to specify the following information:

	Parameter Name
	Description

	Service Name
	The service or interface name being published

	Service Category
	

	Query Type
	

	UDDI Registry URL (optional)
	The URL for the UDDI Registry, if using the system default registry, does not need to define in script

	UDDI User ID (optional)
	

	UDDI Password (optional)
	

Figure 4.41: Parameters used by the rule engine to do Service Registration

In the language, they are defined as follow:

<Action name="service_function" id="service_name" type="UDDI-NAME" URL=http://uddi_registry_host/>

This action returns the two WSDL documents (interface and implementation) which are stored during the service registration step. Once the system identify the service with the two service documents, it can generate a call to the service using the SOAP Invocation mechanism transparently.

Another querying approach is a bit different, the system queries the UDDI registry for services in a particular category and the system returns a list of services. The system uses the run-time service selection mechanism to pick a service based on the user profile. The definition in the scripting language is as follow:

<Action name="service_function" id="service_cat" type="UDDI-CAT" URL=http://uddi_registry_host/>
4.4.5 Service Selection Action
As discussed in the previous section, a search for a category of service may return multiple results. It is up to the system to select the most appropriate service on be-half for the user. An extension is placed in the current UDDI architecture in order to accommodate this new idea. Matching a request from the user to the actual invocation of a service requires additional information from both sides. First, there must exist a user profile model specifying the user requirement. At run time, this would be mapped into a value and weight vector consisting evaluation criteria such as cost, distance, performance and even access privilege. On the other hand, an extra document is put at the server side which describe the service’s runtime characteristic. These characteristics can reflect current load of the service, cost.

When the system gets back a list of service description, it can then obtain the service characteristic description. With the idea of service description service, which is an external service which grades the compatibility of the user’s specification and the service’s offering. In Figure 4.42, it describes the information needed for service selection.

	Parameter Name
	Description

	Service Description
	The service name and other technical details

	Service Characteristic
	This is the service quality description which reflects dynamic characteristics of the service

	User Profile
	The service quality the user desired

	Evaluation Service Description
	The technical details on how to invoke the evaluation service

Figure 4.42: Parameters used by the rule engine to do Service Selection

Please note that this action is different from the previous listed actions, this does not need to be explicitly defined in the script. This can be considered as one of the internal actions that are carried out automatically by the system.

4.4.6 Service Status Action

This is the heartbeat service in the system. If a service has been invoked for certain time and cannot receive any reply, the status service would can be queried. This function usually goes together with the service but with a slightly different interface. There is no need to pass any data except the transaction ID. In many situations, this action is completely optional and service does not support this at all.

	Parameter Name
	Description

	Method Name
	The function being called

	URN
	A identifier used to identify an application (service class) in the server

	Transaction ID
	

	Service URL (optional)
	URL for the SOAP server, does not need if WSDL is provided

Figure 4.43: Parameters used by the rule engine to query a service’s status

4.4.7 Exception Handling Action
When the system catches an exception and issues an exception event, the end result would be the triggering of the Exception Handling Action in the script. This is very similar to the exception handling routine in any computer programming language. From the system stand point, this action does not differentiate itself from others, but rather provide a path for the system to terminate gracefully in terms of logic flow. It can prevent deadlock in the system since it prevents it to get stuck in a state. Since it is the same as the usual service invocation, the parameter list is the same as the service invocation action.

4.4.8 Termination Action
When the system reaches the end of execution, it needs to release the resources it holds up and more important, it needs to return the results to the user. This is referred as the System Termination Action. If there are any events come in after the termination of the session, those events would be discarded by the system.

From the system standpoint, there is nothing to be returned except de-allocating all the data structures and set the system to the initial state waiting for another client’s request. The result of the whole execution run which containing the end results of the executed services would be returned to the client.

Chapter 5
Algorithms

In Web Service Paradigm, there are many existing or developing standards governing the behaviors of each component. There are certain extensions that can be incorporated into the current standards. The two major enhancements proposed are publishing remote UDDI Registries as services and localize service in a DNS like manner, and another enhancement is service selection based on service quality characteristic and user profile approach.

In the first enhancement, the novelty of the approach is to apply a developed and successful resource localization algorithm and applying it to the Web Service platform. Several UDDI Registries form a distributed database for their own local Web Service while service requester can query the amalgamated registry in an organized fashion. This can also reduce the chance of single point failure and network traffic to a particular node. The second enhancement is the introduction of user profile and a service quality characteristic into the UDDI Registry technology. As services become more specialized and clients become more critical about the service quality, there need a mechanism to match the two parties using more fine grain. The novelty of this technique is that dynamic characteristic can be reflected in the service quality model and the matching algorithm is applied per customer and per invocation.

5.1 Resource Localization

When the resources are distributed across various places, it requires an algorithm to localize these useful resources. This problem has been encountered in the world of Internet. The Internet is made up of numerous of computers refer to hosts. Information is generally stored on these hosts and they are referred as hosts. One identifier for a host is its hostname, such as www.uwaterloo.ca, www.yahoo.com, these identifiers are mnemonic and are therefore appreciated by humans. However, hostnames provide little, if any, information about the location within the Internet of the host. Furthermore, hostnames can consist of variable-length alpha-numeric characters, they would be difficult to process by routers. For these reasons, hosts are also identified by the IP address. An IP address consists of four bytes and has a rigid hierarchical structure.

Since people prefer the more mnemonic hostname identifier, while routers prefer fixed-length, hierarchically-structure IP addresses, the Internet needs a directory service that translates hostnames to IP addresses. This is the main task of the Internet’s Domain Name System (DNS). The DNS is (i) a distributed database implemented in a hierarchy of name servers and (ii) an application-layer protocol that allows hosts and name servers to communicate in order to provider the translation service. DNS is commonly employed by other application-layer protocols – including HTTP, SMTP, and FTP – to translate user-supplied hostnames to IP addresses. Most Internet services rely on DNS to work, and if DNS fails, web sites cannot be located and email delivery stalls.

Like HTTP, FTP, and SMTP, the DNS protocol is an application-layer protocol since (i) it runs between communicating end systems, and (ii) it relies on an underlying end-to-end transport protocol (i.e. UDP) to transfer DNS messages between communicating end systems. Unlike other applications such as the Web, file transfer, and email, the DNS is not an application with which a user directly interacts. Instead, the DNS provides a core Internet function – namely, translating hostnames to their underlying IP addresses, for user applications and other software in the Internet.

There are many suggestions on the design of how DNS would work. If there is only one Internet Server that contains all the mappings in which all clients simply direct all queries to this server, and the name server responds directly to the querying clients. It suffers from the following design flaws:

1. A single point of failure: if the name server crashes, so does the entire Internet.

2. High traffic volumes: the only name server would have to handle all DNS queries.

3. Distinct centralized database: the single name server cannot be “close” to all querying clients.

4. Maintenance: the single name server would have to keep records for all Internet hosts. Not only would this centralized database be huge, but it would have to be updated frequently to account for every new host throughout the entire Internet.

In order to deal with the issue of scale, the DNS uses a large number of name servers, organized in a hierarchical fashion and distributed the world. In this scheme, no one name server has all of the mappings for all of the hosts in the Internet. Instead, the mappings are distributed across the name servers. There are three types of name server, local name server, root name server, and the authoritative name server.

Let’s start with a simple example, suppose the host client.localdomain wants to get the IP address of target.remotedomain. The host client.localdomain first sends a query message to its local name server dns.localdomain and the local name server forwards the query message to a root name server. The root name server forwards the query message to the name server that is authoritative for all the hosts in the remote domain. This example assumed that all queries are recursive queries. When a host or name server A makes a recursive query to a name server B, then name server B obtains the requested mapping on behalf of A and then forwards the mapping back to A. This querying process is shown in Figure 5.1.

[image: image26.wmf]+EventFound()

Event Matcher

+GetEvent()

+GetCondition()

+GetAction()

-DOM Tree

Rule Manipulator

Service Request

+VerifyCondition()

Condition Verifier

«subsystem»

Rule Repository

«subsystem»

Condition Repository

Data Manipulator

«subsystem»

SubSystem1

+GetName()

+GetParam()

-Name

-Type

-Parameter

ECA Event

GetName

Load

Rules

+GetDomTree()

-Event

-Condition

-Action

ECA Rule

Access

Rule

Signal

GetEvent

GetCondition

GetParam

Signal

Creates

Load Conditions

Get

Manipulation

Definition

Load Data

Manipulation

Scheme

Load

Condition

Scheme

Figure 5.1: DNS messaging sequence for recursive query

[image: image27.wmf]+invoke()

-ServiceType

Service Request

+invoke()

-ServiceDefinition

SOAP Service

+invoke()

-ServiceName

UDDI-Name Service

UDDI Registry

+InvokeService()

Task Enactment Engine

Service Evaluator

+invoke()

-ServiceCategory

-UserProfile

UDDI-Cat Service

Web Service

-queries

1

1..*

-Evaluates

1

1..*

+Calls

1

1

+Calls

1

1

+Calls

1

1

-Calls invoke()

1

0..*

-Published in

0..*

*

There is another querying pattern in the DNS protocol which is refereed as iterative query. When a name server A makes an iterative query to name server B, if name server B does not have the requested mapping, it immediately sends a DNS reply to A that contains the IP address of the next name server in the chain, say, name server C. Name server A then sends a query directly to name server C. The querying pattern is illustrated in Figure 5.2.

Figure 5.2: DNS messaging sequence for iterative query

5.2 Service Localization in the Service Oriented Architecture

5.2.1 Service Oriented Architecture

Regardless of the implementation, SOA is comprised of three participants and three fundamental operations as in Figure 5.3.

[image: image2.png]

Figure 5.3: The SOA model

A service provider is a Network node that provides a service interface for a software asset that manages a specific set of tasks. A service provider node can represent the services of a business entity or it can simply represent the service interface for a reusable subsystem.

A service requestor is a Network node that discovers and invokes other software services to provide a business solution. Service requestor nodes will often represent a business application component that performs remote procedure calls to a distributed object, the service provider. In some cases, the provider node may reside locally within an intranet or in other cases it could reside remotely over the Internet. The conceptual nature of SOA leaves the networking, transport protocol, and security details to the specific implementation.

The third SOA participant is that of the service broker; it is a Network node that acts as a repository, yellow pages, or clearing house for software interfaces that are published by service providers. A business entity or an independent operator can represent a service broker.

These three SOA participants interact using three basic operations: publish, find, and bind. Service providers publish services to a service broker. Service requesters find required services using a service broker and bind to them.

In this architecture, the service providers are distributed across the Internet, each of them publishes the offered services in the service broker. This clearly shows some similarities between the SOA architecture and the DNS technology in the Internet. This is the point we propose a DNS adaptation to service localization in SOA.

The current trend of implementing a service broker is using the UDDI technology. UDDI requires service descriptions. There are several important aspects of a service description. First, it specifies the semantic characteristics of a service provider. Service brokers use the semantic characteristics to categorize the service provider as an aid to finding specific services. Second, the service description specifies the interface characteristics used to access the service. The interface characteristics include the operations available, the parameters, data-types, and the access protocols. The service requester uses this information to actually bind to the service provider and invoke its services.

The current UDDI technologies only specify the data-types and sequencing of messages an UDDI registry would take to publish, un-publish, and query a service and the corresponding service provider. There are no restrictions or specifications on whether a service can be publish in multiple registries and how a service requester should proceed if the registry finds no match for a particular service. If there exists only one UDDI registry in the Internet, it also suffers from the single design flaws as the one node name server approach, namely a single point of failure, high volume of traffic, and high degree of maintenance activities. Our proposed design tries to solve this problem by introducing a more structured distributed database of services avoiding major changes to the current UDDI standards and implementations.

5.2.2 Distributed directory of services

The UDDI can be enhanced in a way similar to the Domain Name Service. A collection of UDDI nodes can be distributed around the Internet each stores a set of services that are geographically related to each other. Information on other UDDI registries should also be stored in the directory itself. Whenever a request comes in and cannot locate a service, the UDDI registry can do one of the followings:

5.2.3 Recursive Queries

The UDDI registry tries to look up the service directory and if it cannot find a match, it tries all the other UDDI registries in its vicinity. The UDDI registry being called carries out the same process recursively. This method can keep the client as simple as possible because extra logic is only put into the UDDI registries and it always guarantee backward compatibility with any existing system because for each UDDI request, either a “found” or “not-found” reply would be receive. However, there may be some potential drawbacks with this approach. The most obvious one is that more logic must be tied into each UDDI registry to look up potential service, this might dramatically slow down the server.

Another potential problem is the loop in the UDDI query steps. Since all the registries are distributed, loop within the calling parties can be difficult to detect. Looping of calls can potentially increase the network traffic without bound. The simplest solution would be putting in a “time-to-live” or “level-to-travel” counter in the request and asking each registry to modify the flag accordingly.

5.2.4 Iterative Queries

Another approach is that whenever a UDDI registry cannot find any match, the reply including the original “service-not-found” information but also telling the client any other UDDI registries that might have the information. Upon the reception of the reply, the client can keep the old behavior of not doing anything or can query the list of UDDI registries one by one. Since a list is kept on the client side, loop can be detected by simply ignoring any further registries that exist in the list already. The traffic is always well under control since for one query, there is only one reply pending in the network somewhere. Another advantage is that the UDDI registry can be kept relatively similar to what it is today and extra logic is inserted on the client side if this feature is desirable. The messaging sequence of UDDI iterative query is illustrated in Figure 5.4.

[image: image28.wmf]Root Name Server

local name server: dns.localdomain

Requesting Host: client.localdomain

Target Host: target.remotedomain

remote name server: dns.remotedomain

Remote Domain

Local Domain

1

2

3

4

5

6

Figure 5.4: Messaging sequence of UDDI iterative query

The algorithm involves first querying the local UDDI registry and if no matches can be found, find other UDDI registries and query these registries recursively. There are two basic requirements. First, the Web Service Integration system must aware at least one UDDI registry. Since this is almost the basic requirement for all Web Service Invocation client to function, so this assumption is almost always true. Second, each UDDI registry should list some other UDDI registries (in close proximity) as services. Although this is not very popular at this moment in time, it does not need to change any implementation for the UDDI registry.

The algorithm takes the input of a service description S and the address of an UDDI registry R and returns Invocation description.

Algorithm: FindService(R, S, L)

Purpose: Try to locate Service S in UDDI Registry R, if no matches can be found, try to do a DNS like query

Input: UDDI Registry Description R, Service S, current search level L initialized to 0 in the first call

Output: Invocation Description I for Service S
InvocationDescription I[] = QueryService (R, S)

If I is null

 If L == D+1

 Return null

 UDDI_Desc UI[] = QueryService (R, “UDDI Listing”)

 For each R in UI

 I = FindService (UI[j], S, L+1)

 If I is not null, return I

Else return I

Figure 5.5: Algorithm for UDDI iterative query in a DNS manner

The algorithm is implemented as a recursive function. The base case occurs when service S can be located in the current UDDI Registry or depth level D is encountered. If no such service is located, the function queries for remote UDDI Registry listings in the current registry. For each registry returned, the function applies the same search logic recursively.

5.3 Service Selection and Matching

It is clearly possible, and even a goal, to have many service providers with nearly identical service descriptions; that is, many service providers that offer specific semantic and interface characteristics, but perhaps differ in some details or in non-functional characteristics. Put another way, many service providers may implement the same service via the same interface and access mechanisms, but differ in cost, security, performance, etc. Aiming to support this kinds of features, there needs a service matching Algorithm based on dynamic service characteristics. The service characteristic specifies various non-functional characteristics such as security, transactional requirements, cost of using the service provider, and others. The modeling of the service selection is illustrated in Figure 5.6.

[image: image3.wmf]UDDI Registry

+Invoke Service()

-

Web Service

Service Requester

+Evaluate Service()

-Service Description Model

Service Evaluation Function

-Interface Name

+Exported Methodss

-Input Message

-Output Message

Interface Document

*

1

*

-Interface Name

+Exported Methodss

-Input Message

-Output Message

Interface Document

-Interface Name

+Exported Methodss

-Input Message

-Output Message

Quality Characteristic Document

*

1

1

1

1

1

*

Published in

Described by

Contains

-Quality-Weight Vector

User Profile

1

*

Query for Service

1

1

1

*

1

1

Evaluate

Service

Request

1

*

1

1

Request Service

 Figure 5.6: Model for Service matching

5.3.1 User Profile Matching

In the service localization process, if there exists more than one Service Si..j {j > i} satisfying the Query q, the system must try to identify a service that is the most appropriate given some criteria. One of the most obvious choices for service matching is based on user preferences against the service quality. There are many qualities that each services can be characterized, for example, cost, performance, reliability, security, access privilege, etc. The basic idea is that when a client requests a service, the request first goes through the service matching process. The result is based on the user profile submitted and how closely each service matched against the user preferences. Only the service that is considered to be the closest matched would be invoked.

In general, the client profile specifies a list of characteristic vectors the client desires. Each vector contains the desired value and the weight of the importance of that quality. In other words, for each quality characteristic Ci, the user profile contains a vector <qi, wi> where qi is the desired quality level and wi is the corresponding weight. The user profile P = Ci..j {j ≥ i}.

In reality, it is impossible to provide a service that can obtain the highest scores in each category. In each service, there exist some constraints that limit the quality of the service. This is referred as the service characteristics. To model that, each service’s characteristics is categorized as a dependency graph. Each quality characteristic has its own tree where the possible values for the category are represented as leaves in the tree. A simple quality characteristic is illustrated as in Figure 5.7.

[image: image29.wmf]Root Name Server

local name server: dns.localdomain

Requesting Host: client.localdomain

Target Host: target.remotedomain

remote name server: dns.remotedomain

Remote Domain

Local Domain

1

2

3

4

5

6

Figure 5.7: Quality attribute graph

Since each service often has multiple quality characteristics, the service would have the same number of trees in the model. To put these constraints into place, each constraint is modeled as a link marked with a minus sign “-“ between the two contradicting attribute values. For example, for a particular service it cannot have low cost with high reliability and high performance. At the same time, to indicate a possible combination quality level, a link joining the two quality level is marked with a plus sign “+”. Using the same example, suppose that the service cannot offer any combinations of high qualities for any given categories. The resulting dependency graph is illustrated in Figure 5.8.

[image: image4.wmf]Quality 1

Low

Medium

High

Quality 2

Low

Medium

High

Cost

Low

Medium

High

-

-

+

+

-

Figure 5.8: A dependency graph model for quality attribute

Each service supporting user profile matching would be represented by one of these quality description models. These models would be constructed when the service is initialized. At run time, during the service selection stage, the user profile would be mapped against each service characteristic. This user profile would contain the accepted values for each attribute, as well as the weight indicating the importance of each quality. The service matching step is being held concurrently and independently for each service. Each service would decide on whether the desired quality level is achievable. If the desired quality is too high, the service would try to relax the user requirements by providing a compensating quality level to the service requester. The level of matching is represented by a score returned to the service requester.

The algorithm is based on the classic Artificial Intelligence algorithm A*. A search tree is constructed for every service at run time. Each node in the tree indicates a quality level of the service, a path from the root to the node represents a combined quality levels of the service being evaluated. The depth of the tree equals to the number of quality categories and the levels are sorted by the relative weight in the user profile. In other words, the least important category levels are the leaves of the tree. An example of such a search tree is illustrated in Figure 5.9. Please note that the tree is not a complete tree because there are states which are potentially contradicting to each other, these are represented by the negative links in the dependency graph.

[image: image30.wmf]Remote Domain

Local Domain

1

2

3

4

Service

Requester

Local UDDI

Registry

Remote UDDI

Registry

Service

Requester

*

1

1

*

Publishes in

Publishes in

Figure 5.9: Service Evaluation search tree

To evaluate the quality of each combination, a score is being assigned as

[image: image5.wmf]å

-

´

))

(

(

Qi

Ui

Wi

where Wi is the weight for quality category i, Ui is the score for the desired quality level and Qi is the score for the quality level offered by the service. The search algorithm can use such a evaluation function and the idea is to find a path that deviates less from the desired quality.

Evaluation function f(n) = g(n) + h(n)

g(n) = accumulated deviation so far to reach n

h(n) = minimum possible deviation to reach the desired quality levels from n

f(n) = estimated total deviation cost of path through n to goal

and since A* search uses an admissible heuristic

ie., h(n) ≤ h*(n) where h*(n) is the true score from n

Adapting the above evaluation to this particular case, g(n) is the accumulated deviations from the root to reach node n. On the other hand, h(n) is the minimum deviation it can achieve from n for the remaining categories to be visited. Conceptually, the algorithm first visits the best node assuming it has a bright future. When the algorithm explores deeper in the search tree and if the path deviates very far from the desired quality, another path which does not start as well would become the better alternative and being explored.

The algorithm first starts from the one of the quality categories. Enqueue the possible states in the queue, and then sort the queue by evaluation function f = g + h. For the item with the lowest deviation, check whether it is the goal state. If not, replaces it in the queue with any possible transitions to the next quality category. Sort the queue again by the evaluation function. Repeat the expansion steps and finally, if the goal state (represented by a path going through all categories) is reached, the process terminated and the service and the score is returned.

Algorithm: EvaluateService

Assumptions: There are finite number of quality categories n

 Qi denotes a quality category where i = 0..n-1

Glogal Data Structure

 Queue: This queue is used to stores all the expanded states

Functions used:

 g(current_state): from quality category i=0 to the current category level, the

 deviation involving the current_state

 h(current_state): for the unexplored quality categories, the minimum deviation

 f(current_state): given the current_state, the minimum deviation

Purpose:

Input:

Output:

Starting from the Quality Category Qi where i=0

Enqueue all the states of Qi

loop:

 Sort the queue by the evaluation of f=g+h

 Pick the lowest from the queue and use it as the current state

 Goto end_loop if goal state

 Increment i

 Enqueue all the states from the current state to any states in Qi

 Goto loop

end_loop

Figure 5.9: Service Matching Algorithm

Let’s do a walk through of the algorithm based on the dependency we got earlier with some additional links. Please note that in the real case, there might be much more links connecting different quality levels. This graph is simplified to the level that is enough to convey the idea. The assumption is that W1 > W2 > W3 and their values are 0.4, 0.35, and 0.25 respectively. Let’s assume that High quality worths 10 points, Medium worths 5, and Low worths 1 and suppose that the user wants the best quality in each category. Given the dependency graph shown in Figure 5.10, the service is not able to provide service at the level specified in the user profile. The service evaluator would go into the constraint relaxation stage.

[image: image6.wmf]Quality 1

Low

Medium

High

Quality 2

Low

Medium

High

Cost

Low

Medium

High

+

-

-

Desired Values

W3 = 0.25

W2 = 0.35

W1 = 0.4

+

+

+

+

+

-

Figure 5.10: Service Quality level model with User Preferences

At the first expansion, quality category one is being explored, the possible deviations devoted by f are calculated by summing g which is the current deviation to h which is the minimum deviation for the remaining categories. The first expansion of the search tree is shown in Figure 5.11. Out of the three choices, if quality 1 is high, f is evaluated to 0 indicating this path might give the least deviation.

[image: image7.wmf]Initial State

Low

Medium

High

Quality 1

w = 0.4

h = 0

g = 0

f = 0

g = 2

f = 2

g = 3.6

f = 3.6

Figure 5.11: First level Search Tree

At this moment, the constraints begin to take effect eliminating quality level medium and low for category two given quality high is chosen at quality one. The evaluated deviation for this combination (quality 1 = high, quality 2 = low) is 3.15. This deviation is higher than the case if medium is chosen as the first quality. The algorithm steps back and chooses to expand the path involving quality 1 = medium.

[image: image8.wmf]Initial State

Low

Medium

High

Low

Quality 1

w = 0.4

h = 0

g = 0

f = 0

g = 2

f = 2

g = 3.6

f = 3.6

Quality 2

w = 0.35

h = 0

g = 3.15

f = 3.15

5.12: Search tree with quality 1 = High chosen

Going through similar steps, the algorithm finally reaches a goal state and the path is q1=medium, q2=high, and q3=medium with a true deviation of 3.25. Please note that the algorithm does not end here because for all the nodes expanded, there is still one node whose deviation is 3.15 (q1=high, q2=low). The algorithm needs to expand the node and makes sure that it is not a more optimal result.

[image: image9.wmf]Initial State

Low

Medium

High

Low

Low

Medium

Medium

Low

Quality 1

w = 0.4

h = 0

High

g = 0

f = 0

g = 2

f = 2

g = 3.6

f = 3.6

Quality 2

w = 0.35

h = 0

g = 3.15

f = 3.15

g = 2

f = 2

g = 3.75

f = 3.75

g = 5.15

f = 5.15

Quality 3

w = 0.25

h = 0

f = 3.25

f = 4.25

5.13: Search tree with an identified goal state

Further expansion and evaluation shows that the newly expanded node (q1=high, q2=low, q3=high) contains a lower deviation (3.15). Since this is a goal state and no nodes in the tree can have a lower evaluation value, this is the final result being returned to the service requester.

[image: image10.wmf]Initial State

Low

Medium

High

Low

Low

Medium

Low

Medium

High

Medium

Low

Quality 1

w = 0.4

h = 0

High

g = 0

f = 0

g = 2

f = 2

g = 3.6

f = 3.6

Quality 2

w = 0.35

h = 0

g = 3.15

f = 3.15

g = 2

f = 2

g = 3.75

f = 3.75

g = 5.15

f = 5.15

Quality 3

w = 0.25

h = 0

f = 3.25

f = 4.25

f = 3.15

f = 4.4

f = 5.4

5.14: Search tree with an identified optimal state

5.3.2 Issues in Service Evaluation

An issue in this design is that the service evaluation routine must adhere the same standards. Since a score is returned to the service requester, there must exist a guideline governing the classification of the service evaluation system. The simplest approach is to publish the evaluation criteria and provides checklist for qualities such as security. In terms of performance, a simple measuring routine can be designed to give performance readings.

5.3.3 Publication of Service Characteristics

[image: image31.wmf]UDDI Registry

Application Service Provider

Implementation Document

Quality Characteristic Document

Interface Document

1

1

*

*

1

*

1

*

Interface Provider

Before a service can be evaluated, its characteristic must be published. There are many places this can be done, the most logical spot would be the UDDI registry. In the current implementation, the registry contains two main kinds of technical service description documents. The first one defines the interface of the service and the other one specifies the binding and invoking methods for a service implementing a listed interface. There are extension space in putting a service characteristic. The end results would be an extra tag in the implementation document referencing the quality characteristic document. The overall organization of these documents is illustrated in Figure 5.15.

Figure 5.15: Service Description Documents Deployment

5.3.4 Service Evaluation Program Deployment

Once the service requester gets the technical details for the web service, it is ready to either invoke it or evaluate it. The invocation mechanism is being discussed in detail in Chapter 3, the evaluation mechanism would be examined. The main component in the service evaluation design is a service evaluation routine implementing the algorithm in the previous chapter. There are two main approaches on how this can be done. There can be a specialized service which is responsible to evaluate a particular kind of service. Another approach is to include an evaluate interface in each service and letting the service does the evaluation on its own.

[image: image32.wmf]Application Service Provider

Quality Characteristic Document

1

1

Web Service

Evluation Service

Service

Requester

1

*

1

*

1

*

In the specialized evaluation service approach, there would exist at least one service evaluation service accessible to the service requester. Once the service requester acquires the information of each service as well as the evaluation service through the UDDI registry, the service requester can send the user profile with the service evaluation request to this particular service. The evaluation service can then pick up the service quality characteristic from the service provider and applies the algorithm against the two parties. The deployment is illustrated in Figure 5.16.

Figure 5.16 Deployment of Quality Evaluation Service

There are certain advantages with this deployment approach. This design provides the maximum amount of backward compatibility, each service provider only needs to leave the quality characteristic document accessible and publishes it in the registry. There are relatively the least amount changes to the existing infrastructures since everything is built on top. Another advantage is that since we have a centralized evaluation service for the same category of service, it is much easier to enforce a unify standard across all services. However, there are some issues that need to be taken care of, it is very obvious that the evaluation service can be the single point failure in this design. If the evaluation service fails, the whole system collapses. As a result, certain degree of redundancy is strongly recommended in the actual deployment environment.

When the degree of redundancy increases, the extreme case is that there would be one evaluation service at each service provider site. In this extreme, each service provider can use the generic evaluation service or provides a custom evaluation algorithm for its own. This is the case where the maximum of fail-safe and concurrency can be achieved. The system requester can overlap the calculation and evaluation time for each service. In the actual deployment, the service provider can keep the evaluation service running as a separate program along side with the service or integrate an evaluation interface within the service.

_1073491235.vsd
�

�

�

Quality 1�

�

Low�

�

Medium�

�

High�

�

�

�

�

�

�

�

�

�

�

Quality 2�

�

Low�

�

Medium�

�

High�

�

�

�

�

�

�

�

�

�

�

Cost�

�

Low�

�

Medium�

�

High�

�

�

�

�

�

�

�

�

�

-�

-�

+�

+�

-�

_1073596474.vsd
�

�

Initial State�

�

Low�

�

Medium�

�

High�

�

�

�

�

�

�

�

�

�

g = 0
f = 0�

g = 2
f = 2�

g = 3.6
f = 3.6�

�

Quality 1
w = 0.4
h = 0�

_1073597168.vsd
�

�

Initial State�

�

Low�

�

Medium�

�

High�

�

�

�

�

�

�

�

�

�

�

Low�

�

High�

�

�

�

�

�

�

�

Low�

�

Medium�

�

�

�

�

�

�

�

�

�

g = 0
f = 0�

g = 2
f = 2�

g = 3.6
f = 3.6�

Quality 2
w = 0.35
h = 0�

�

g = 3.15
f = 3.15�

g = 2
f = 2�

g = 3.75
f = 3.75�

g = 5.15
f = 5.15�

Quality 3
w = 0.25
h = 0�

f = 3.25�

f = 4.25�

�

Medium�

�

�

�

�

Low�

�

�

Quality 1
w = 0.4
h = 0�

_1073597191.vsd
�

�

Initial State�

�

Low�

�

Medium�

�

High�

�

�

�

�

�

�

�

�

�

�

Low�

�

High�

�

�

�

�

�

�

�

Low�

�

Medium�

�

�

�

�

�

�

�

�

�

g = 0
f = 0�

g = 2
f = 2�

g = 3.6
f = 3.6�

Quality 2
w = 0.35
h = 0�

�

g = 3.15
f = 3.15�

g = 2
f = 2�

g = 3.75
f = 3.75�

g = 5.15
f = 5.15�

Quality 3
w = 0.25
h = 0�

f = 3.25�

f = 4.25�

f = 3.15�

f = 4.4�

�

Low�

�

Medium�

�

High�

�

�

�

�

�

�

�

�

�

f = 5.4�

�

Medium�

�

�

�

�

Low�

�

�

Quality 1
w = 0.4
h = 0�

_1073596894.vsd
�

�

Initial State�

�

Low�

�

Medium�

�

High�

�

�

�

�

�

�

�

�

�

�

Low�

�

�

�

g = 0
f = 0�

g = 2
f = 2�

g = 3.6
f = 3.6�

Quality 2
w = 0.35
h = 0�

�

g = 3.15
f = 3.15�

Quality 1
w = 0.4
h = 0�

_1073595153.unknown

_1073131170.vsd
�

�

�

�

�

�

UDDI Registry�

�

+Invoke Service()�

-�

Web Service�

�

�

�

Service Requester�

�

+Evaluate Service()�

-Service Description Model�

Service Evaluation Function�

�

�

-Interface Name
+Exported Methodss
-Input Message
-Output Message�

Interface Document�

�

�

*�

1�

�

*�

�

�

-Interface Name
+Exported Methodss
-Input Message
-Output Message�

Interface Document�

�

�

-Interface Name
+Exported Methodss
-Input Message
-Output Message�

Quality Characteristic Document�

�

�

*�

�

�

1�

1�

�

�

1�

�

�

1�

�

1�

*�

Published in�

Described by�

Contains�

�

-Quality-Weight Vector�

User Profile�

�

�

1�

*�

Query for Service�

�

1�

1�

�

1�

*�

�

1�

1�

Evaluate Service Request�

�

1�

*�

�

1�

1�

Request Service�

_1073491091.vsd
�

�

�

Quality 1�

�

Low�

�

Medium�

�

High�

�

�

�

�

�

�

�

�

�

�

Quality 2�

�

Low�

�

Medium�

�

High�

�

�

�

�

�

�

�

�

�

�

Cost�

�

Low�

�

Medium�

�

High�

�

�

�

�

�

�

�

�

�

+�

-�

-�

�

Desired Values�

�

�

�

W3 = 0.25�

W2 = 0.35�

W1 = 0.4�

+�

+�

+�

+�

+�

-�

