PAGE
814

<CN>13</CN>
<CT>Integration of i* and Object-Oriented Models</CT>
<CA>Jaelson Castro, Fernanda Alencar, Victor Santander, and Carla Silva</CA>
<H1>13.1 Introduction</H1>
It is now a widely shared tenet of software engineering that a good requirements engineering effort is paramount to the success of any system. Often, software systems fail to properly support the organizations of which they are an integral part. Primary reasons for such failures are the lack of proper understanding of the organization by the software developers of the system and the frequency of organizational changes that cannot be accommodated by existing software systems (or their maintainers). Hence, requirements capture has been acknowledged as a critical phase of software development, precisely because it is the phase that deals not only with technical knowledge but also with organizational, managerial, economic, and social issues. The emerging consensus is that a requirements specification should include not only software specifications but also business models and other kinds of information describing the context in which the intended system will function (Eriksson & Penker, 2000). During requirements analysis, analysts need to help to identify different ways in which software systems can be used to achieve organizational objectives. Consequently, there is a need for modeling and analysis of stakeholder interests and how they might be addressed, or compromised, by various system-and-environment alternative structures.

However, the production of high-quality specifications is quite difficult. Usually the customers do not know exactly what they want, and sometimes the requirements may not reflect the real needs of the customers. It is common for requirements to be incomplete and/or inconsistent.

Eric Yu’s work on requirements engineering has drawn an important distinction between early-phase and late-phase requirements capture. Early-phase requirements activities are typically informal and address organizational or nonfunctional requirements (Yu, 1995; reprinted as chapter 2 of this book). The emphasis is on understanding the motivation and rationale that underlie system requirements. Late-phase requirements activities usually focus on completeness, consistency, and automated verification of requirements.

If one is interested in object-oriented development, the Unified Modeling Language (UML) (Booch, Jacobson, & Rumbaugh, 1999)
 could be an obvious candidate for requirements modeling. However, UML is ill equipped for early requirements capture because it cannot represent how the intended system meets organizational goals, why the system is needed, what alternatives were considered, what the implications of the alternatives are for the various stakeholders, and how the stakeholders’ interests and concerns might be addressed. What is required to capture such concerns is a framework that focuses on the description and evaluation of alternatives and their relationship to the organizational objectives behind the software development project. The i* framework is well suited for early-phase requirements capture because it provides for the representation of alternatives and offers primitive modeling concepts such as those of softgoal and goal (Yu, 1997).

In Castro, Alencar, and Cysneiros Filho (2000) and Santander and Castro (2001),
 we discussed the problem of using these two different modeling techniques for requirements modeling: i* for early requirements modeling and UML for late requirements modeling. Moreover, some mapping guidelines were proposed to support the transformation of one description into the other. These guidelines facilitate the production of a requirements document to be passed on to developers, so that the resulting system will be adequately specified and constrained in a contractual setting.

In this chapter we are considering the original i* framework (Yu, 1995) and describing how early-phase requirements diagrams described in i* can be used to generate object-oriented requirements models in UML. In particular we explain how use case and class diagrams can be obtained from i* descriptions. We also present the XGOOD (Goals into Object- Oriented Development) tool that can partially support the mapping (Alencar, Pedroza, Castro, & Amorim, 2003). The chapter is organized as follows. Section 13.2 describes our e-News System case study. Section 13.3 provides some means for transforming the i* diagrams into UML models. The creation of use case diagrams is described in subsection 13.3.1, and subsection 13.3.2 investigates the generation of UML class diagrams. Tool support is addressed in section 13.4. Section 13.5 reviews some related work. Section 13.6 concludes the chapter with a summary of its contributions. Throughout the chapter, a small example is used to illustrate how the requirements process iterates between the early and late requirements specifications. The example is pedagogical and is meant to suggest the much more complex sets of issues typically found in actual situations. To draw the diagrams, we used the OME (Yu & Yu, 2000) and Visio tools (Microsoft, 2003).

<H1>13.2 Case Study</H1>

When developing systems, we usually need to have a broad understanding of the organizational environment and goals. The i* framework provides understanding of the “why” by modeling organizational relationships that underlie systems requirements. i* offers two kinds of diagrams to represent organizational requirements: the Strategic Dependency (SD) diagram
 and the Strategic Rationale (SR) diagram. Figure 13.1 shows an SD diagram for an electronic newspaper, and figure 13.2 shows an SR diagram. These diagrams represent our e-News System case study.

[figure 13.1 here]

[figure 13.2 here]
In figure 13.1, we can observe that when a User wishes to read news, he or she accesses the newspaper Web site maintained by a Webmaster who is responsible for updating the published information.
 The newspaper is edited and provided to the Webmaster by the Editor in Chief. The Editor in Chief depends on specific Editors to receive news, which is then composed to be included in the newspaper. The news must comply with some specific guidelines. The Editor in Chief shares the newspaper guidelines with the specialized Editor agents, who are responsible for editing news of a specific category. For example, one Editor may be responsible for political news and another Editor may be responsible for sports news. Each specialized Editor contacts one or many reporters who are in charge of news on some specific subject (e.g., basketball) to fulfill its subguideline (e.g., important match to be covered). Then, each reporter has to contact a photographer to produce the photographic coverage of the news. The Editor in Chief then edits, according to the current guideline, the news provided by each Editor and forwards the news to the Webmaster to publish it on the Web site.

From the analysis of the organizational environment of the newspaper’s office, we have identified the need for an automated software system in order to support the process of editing and publishing news on the Web site. Thus, the e-News System comes into the picture as one actor that contributes to the fulfillment of stakeholders’ goals.
The SR diagram in figure 13.2 focuses on one goal dependency identified for the user, Read news. To achieve that goal, the analysis postulates a Published news goal that can be fulfilled by means of two alternative goals: Published news searched by keyword or Published news according to guideline. The former goal is fulfilled by means of the Publish news searched by keyword task, and the latter goal is fulfilled by means of the Publish newspaper according to guideline task. Tasks are partially ordered sequences of steps intended to accomplish some (soft)goal. They can be decomposed into goals and/or subtasks whose collective fulfillment completes the task. In figure 13.2, the Publish news searched by keyword task is decomposed into the Search news by keyword and Release searched news on website tasks, which together accomplish the top-level task. The Publish newspaper according to guideline task is decomposed into Available [System], Interoperable [System], Adaptable [System], and Secure [System] softgoals; Decompose guideline by category, Edit news article for each category; Edit newspaper; and Update newspaper on website tasks, which together accomplish the top-level task. Subgoals and subtasks can be specified more precisely through refinement. For instance, the Edit newspaper task is fulfilled through Review articles content, Format newspaper pages, and Preview newspaper tasks, and the Evaluate newspaper suitability
 goal. The Edit news article for each category task would be collectively accomplished by the Produce news article
 for each category goal, and Select unknown, recent, important and accurate news, Review photos quality, Review news content, and Format news article tasks. The Produce news article for each category
 goal is fulfilled by means of the Get news from news agencies task.

These decompositions eventually allow us to identify, and establish dependencies with, actors who can accomplish a goal, carry out a task, or deliver some needed resource for e-News System. Such dependencies in figure 13.1 are the resource and softgoal dependencies on News Agency for providing news and photos with data integrity, the resource and task dependencies on Editor in Chief for providing the newspaper guidelines and performing authorization of newspaper publishing, and the resource dependency Keyword on User to perform the searching for specific news.

<H1>13.3 Mapping Early Requirements into Late Requirements</H1>
We developed some guidelines to help in the mapping of i* diagrams (SD and SR) into UML diagrams. In subsection 13.3.1 we discuss how i* diagrams can be used to generate use case diagrams, and in subsection 13.3.2 we deal with the creation of class diagrams.

<H2>13.3.1 Mapping i* Diagrams into Use Case Diagrams</H2>
We argue that the use case development from organizational modeling using i* allows requirements engineers to establish a relationship between the functional requirements of the intended system and the organizational goals previously defined in the organization modeling. In addition, through a goal-oriented analysis of the organizational diagrams, we can derive and map goals, intentions, and motivations of organizational actors to main goals of use cases. We assume that for each use case we have associated a main goal that represents what the user aims to reach as a result of the execution of the use case. In our proposal, the use case scenario description is based on organizational diagrams that are well known and understood by all stakeholders.

Several important benefits obtained by using our framework are
<BL>
· Many researchers have considered goals in a number of different areas of requirements engineering. Goal-oriented approaches to requirements acquisition may be contrasted with techniques that treat requirements as consisting only of processes and data, such as traditional systems analysis, or of “objects,” such as the object-oriented methods, but that do not explicitly capture “why” and “how” relationships in terms of goals.

· The relationships between systems and their environments can also be expressed in terms of goal-based relationships. This is partly motivated by today’s more dynamic business and organizational environments, in which systems are increasingly used to fundamentally change businesses’ processes. Deriving use cases from i* relationships allows traceability and evaluation of the impact of these changes into the functional requirements of the intended system.
· Some of the main use case drawbacks can be partially solved by using our approach. For instance, use cases are written from the actor’s (not the system’s) point of view. We derive use cases from actors’ dependencies defined explicitly in i*. Another interesting benefit is the ability to define the essential use cases for the intended system. This avoids defining too many use cases and allows managing the appropriate granularity of use cases. Moreover, the integration between requirements engineers and customers during the organizational diagram development also allows customers (actors) to better understand the use cases that originated from these models.
· Eliciting and specifying system requirements by observing the actor’s goal in relation to the system-to-be is a way of clarifying requirements. From i* we can derive these goals, associate them with system actors, and then refine and clarify the requirements into use cases.</BL>
To guide the mapping and integration process of i* diagrams and use cases, we have defined some guidelines originally proposed in Santander and Castro (2002a, 2002b). Later, in Brischke, Santander, and Castro (2005), these guidelines were revised and some tools were provided
 to support the generation of use case diagrams from i*. These guidelines must be applied according to the steps represented in figure 13.3. In this figure, steps 1, 2, and 3 represent the discovery of system actors and their associated use case diagrams and descriptions. The inputs for the integration process are the SD and SR diagrams previously developed. Steps 1 and 2 have the SD diagram as input. The description of scenarios for the use cases (step 3) is derived from elements represented in the SR diagram. The results of the integration processes are use case diagrams for the intended system and a scenario description for each use case.

[figure 13.3 here]

In the sequel
 we suggest heuristics for the use case development from organizational modeling with i*.

<DIS> Step 1: Discovering system actors
<BL>

· Guideline UC1: Every i* actor is a candidate to be mapped to a use case actor.

For instance, the User actor in figure 13.1 is a candidate.

· Guideline UC2: The candidate i* actor should be external to the intended software system; otherwise, it cannot be mapped to a use case actor.

For example, the User actor is external to the e-News System.

· Guideline UC3: The candidate i* actor should have least one dependency with the intended software system actor; otherwise, it cannot be mapped to a use case actor.

For instance, the User actor in i* has several dependencies with the e-News System. Hence, it can be mapped to a use case actor.

· Guideline UC4: Actors in i*, related through the ISA mechanism in the organizational diagrams and mapped individually to actors in use cases (applying guidelines 1, 2, and 3), will be related in the use case diagrams through the «generalization» relationship.

For instance, the ISA relationship between Editor in Chief and Editor in figure 13.1 can be mapped to a generalization relationship between these actors in the use case diagram (see figure 13.4).</BL>
[figure 13.4 here]

Having discovered some basic actors, we can now move on to find use cases for them.

<LT>Step 2: Discovering use cases for the actors</LT>
<BL>
· Guideline UC5: For each discovered actor of the system (step 1), we should observe all the dependencies between the system-to-be and the actor in which the discovered actor is a dependee, looking for use cases for the actor. Initially, we recommend creating a table containing all discovered actors and the information about the dependencies for the actor from the point of view of a dependee.
· <SL>
· Guideline UC5.1: Goal dependencies—goals in i* can be mapped to use case goals.
· Guideline UC5.2: Task dependencies—if an actor depends on another actor for the accomplishment of a task, it should be investigated if this task needs to be decomposed into subtasks.
For example, for the Authorize newspaper publishing task dependency between e-News System and Editor in Chief actors (see figure 13.1), we must consider if the execution of this task requires several steps (later mapped to use case steps), such as Edit newspaper, Evaluate the newspaper suitability
, and Authorize newspaper publishing. Thus, from the Authorize newspaper publishing task we can generate the Authorize newspaper publishing use case for the Editor in Chief actor. Notice that the Editor in Chief actor is considered to be the dependee and the e-News System actor is taken as the depender in this dependency.

· Guideline UC5.3: Resources dependencies—if an actor depends on another actor for obtaining a resource(s), why is it required? If there is a more abstract goal, this goal will be a candidate to be the goal of the use case for the actor.
For instance, for the Newspaper Guideline resource dependency associated with the Editor in Chief actor (see figure 13.1), we conclude that the Editor in Chief provides the newspaper guidelines to be used by the e-News System. We could then consider that in order to provide the newspaper guidelines, several interaction steps between Editor in Chief and e-News System are requested.
 Hence, these steps could be defined in one use case called Newspaper Guideline.

· Guideline UC5.4: Softgoal dependencies—typically, the softgoal dependency in i* is a nonfunctional requirement for the intended system. Hence, a softgoal does not represent a use case of the system, but a nonfunctional requirement associated with a specific use case of the system or with the system as a whole.</SL>

For instance, the Updated[Newspaper], Availability[Newspaper], Interoperability[System], and Security[Published information] softgoals between Editor in Chief and e-News System actors can be mapped to nonfunctional requirements of the e-News System.
<BL>
· Guideline UC6: Analyze special situations in which an actor discovered (following step 1) that they possess dependencies in relation to an actor in i* that represents the system-to-be or part of it. These dependencies usually generate use cases. It is important to notice that in this situation the derived use case is associated with the depender actor in the relationship. This occurs because the dependee is a software system and the depender (use case actor) must interact with the system to achieve the goal associated with the generated use case.</BL>
For instance, the newspaper edited and published autonomously according to the guideline goal dependency between Editor in Chief and e-News System in figure 13.1 points out the definition of the newspaper edited and published autonomously according to the guideline use case for the Editor in Chief actor, which represents the actor’s use of the system by describing the details of publishing a newspaper according to the guideline. The same analysis can be applied to derive the Read News use case.

We also suggest including in table 13.1 the dependencies of the discovered use case actor from the point of view of a depender related to the system-to-be (dependee). This information will be useful when applying guideline 6. Moreover, you can include which guideline(s) will be used to analyze each dependency (see table 13.1).
<BL>
· Guideline UC7: Classify each use case according to the type associated with its goal (business, summary, user goal, or subfunction). This is based on classification proposed by Cockburn.
 A business goal represents a high-level intention, related to business processes, that the organization or user possesses in the context of the organizational environment. A summary goal represents an alternative for the satisfaction of a business goal. A user goal results in the direct discovery of a relevant functionality and value for the organization actor using a software system. Finally, subfunction-level goals are those required to carry out user goals.</BL>
Having identified use cases for the actor, we can now proceed to describe them in detail.

<LT>Step 3: Discovering and Describing Scenarios of Use Cases</LT>

<BL>

· Guideline UC8: Analyze each actor and its relationships in the SR diagram to extract information that can lead to the description of the use case scenario for the actor. It is important to remember that SR diagrams represent the internal reasons associated with the actor goals. Therefore, we must consider internal elements that are used by the actor to achieve goals and softgoals, to perform tasks or obtain resources. The actor has the responsibility to satisfy these elements, and the decomposition in SR shows how the actor will do this. Typically, the dependencies associated with the actor are satisfied internally through two types of relationships used in SR: means-ends and task decomposition. These relationships must be observed in order to derive scenario steps for the use cases. Subcomponents in the task decomposition link usually can be mapped to steps (activities) of use case scenarios associated with the task. Note that if the task being decomposed fulfills some dependency (with other actors) previously mapped for use case, the subcomponents are mapped to activities (steps) of the use case primary scenario. On the other hand, a means for attaining an end (which can be a goal to be achieved, a task to be accomplished, a resource to be produced, or a softgoal to be satisfied) through a means-end link represents alternatives to achieve the end. If this end is a goal or task that fulfills some dependency previously mapped to a use case, these alternatives (means) are described as extensions («extend» structuring mechanism in UML) in the use case scenario description.

Additionally, we also can associate softgoals represented in the SR diagram with use cases. If a subcomponent in a task decomposition relationship is a softgoal and the decomposed task fulfills some dependency mapped to a use case, this softgoal is to be associated with the use case as a special requirement (nonfunctional requirement) in the primary scenario.

For instance, let us observe the SR diagram in figure 13.2. From the e-News System actor point of view, we see that the Published newspaper according to guideline goal is used by e-News System to achieve (satisfy) the Newspaper edited and published autonomously according to the guideline goal dependency for the Editor in Chief actor. The means for fulfilling this goal is through the Publish newspaper according to guideline task, which is refined into Decompose guideline by category, Edit news article for each category, Edit newspaper, and Update newspaper on website subtasks that together accomplish the top-level task. We could consider that these activities are the necessary high-level steps to publish a newspaper according to guideline (Newspaper edited and published autonomously according to the guideline use case defined for the Editor in Chief actor—see guideline 6). Thus, this use case could contain the steps (the primary scenario description) required to publish newspapers for the Editor in Chief actor.

<BL>
· Guideline UC9: Each use case must be analyzed to check for the possibility of refinement and generation of new use cases.

For instance, the Edit newspaper task (figure 13.2) has been mapped to a step of the primary scenario of the Newspaper edited and published autonomously according to guideline use case (see guideline 8). However, the Edit newspaper subtask is fulfilled through Review articles content, Format newspaper pages, and Preview newspaper tasks. Considering this decomposition, we can derive the Edit newspaper use case that contains the steps (the primary scenario description) required to edit a newspaper. The relationship between these two use cases can be represented by using the «include» UML structuring mechanism

· Guideline UC10: Create the use case diagram using the discovered use cases and actors, as well as the three UML structuring mechanisms: inclusion, extension, and generalization.
For instance, applying the proposed guidelines to the e-News System (figures 13.1 and 13.2), we can define, as described in figure 13.4, an initial version of the use cases diagram in UML for this system. Note that for the sake of simplicity, some included use cases have been omitted. The descriptions of the discovered use cases could still be modified or complemented as new relationships are found. Also important is that the development of additional use cases depends on the requirements engineers’ experience.
Another interesting possibility is the generation of the class diagrams from i* descriptions.

<H1>3.2 Mapping i* into Class Diagrams</H1>
The guidelines for the generation of class diagrams were originally proposed in Castro et al. (2000) and Castro, Alencar, Cysneiros Filho, and Mylopoulos (2001).
 Later they were extended to support the structuring elements of i* (Alencar et al., 2003; Pedroza, Alencar, Castro, Silva, & Santander, 2004). In total there are seven guidelines to generate a UML class diagram (C1 to C7). Below we describe them in detail and provide a simple example.
<BL>

· Guideline C1: Related to the mapping of i* actors. Actors in the i* framework can be mapped to classes in UML. OCL constraints can be attached to the actor-generated classes.

Subguidelines (C1.1 to C1.6) are required in order to take into account the current i* structuring mechanisms that include the classification of actors into agents, roles, and positions. </BL>
<SL>
· Guideline C1.1: i* actors (agents, roles, or positions) can be mapped to UML classes.
Thus the UserP, News Agency, EditorP, and Editor in ChiefP agents will be mapped into classes with the same name (see figure 13.5). Similarly, we have the roles (Editor, Editor in Chief, and User) mapped into classes. In our case study, we do not have examples of positions.

[figure 13.5 here]

· Guideline C1.2: The i* is-part-of relationship between actors can be mapped as a class aggregation in UML.
In figure 13.2 we do not have this relationship, but as the system evolves, it will be necessary to structure the e-News System actor into sub-systems. When this need arises, the is-part-of relationship will be required and can then be transformed into a class aggregation.

· Guideline C1.3: The i* is-a relationship between actors can be mapped to class generalization/specialization in UML.
In figure 13.2 we can see that the Editor in Chief role is related to the Editor role by means of an IS-A relationship. Thus, we can map this structural relationship indicating that the Editor in Chief class is a specialization of the Editor class.

· Guideline C1.4: The i* occupies relationship between an agent and a position can be mapped to a UML class association labeled occupies.
In our case study (see figure 13.1) we do not have this kind of relationship.
· Guideline C1.5: The i* covers relationship between a position and a role can be mapped as a respective UML class association, labeled covers.
In our case study (see figure 13.1) we do not have this kind of relationship.

· Guideline C1.6: The i* plays relationship between an agent and a role can be mapped as a respective UML class association, labeled plays.
According to figure 13.2, the agent EditorP plays the role of an Editor. This relationship will be mapped as a class association between the class EditorP and the class Editor labeled plays (see figure 13.5).</SL>
<BL>
· Guideline C2: Related to the mapping of i* tasks. Tasks in i* are mapped to class operations in UML.

<SL>

· Guideline C2.1: A task defined in an SD diagram can be mapped into an operation in the interface that is realized by the class that represents the dependee. The name of the newly created interface is constituted by the names of the classes that represent the dependee and the depender.

For example, consider the Authorize newspaper publishing task dependency. The agent e-News System (depender) depends on the Editor in Chief role (dependee) to have this task executed. Thus, Authorize newspaper publishing will be an operation in the Evaluated newspaper suitability interface realized by the Editor in Chief class.

· Guideline C2.2: A task defined in the SR (Strategic Rationale) diagram can be mapped as an operation with private visibility in the class that represents the actor to which
 the task belongs.
In figure 13.2 we depict the internal behavior of the e-News System agent. Thus we can observe various tasks that can be mapped as operations with private visibility in the class e-News System: Search news by keyword, Release searched news on website, Publish news searched by keyword, Edit news article for each category, Edit newspaper, Review articles content, Select unknown, recent, important, and accurate news, Format newspaper pages, Format news article, Review photos quality, Review news content, Update newspaper on website, Preview newspaper, Get news from news agencies, Decompose guideline by category, and Publish newspaper according to guideline.</SL>
<BL>
· Guideline C3: Related to the mapping of i* resources. A resource can be mapped to a class in UML if this dependence has the characteristics of a class. Otherwise, it can also be transformed to an attribute. Its visibility depends on its source. It becomes a private attribute if it originates from an SR diagram. Otherwise, it originates from a SD diagram and is transformed into a public attribute. </BL>
All the resources present in figure 13.2 are entities of the real world, and therefore they will be mapped to UML classes. The external dependence of the type resource will be mapped as two associations: one between the depender actor (class) and the resource (class), with the label depender beside the class depender and another one between the resource and the dependee actor that will be responsible for producing the resource, in this case identified with a dependee label.

<BL>
· Guideline C4: Related to the mapping of i* goals/softgoals. Goals can be mapped to Boolean (goals) or numeric (softgoals) attributes with private (SR diagram) or public (SD diagram) visibility. An association is created between the depender and the dependee classes.

<SL>

· Guideline C4.1: Goals and softgoals dependencies in the SD diagrams are mapped to Boolean and enumerated public attributes, respectively, in the dependee UML class.

For example, if we are concerned only with goal and softgoal dependencies that will have to be satisfied for agent e-News System, then the goals Newspaper edited and published autonomously according to the guideline and Read news are mapped to Boolean public attributes in the e-News System class. The softgoals Original[News], Security[Published information], Adaptability[System], Interoperability[System], Availability[Newspaper], and Updated[Newspaper] are mapped to enumerated public attributes in the e-News System class (figure 13.5).

· Guideline C4.2: Goals and soft goals dependencies in the SR diagrams are mapped to Boolean and enumerated local UML class attributes, respectively.

For example, if we consider the e-News System agent of figure 13.2, we can identify some goals dependencies (Published news, Published news searched by key word, Evaluated newspaper suitability, Produced news article for each category, and Published newspaper according to guideline) that can be mapped to Boolean local attributes in the e-News System class (figure 13.5). And the softgoals (Secure[System], Adaptable[System], Interoperable[System], and Available[System]) can be mapped to enumerate local attributes in the e-News System class.</SL>
<BL>
· Guideline C5: Related to the mapping of i* task decomposition relationship. They are represented by preconditions and postconditions (expressed in OCL) of the corresponding UML operation.

A task decomposition link is represented through preconditions and postconditions, written in OCL, in the corresponding operation of the task that is being.
 When decomposing a task, if there are decomposition elements such as subtasks, then its preconditions will be part of the precondition of the task that is being decomposed. If there are other tasks, their preconditions will be included (use of logical connective).
 Furthermore, their postconditions must also hold. Likewise, if the operation (task) Op is decomposed into Op1 and Op2 suboperations (subtasks), an Ob1 subgoal, an Re1 resource, and an ObSoft1 softgoal, then according to this guideline, the following OCL expression will hold:</BL>
<DIS>Operation Op

pre:(pre-condOp1) and (pre-condOp2)

post:(post-condOp1) and (post-condOp2) and (AtbrRe1) and (Atrbob1) and(AtrbobSoft1 = ‘value’</DIS>)

Hence, the preconditions for the occurrence of the task (Op) are requested to be satisfied and all its postconditions become true after its execution. Note that OCL and logical connective
 are used to capture this effect.
As an example, consider Edit news article for each category task decomposition in the e-News System agent (see figure 13.2).

<DIS>e-News System::Edit news article for each category

pre:(pre-condition(Review photos quality)) and (pre-condition(Review news content))and(pre-condition (Format news article))and(pre-condition(Select unknown, recent, important, and accurate news)

post: (post-condition (Review photos quality)) and (post-condition(Review news content)) and (post-condition (Format news article)) and (post-condition(Select unknown, recent, important, and accurate news)) and (Produced news article for each category)</DIS>
<BL>
· Guideline C6: Related to the mapping of i* means-end relationship.

A means-end link can be represented in OCL as preconditions and postconditions in the corresponding operations or as invariants of the class that will correspond to the actor in study
 in the SR diagram (figure 13.2), that is, disjunctions (expressed in OCL) of all possible means of achieving the end.</BL>
<SL>
· Subguideline C6.1: This guideline copes with the means-end links in which the means is a task and the end is a task (TTLinks).</SL>

A means-end link in which the means is a task and the end is a task is represented in OCL through

<BL>
· An inclusion of a precondition in the operation corresponding to the end task that will also be able to have a conjunction (and) of the preconditions of their subtasks
· An inclusion of a postcondition in the operation corresponding to the end task, in association with the logical connective or. In other words, when a task Op has several means to be achieved (Op1, Op2,..., Opn), the following OCL constraint is imposed: </BL>
<DIS>Operation Op

pre: (pre-condOp1) and (pre-condOp2) and ... and (pre-condOpn)

post: (post-condOp1) or (post-condOp2) or ... or (post-condOpn)</DIS>
In our case study (see figure 13.2) we do not have this kind of means-end link.

<SL>
· Subguideline C6.2: Related to a means-end link in which the means is a task and the end is a goal, a softgoal, or a resource.

In the operation that represents the task as a means, a postcondition will be added, using the OCL conjunction operator, that indicates the postconditions of any of the ends will be fulfilled. Therefore, if we know that the Op task is a possible means to achieve a goal (mapped as Atrbobj), satisfice a softgoal (represented by AtrbobjSoft) that can assume a certain value (positive, negative, or indef), and deliver a resource to be made available (represented by Atrbre), then</SL>

<DIS>Operation Op

post: Atrbobj and (AtrbobjSoft = “value”) and Atrbre</DIS>
In our case study (see figure 13.2) we can find a TG (Task-Goal) link in which the Published news searched by keyword (end) goal can be achieved by (means of) the Publish news searched by keyword task. Hence, the following OCL expression will be generated:

<DIS>e-News System:: Publish news searched by keyword
post: Published news searched by keyword</DIS>
Therefore, after the execution of the Publish news searched by keyword task, the Published news searched by keyword goal will be achieved.
<SL>

· Subguideline C6.3: Related to the means-end link in which which the means and the ends are also (soft)goals.</SL>
It is required that any of the means attributes (OR clauses) implies the end attribute that represents a (soft)goal to be fulfilled. Therefore, if the Actor under consideration has a means-end link that includes a (soft) goal as an end (Ob), and n (soft)goals as means (Ob1, Ob2,...., Obn), then the corresponding Class will have the following OCL constraint

<DIS>Class Actor

(AtrbOb1 or AtrbOb2 or or AtrbObn) implies AtrbOb</DIS>
In our case study (see figure 13.2) we have the Published news as an end goal and both the Published newspaper according to guideline and Published news searched by keyword goals as means. Then, by applying this guideline, the following constraint is generated:
<DIS>Class e-News System
((Published newspaper according to guideline) or (Published news searched by keyword)) implies (Published news)</DIS>
If we apply the above-mentioned guidelines, we end up with an initial organizational class diagram (see figure 13.5). Of course not all concepts captured in the early-requirements phase will correspond to software system diagrams. The diagrams do not have a one-one relationship; many elements of the organizational diagram are not part of the software model, because not all of the organizational tasks require a software system. Many tasks contain activities that are performed manually outside the software system, and so do not become part of the software system model. Likewise, many elements in the software model comprise detailed technical software solutions and constructs that are not part of the organizational model.

Of course some tool support would be required in order to automate the mapping process from i* descriptions into UML diagrams.
<H1>13.4 The XGOOD (eXtended Goals into Object-Oriented Development) Tool</H1>
XGOOD is a tool to assist in the mapping of i* diagrams into UML class diagrams. The tool was developed using the C++ language and integrated into the Organization Modeling Environment (OME) (Yu & Yu, 2000), and was used cooperatively with Visio to create the i* diagrams in this chapter. Through the XGOOD, the user is able to open and to visualize i* diagrams generated by the OME tool. The user also can select how each element will be mapped. The generated class diagram is saved in XMI format (OMG, 2002), a standard that can be imported by various CASE tools. The tool was tested with the MagicDraw, Rational Rose, and Telelogic Tau CASE tools. Also, as a case study, the tool was used to develop an optical network simulator (Pedroza, 2005).

XGOOD is an extension of the Goals into Object-Oriented Development (GOOD) tool (Cysneiros Filho, 2001). The older tool had some restrictions: it was written in Rose Script (IBM, 2005), making it impossible to be used with different tool vendors. Moreover, concepts such as contribution links and refinement of actors, among others, were not supported. Also, it is well known that certain elements of the organizational model may not be part of the system to be developed. However, the GOOD tool did not possess means to select which elements were to be mapped into the system.

The new XGOOD provides several interesting features:

<NL>
1. Option to select the mapping guidelines for each i* element. Hence, it is possible to indicate if an i* element will be mapped or not. The XGOOD allows the user to exclude certain elements that are captured according to the i* framework but are not computational in the UML model.
2. Inclusion of new mapping guidelines. The XGOOD supports many guidelines and structuring elements from the i* diagram (role, position, and agent).

3. Adoption of an open standard to represent the generated models (such as XML Metadata Interchange [OMG, 2002]) for the persistence of the generated class diagram. This facilitates the sharing of the models between various commercial tools.
In figure 13.6 we depict how the XGOOD works. The *.tel file generated by the OME (Yu & Yu, 2000) tool, containing the i* framework description in the Telos syntax (Mylopoulos, Borgida, Jarke, & Koubarakis, 1990), is read by the XGOOD tool. Then, a XMI file containing the class diagram is created, allowing it to be read by various UML CASE tools (for example, MagicDraw, Rational Rose, Telelogic Tau, etc.).

[figure 13.6 here]

The current version of XGOOD was developed using the C++ language and the Microsoft Foundation Classes (Williams, 1997). The tool works in the Windows operational system. Unfortunately, the XMI standard to represent the restrictions in Object Constraint Language (OCL) (OMG, 2003a, 2003b, 2005), as well as not all the tools on the market, support the inclusion of OCL restrictions. Hence, for the time being, guidelines C5 and C6 are not supported by the XGOOD tool.

The user interaction is made through menus and buttons located in the toolbar. In figure 13.7 we show how the i* file (imported from the OME tool) will be depicted. For instance, we can see the XGOOD’s screen showing how the selection of the guideline is made. For example, for the News resource, three options for mapping are available: map it as a class, map it as a public attribute, or do not map it.

[figure 13.7 here]

Its use is very simple. First, access the menu File >>Open to select a .tel file. Then use
import a .tel file, and as a result the imported i* diagram is shown in the main window of the tool. The user can use the mouse to interact with the model, moving and renaming the elements. With the right mouse button, the user can access a pop-up menu with the mapping options of each element. He can choose if (and how) the element will be mapped. When the selection of the guidelines is concluded, the user can save the mapping options. This is possible by accessing the menu File >> Save. The mapping guidelines of each element are saved in the. tel file itself. To generate the UML class diagram, the user accesses the menu File >> Export, and an .xml file containing the UML class diagram, in the XMI format, is created. It is given the option to choose between two different versions of XMI: version 1.0 and version 1.1.

The .xml file can be imported by several CASE tools (Jiang & Systã, 2002), so the user can work on and refine them. We have tested three different tools: IBM Rational
Rose (IBM, 2005),
MagicDraw (No Magic, 2005) and Telelogic Tau (Telelogic, 2005).

In figure 13.8 we can see how the model of figure 13.7 is transformed in a class diagram and imported in MagicDraw.

[figure 13.8 here]

It is worth noting that the OME (Organization Modeling Environment) is one of the tools required for the development of i* diagrams (Yu & Yu, 2000). Hence, it would be interesting if the XGOOD tool could be integrated with the OME environment.

<H2>13.4.1 XGOOD Integration</H2>
OME was designed in such a way that it is possible to extend it. In fact, it comes with a Java API that allows the creation of plug-ins to add new functionalities to the tool.

In order to integrate the XGOOD tool into the OME, we created a new Java class named XGOODPlugin. This class implements the OMEPlugin interface (OME interface to create plug-ins):

<DIS>public class XGOODPlugin implements OMEPlugin {

 …

}</DIS>
In this XGOODPlugin class we can emphasize the method getToolbarMethods. This method is responsible for adding new buttons to the OME’s toolbar. In the implementation of this method, we added a new XGOODMethod object to the OME’s toolbar (see figure 13.9):

<DIS>public Collection getToolbarMethods(View v) {

popupmethods.add(new XGOODMethod(v));

return popupmethods;

}</DIS>
[figure 13.9 here]

The XGOODMethod class implements a PluginMethod interface (OME interface to implement the plugin’s operations).

<DIS>class XGOODMethod implements PluginMethod {

…

}</DIS>
The main method of the XGOODMethod class is the invoke() method. This method is invoked
 every time the button is accessed on the OME’s toolbar. This method opens the i* diagram that is currently being edited in the
 XGOOD tool:

<DIS>public void invoke() {

try {

…

// Executes the tool

Process p = Runtime.getRuntime().exec(".\\XGOOD.exe \"" + v.getSavePathname() + "\"");

// Wait for the user to close the tool

p.waitFor();

}

catch (Exception ex) {

System.out.println(ex);

}

}</DIS>
In figure 13.9 we can see how the XGOOD was integrated into the OME. Two new buttons were added on the OME’s toolbar: XGOOD- Guidelines and XGOOD-Export.

However, the current version of the XGOOD tool has some limitations. For example, it does not support OCL expressions and runs only in the Microsoft Windows operating system. However, when the new version of OCL 2.0 language is approved, mechanisms will become available for the representation of its metamodel through XMI standard. We will be able to extend the XGOOD tool to support the mapping guidelines C5 and C6. As a natural evolution of the tool, we consider a multiplatform version independent of the operational system. This version will be developed by Java (Sun Microsystems, 2005) and will be able to work in any operational system. Another advantage of the use of the Java language is that the integration with the OME tool will be more natural and friendly, because the OME and its plug-ins are developed in this language.

As was pointed out in subsection 13.3.1, there are also mapping rules that can be used to transform i* diagrams into UML use case diagrams. In fact, another tool that supports the generation of use cases from i* diagrams has already been developed by our research group (see Brischke et al., 2005). Thus, the next step is trying to integrate the two tools.

<H1>13.5 Related Work</H1>
The area of requirements engineering has developed several novel techniques for early requirements capture (van Lamsweerde, 2000; Boman, Bubenko, Johannessin, & Wangler, 1997). For example, Kirkikova and Bubenko (1994) emphasize the need to model organizations and their actors, motivations, and reasons. In their work, enterprise modeling and requirements specification are based on the notion that a requirements specification process, from a documentation point of view, implies populating (instantiating) five interrelated submodels representing areas of knowledge of the organization: an objectives model, an activities and usage model, an actors model, a concepts model, and an information systems requirements model. Beecause the models are informal, or at best semiformal, only some verification can be performed automatically, such as syntactical correctness and connectedness.

In the KAOS framework (van Lamsweerde, Darimont, & Letier, 1998) goals are explicitly modeled and simplified (reduced) through means-end reasoning until it reaches the agent level of responsibilities. KAOS provides a multiparadigm specification language and a goal-directed elaboration method.

The Tropos project (Castro, Kolp, & Mylopoulos, 2002; Giorgini, Kolp, Mylopoulos, & Castro, 2005)
 is developing a methodology for agent-oriented systems that is requirements-driven (Castro, Mylopoulos, & Silva, 2004). It adopts the i* concepts and uses them throughout the life cycle as a foundation to model late requirements, architectural design,
detailed design, and implementation. That allows dealing with intention-based software units at the right phase and not freezing them earlier in the process. Efforts are under way to support requirements traceability (Castro, Silva, et al., 2003).
 The issue of relating requirements to architectural descriptions is also under investigation (Bastos & Castro, 2005; Castro, Nixon, Yu, & Mylopoulos, 2003a).

Chung, Nixon, Yu, and Mylopoulos (2000) present a comprehensive approach for dealing with nonfunctional requirements (NFR). Structured graphical facilities are offered for stating NFRs and managing them by refining and interrelating them, justifying decisions, and determining their impact. An interesting research topic is the extension of traditional object-oriented analysis to explore the alternatives offered by the nonfunctional goal-oriented analysis, which systematizes the search for a solution that characterizes early phases or requirements analysis, rationalizes the choice of a particular solution, and relates design decisions to their origins in organizational and technical objectives (Mylopoulos, Chung, Liao, Wang, & Yu, 2001).

Although UML has been used mainly for modeling software, some proposals have used it for describing enterprise and business modeling. For example, Eriksson and Penker (2000) claim that UML is a suitable language for describing both the structural aspects of business (such as the organization, goal hierarchies, or the structure of the resources), the behavioral aspect of a business (such as the processes), and the business rules that affect structure and behavior. Marshal (1999) uses UML, from a business perspective, to describe the four key elements of an enterprise model: purpose, processes, entities, and organization. The challenge is to transfer the information available in the (early) business models to the (late) software requirements models. Martinez, Castro, Pastor, and Estrada (2003) propose the use of the business model as a starting point in order to obtain a conceptual schema of the information system. The approach joins two well-known techniques: the Tropos framework from the field of business modeling and the OO-Method CASE tool
 from the field of software production process. The strategy of the conceptual schema generation method consists in isolating the relevant information from the business model and using it to generate the elements of the information system. The OO-Method tool translates the elements of the conceptual schema into elements of an imperative program in a specified target language.

<H1>13.6 Conclusion</H1>
In this chapter we claim that UML alone is not adequate to deal with all different types of analysis and reasoning that are required during the requirements capture phases. Instead, we advocate the use of two complementary modeling techniques, i* and UML. To model and understand issues of the application and of the business domain (the enterprise), a developer can use the i* framework, which allows a better description of the organizational relationships among the various agents of a system, as well as an understanding of the rationale of the decisions taken. For the functional requirements specification, the developer can rely on UML, or if formality is required, UML annotated with constraints described in OCL (OMG, 2003a, 2003b).

We believe that each language has its own merits for supporting requirements capture. But as long as different techniques are used, a key issue will be the development of an integrated framework to support and guide the interplay of requirements capture activities at the various levels, and to support traceability and change management.

In particular we have argued that the use cases development and the class diagram can be improved by using the i* framework. We have presented some guidelines seeking to show the viability and benefits of integrating organizational models developed using the i* framework with use cases and class diagrams in UML. The proposed guidelines were applied to an e-News System case study. We claimed that the existent information in the SD/SR diagrams can be used as a base for the use case and class diagram development. Besides, it enables the requirements engineers, starting from a more detailed observation of the organizational diagrams, to choose the best alternative for the software development, as well as to concentrate on the use cases that really fulfill the organizational goals.

In the traditional object-oriented development, motivations, intentions, and alternatives for systems development are not considered in an effective way. Using our integrated approach, some important issues can be addressed, such as: how the system fulfills the organization goals; why it is necessary; what the possible alternatives are; and what the implications to the involved parts are.

Work is under way to revise some of the Class guidelines, such as the ones that deal with the means-end links and the task decomposition link. Further research is still required to help requirements engineers to relate nonfunctional requirements (softgoals in i*) to functional requirements of the system, described through use cases and class diagrams in UML. Also, some tool support was provided for the generation of use case diagrams (Brischke et al., 2005). More work is still required to integrate this approach with the XGOOD tool.

<REF>References

Alencar, F., Pedroza, F., Castro, J., & Amorim, R. (2003). New mechanism for the integration of organizational requirements and object-oriented modeling. In L.E.G. Martins and X. Franch (eds.), Proceedings of the 6th Workshop on Requirements Engineering [WER’03] (pp. 109–123). Piracicaba, Brazil: PUC-Rio.
http://wer.inf.puc-rio.br/WERpapers/search.php?searchg=wer03.
Bastos, L., & Castro, J. (2005). Systematic integration between requirements and architecture. In R. Choren, A. Garcia, C. Lucena, and A. Romanovsky (eds.), Proceedings of the 3rd International Workshop on Software Engineering for Large-Scale Multi-Agent Systems: Research Issues and Practical Applications [SELMAS 2004] (pp. 85–103). Lecture Notes in Computer Science 3390. Berlin: Springer.

Boman, M., Bubenko, J., Johannessin, P., & Wangler, B. (1997). Conceptual Modeling. Upper Saddle River, NJ: Prentice-Hall.
Booch, G., Jacobson, I., & Rumbaugh, J. (1999).
 The Unified Modeling Language Reference Manual. Reading, MA: Addison-Wesley.

Brischke, M., Santander, V., & Castro, J. (2005). GOOSE: Uma ferramenta para integrar modelagem organizacional e funcional. In Proceedings of Jornadas Chilenas de Computación: V Workshop Chileno de Ingeniería de Software [CD]. http://jcc2005.inf.uach.cl/.
Castro, J., Alencar, F., & Cysneiros Filho, G. (2000). Closing the gap between organizational requirements and object-oriented modeling. Journal of the Brazilian Computer Society, 7(1), 5–16.
Castro, J., Alencar, F., Cysneiros Filho, G., & Mylopoulos, J.
 (2001). Integrating organizational requirements and object-oriented modeling. In Proceeding of the 5th IEEE International Symposium on Requirements Engineering [RE’01] (pp. 146–153). Los Alamitos, CA: IEEE Computer Society Press.

Castro, J., Pinto, R., Castor, A., & Mylopoulos, J. (2003).
 Requirements traceability in agent-oriented software engineering. In A. Garcia, C. Lucena, F. Zambonelli, A. Omicini, and J. Castro (eds.), Software Engineering for Large-Scale Multi-Agent Systems: Research Issues and Practical Applications (pp. 57–72). Lecture Notes in Computer Science 2603. Berlin: Springer.

Castro, J., Kolp, M., & Mylopoulos, J. (2002). Towards requirements driven information systems engineering: The Tropos project. Information Systems Journal, 27(6), 365–389.

Castro, J., Mylopoulos, J., & Silva, C. (2004). Agent-driven requirements engineering. In J.C.S.P. Leite and J.H. Doorn (eds.), Perspectives on Software Requirements (pp. 253–274). Boston: Kluwer Academic.

Castro, J., Silva, C., & Mylopoulos, J. (2003). Modeling organizational architectural styles in UML. In J. Eder and M. Missikoff (eds.), Proceedings of the 15th Annual Conference on Advanced Information Systems Engineering [CAISE’03] (pp. 111–126). Lecture Notes in Computer Science 2681. Berlin: Springer

Chung, L., Nixon, B., Yu, E., & Mylopoulos, J. (2000). Non-functional Requirements in Software Engineering. Norwell, MA:
 Kluwer Academic.

Cysneiros Filho, G. (2001). Ferramenta para suporte do mapeamento da modelagem organizacional em i* para UML. Master’s thesis, Universidade Federal de Pernambuco, Recife, Brazil.

Eriksson, H., & Penker, M.
 (2000). Business Modeling with UML: Business Patterns at Work. New York: Wiley.

Giorgini, P., Kolp, M., Mylopoulos, J., & Castro, J.
 (2005). Tropos: A requirements-driven methodology for agent-oriented software. In P. Giorgini and B. Henderson-Sellers (eds.),
Agent-Oriented Methodologies (pp. 20–45). Hershey, PA: Idea Group.

IBM (2005). Rational software. Retrieved December 1, 2005, from IBM Web site: http://www.ibm.com/rational/.
Jiang, J., & Systã, T. (2002). UML model exchange using XMI. Retrieved December 1, 2003, from Tampere University of Technology Web site: http://www.cs.tut.fi/~xmlohj/linkit/XMIReport.pdf.

Kirikova, M., & Bubenko, J. (1994). Software requirements acquisition through enterprise modelling. In A. Berztiss (ed.), Proceedings of the 6th International Conference on Software Engineering and Knowledge Engineering [SEKE´94] (pp. 20–27). http://www.sigmod.org/dblp/db/conf/seke/seke1994.html.
Marshal, C. (1999). Enterprise Modeling with UML: Designing Successful Software Through Business Analysis. Essex, UK: Addison-Wesley Professional Publishing.

Martinez, A., Castro, J., Pastor, O., & Estrada, H. (2003). Closing the gap between organizational modeling and information system modeling. In L.E.G. Martins and X. Franch (eds.), Proceedings of the 6th Workshop on Requirements Engineering [WER’03] (pp. 93–108). Piracicaba, Brazil: PUC-Rio.
http://wer.inf.puc-rio.br/WERpapers/search.php?searchg=wer03.
Microsoft. (2003). Microsoft Office Visio 2003. Retrieved December 1, 2005, from Microsoft Office Online Web site: http://office.microsoft.com/pt-br/visio/.
Mylopoulos, J., Borgida, A., Jarke, M., & Koubarakis, M. (1990). Telos: Representing knowledge about information systems. ACM Transactions on Information Systems, 8(4), 325–362.

Mylopoulos, J., Chung, L., Liao, S., Wang, H., & Yu, E. (2001). Exploring alternatives during requirements analysis. IEEE Software, 18(1), 92–96.

No Magic. (2005). MagicDraw UML: Architecture made simple. Retrieved December 1, 2005, from http://www.magicdraw.com/.
Object Management Group (OMG). (2002). XML metadata interchange specification (version 1.2). Retrieved January 1, 2002, from OMG Web site: http://www.omg.org/technology/xml/.
Object Management Group (OMG). (2003a). Object Constraint Language specification. In OMG Unified Modeling Language specification (version 1.5). formal/03-03-01. (pp. 6-1–6-48). Retrieved November 8, 2007, from OMG Web site:
http://www.omg.org/cgi-bin/doc?formal/03-03-01.
Object Management Group (OMG). (2003b) UML 2.0 OCL specification. ptc/03-10-14. Retrieved May 1, 2004, from OMG Web site: http://www.omg.org/docs/ptc/03-10-14.pdf.

Object Management Group (OMG). (2005). The Object Management Group. Retrieved December 1, 2005, from the OMG Web site: http://www.omg.org/.
Pedroza, F. (2005). Automatizando as regras de mapeamento entre a modelagem i* e a modelagem UML usando XMI para implementação de um simulador de rede ópticas. Master’s thesis, Universidade Federal de Pernambuco, Recife, Brazil.

Pedroza, F., Alencar, F., Castro, J., Silva, F., & Santander, V. (2004). Ferramentas para suporte do mapeamento da modelagem i* para a UML: eXtended GOOD-XGOOD e GOOSE. In M. Ridao and L.M. Cysneiros (eds.), Proceedings of the 7th Workshop on Requirements Engineering [WER’04] (pp. 164–175). Buenos Aires: UNICEN.
Santander, V., & Castro, J. (2002a). Deriving use cases from organizational modeling. In E. Dubois and K. Pohl (eds.), Proceedings of the 10th Anniversary IEEE Joint International Conference on Requirements Engineering [RE’02] (pp. 32–39).
 Los Alamitos, CA: IEEE Computer Society Press.

Santander, V., & Castro J. (2002b). Integrating use cases and organizational modeling. In L. Robeiro (ed.), Proceedings of the 16th Simpósio Brasileiro de Engenharia de Software [SBES’02] (pp. 222–253). Gramado, Brazil: Brazilian Computer Society (SBC).

Sun Microsystems (2005). Java technology. Retrieved December 1, 2005, from Sun Microsystems Web site: http://java.sun.com/.
 Telelogic (2005). Telelogic: Requirements-driven innovation. Retrieved December 1, 2005, from Telelogic Web site: http://www.telelogic.com/.
 Van Lamsweerde, A. (2000). Requirements engineering in the year 00: A research perspective. In A. Finkelstein (ed.), Proceedings of the 22nd International Conference on Software Engineering [ICSE’00] (pp. 5–19). New York: ACM Press.

Van Lamsweerde, A., Darimont, R., & Letier, E. (1998). Managing conflicts in goal-driven requirements engineering. IEEE Transactions on Software Engineering, 24(11), 908–926. Special Issue on Managing Inconsistency in Software Engineering.

Williams, A. (1997). Mfc Black Book. Scottsdale, AZ: Coriolis Group.

Yu, E. (1995). Modelling strategic relationships for process reengineering. Ph.D. thesis, University of Toronto.
Yu, E. (1997). Towards modelling and reasoning support for early-phase requirements engineering. In Proceedings of the 3rd IEEE International Symposium on Requirements Engineering [RE’97] (pp. 226–235). Los Alamitos, CA: IEEE Computer Society Press.

Yu, E., & Yu, Y. (2000). Organization Modelling Environment (OME). Retrieved December 1, 2005, from University of Toronto, Department of Computer Science, Web site: http://www.cs.toronto.edu/km/ome/.
Table 13.1 Information gathered from SD models to aid requirements engineers in deriving use cases
	Actor
	Dependency
	Type of Dependency
	Guideline to Be Used

	Editor in Chief
	Authorize publishing
	Task
	(G5.2)

	
	
	
	

	Editor in Chief
	Newspaper edited and published autonomously according to the guidelines
	Goal
	(G6)

<figure captions>

Figure 13.1 e-News System SD diagram. See figure A.1 for a key.
Figure 13.2 e-News System SR diagram. See figure A.1 for a key.

Figure 13.3 Steps of the integration process between i* and use cases.

Figure 13.4 Use-case diagram for the e-News System.
Figure 13.5 Class diagram for the e-News System.

Figure 13.6 How the XGOOD tool works.

Figure 13.7 The latest version of the XGOOD tool.

Figure 13.8 XML file imported into MagicDraw.

Figure 13.9 XGOOD integrated into OME.

�Author: Should the order of authors be Rumbaugh, Jacobson, & Booch?

�Author: Please add Santander & Castro 2001 to the References.

�Author: Is Strategic Dependency correct?

�Author: Is the Webmaster on 13.1? If not, should it be?

�Author: Should the goal be Evaluate news suitability? If so, where is it? There is only Evaluated news suitability.

�In the figure there is only Produced…category. Should that be changed to Produce…?

�Author: In the figure there is only Produced…category. Should it be changed to Produce…category?

�Author: Is “tools were provided” ok?

�Author: What is “the sequel”? Please clarify.

�Author: The Edit and Evaluate are not in figure 13.1. Should they be?

�Author: Should “requested” be “required”?

�Author: Is there an item by Cockburn that should be added to the References?

�Author: Should the order of authors be Castro, mylopoulos, Alencar, and Cysneiros Filho?

�Author: Is “to which” correct?

�Author: “that is being” what? “being decomposed”?

�Author: Is the deletion of “and” ok?

�Author: Is “logical connective” correct?

�Author: Please clarify “in study.” Would “in our study” be correct?

�Author: Is it correct to delete “use”? If not, should “import” be deleted?

�Author: Should IBM precede Magic Draw

�Author: Is IBM Rational Rose correct?

�Author: Is the change from “called” to “invoked” ok?

�Author: Is “currently being edited” correct?

�Author: Should the authors of 2005 be Castro, Giorgini, Kolp, and Mylopoulos?

�Author: Is “architectural design” correct?

�Author: Is Castro, Silva et al. 2003) correct?

�Author: There is no Castro, Nixon, et al. in the References. Please add the 2003 item (no letter a) to the References.

�Author: Is CASE tool correct?

�Author: Should the order of authors be Rumbaugh, Jacobson, and Booch?

�Author: Should the order of authors be Castro, Mylopoulos, Alencar, and Cysneiros Filho?

�Author: Should the authors be Castro, R. Candido, Castor, and Mylopoulos? If not, then this item should follow Castro, Mylopoulos, and Silva on p. 809.

�Author: Should the city be Boston?

�Author: Should the order of authors be Penker and Eriksson?

�Author: Should the order of the authors be Castro, Giorgini, Kolp, and Mylopoulos?

�Author: Should the order of the editors be Henderson-Sellers and Giorgini?

�Author: Should the concluding page be 42?

�Author: Is the title of the special issue correct as edited?

PAGE

