
An On-line Decision-Theoretic Golog Interpreter.

Mikhail Soutchanski
Dept. of Computer Science

University of Toronto

Toronto, ON M5S 3H5

mes@cs.toronto.edu

Abstract

We consider an on-line decision-theoretic inter-
preter and incremental execution of Golog pro-
grams. This new interpreter is intended to over-
come some limitations of the off-line interpreter
proposed in [Boutilier et al., 2000]. We introduce
two new search control operators that can be men-
tioned in Golog programs: the on-line interpreter
takes advantage of one of them to save computa-
tional efforts. In addition to sensing actions de-
signed to identify outcomes of stochastic actions,
we consider a new representation for sensing ac-
tions that may return both binary and real valued
data at the run time. Programmers may use sensing
actions explicitly in Golog programs whenever re-
sults of sensing are required to evaluate tests. The
representation for sensing actions that we introduce
allows the use of regression, a computationally ef-
ficient mechanism for evaluation of tests. We de-
scribe an implementation of the on-line incremental
decision-theoretic Golog interpreter in Prolog. The
implementation was successfully tested on the B21
robot manufactured by RWI.

1 Introduction
The aim of this paper is to provide a new on-line architecture
of designing controllers for autonomous agents. Specifically,
we explore controllers for mobile robots programmed in DT-
Golog, an extension of the high-level programming language
Golog. DTGolog aims to provide a seamless integration of
a decision-theoretic planner based on Markov decision pro-
cesses with an expressive set of program control structures
available in Golog. The motivation for this research is pro-
vided in [Boutilier et al., 2000], and we ask the reader to con-
sult that paper for additional technical details and arguments
why neither model-based planning, nor programming alone
can manage the conceptual complexity of devising controllers
for mobile robots. The DTGolog interpreter described in
[Boutilier et al., 2000] is an off-line interpreter that computes
the optimal conditional policy � , the probability ��� that � can
be executed successfully and the expected utility � of the pol-
icy. The semantics of a DTGolog program � is defined by the
predicate ���	��

����������������� � ����������� , where � is a starting situ-
ation and � is a given finite horizon. The policy � returned by
the off-line interpreter is a Golog program consistingof the se-
quential composition of agent actions, senseEffect ����� sensing

actions (which serve to identify a real outcome of a stochas-
tic action �) and conditionals (if � then ��� else � �), where �
is a situation calculus formula that provides a test condition to
decide which branch of a policy the agent should take given
the result of sensing. The interpreter looks ahead up to the last
choice point in each branch of the program (say, between al-
ternative primitive actions), makes the choice and then pro-
ceeds backwards recursively, deciding at each choice point
what branch is optimal. It is assumed that once the off-line
DTGolog interpreter has computed an optimal policy, the pol-
icy is given to the robotics software to control a real mobile
robot.

However this off-line architecture has a number of limita-
tions. Imagine that we are interested in executing a program
(� �"! � �) where both sub-programs � � and � � are very large
nondeterministic DTGolog programs designed to solve ‘inde-
pendent’ decision-theoretic problems: � � is supposed to start
in a certain set of states, but from the perspective of � � it is
not important what policy will be used to reach one of those
states. Intuitively, in this case we are interested in computing
first an optimal policy ��� (that corresponds to � �), executing� � in the real world and then computing and executing an op-
timal policy � � . But the off-line interpreter can return only
the optimal policy � that corresponds to the whole program
(� � ! � �), spending on this computation more time than neces-
sary: to compute and execute � � it is not relevant what deci-
sions have to be made during the execution of � � . The second
limitation becomes evident if in addition to senseEffect sens-
ing actions serving to identify outcomes of stochastic actions,
we need to explicitly include sensing actions in the program
(and those sensing actions cannot be characterized as stochas-
tic actions with a fixed finite set of outcomes). Imagine that
we are given a program
� ��! � �$# �%

�'&)()��*$��+��,

�-�/. ! �	�"*$�	�0��1�� # �%

� ! if � then � � else �32'4 ,

where �	�"*$�	����1�� # �%

� is a sensing action that returns at time
 a
measurement # of a quantity 1 (e.g., the current coordinates,
the battery voltage) and the condition � depends on the real
data # that will be returned by sensors (in the program above
� � ��� � ���52 are sub-programs, the choice operator � binds vari-
ables # and
 and the test *$��+6�)

�/. grounds the current time).
Intuitively, we want to compute an optimal policy � � (corre-
sponding to � �) off-line, execute ��� in the real world, sense #
and then compute and execute an optimal policy � � that cor-
responds to the conditional Golog program in brackets. But
the off-line interpreter is not able to compute an optimal pol-
icy if a given program includes explicit sensing actions and no
information is available about the possible results of sensing.
Note that the nondeterministic choice operator � (it occurs in

front of the program) should not be confused with policies � �
and � � computed by an interpreter.

We propose to compute and execute optimal policies on-
line using a new incremental decision theoretic interpreter. It
works in a step-by-step mode. Given a Golog program � and
a starting situation � , it computes an optimal policy � and the
program ��� that remains when a first action � in � will be exe-
cuted. At the next stage, the action � is executed in the real
world. The interpreter gets sensory information to identify
which outcome of � has actually occurred if � is a stochastic
action: this may require doing a sequence of sensing actions
on-line. The action � (and possibly sensing actions performed
after that) results in a new situation. Then the cycle of com-
puting an optimal policy and remaining program, executing
the first action and getting sensory information (if necessary)
repeats until the program terminates or execution fails. In the
context of the incremental on-line execution, we define a new
programming operator ���
 ������� ������� that limits the scope of
search performed by the interpreter. If � is the whole program,
then no computational efforts are saved when the interpreter
computes an optimal policy from � , but if the programmer
writes �
�
 ������� ����� � � ! � � , then the on-line incremental inter-
preter will compute and execute step-by-step the Golog pro-
gram � � without looking ahead to decisions that need to be
made in � � . If the programmer knows that the sensing action
�	�"*$�	����1�� # �%

� is necessary to evaluate the condition � , then
using the program
����
 ������� �0� � � � ! � �
"� # �'&)()��*$��+6�)

�/�-. ! ����
 ������� �0���	�"*$�	����1�� # �%

�-� !

if � then � � else � 2 4
the required information about 1 will be obtained before the
incremental interpreter will proceed to the execution of the
conditional. If the sensing action �"�	*$�	����1�� # �

� has many dif-
ferent outcomes, then this approach gives computational ad-
vantages over the off-line approach to computing an optimal
policy.

Thus, the incremental interpretation of the decision-
theoretic Golog programs needs an account of sensing
(formulated in the situation calculus) that will satisfy
several criteria which naturally arise in the robotics con-
text. There are several accounts of sensing in the situ-
ation calculus that address different aspects of reasoning
about sensory and physical actions [Bacchus et al., 1995;
De Giacomo and Levesque, 1999a; 1999b; Funge, 1998;
Grosskreutz, 2000; Lakemeyer, 1999; Levesque, 1996;
Pirri and Finzi, 1999; Scherl and Levesque, 1993].

Below we propose a new representation of sensing that sim-
plifies reasoning about results of sensing, does not require
consistency of sensory information with the domain theory,
leads to a natural and sound implementation and has connec-
tions with representation of knowledge and sensing consid-
ered in [Reiter, 2000].

In Section 2 we recall the representation of the decision the-
oretic domain introduced in [Boutilieret al., 2000]. In Section
3 we propose a representation for sensing actions and consider
several examples. In section 4 we consider the on-line incre-
mental decision-theoretic interpreter. Section 5 discusses con-
nections with previously published papers.

2 The decision theoretic problem
representation

The paper [Boutilier et al., 2000] introduces the representa-
tion of problem domains that do not include sensing actions.
The representation is based on the distinction between agent
actions (which can be either deterministic or stochastic) and

nature’s actions which correspond to separate outcomes of a
stochastic agent action. Nature’s actions are considered deter-
ministic. They cannot be executed by the agent itself, there-
fore they never occur in policies which the agent executes.
When the agent does a stochastic action � in a situation � , na-
ture chooses one of the outcomes * of that action and the sit-
uation 	�����* �
�	� is considered as one of resulting situations. In
accordance with this perspective, the evolution of a stochas-
tic transition system is specified by precondition and succes-
sor state axioms which never mention stochastic agent ac-
tions, but mention only deterministic agent actions and na-
ture’s actions. In [Boutilier et al., 2000], it is suggested to
characterize the DTGolog problem domain by: 1) the pred-
icate ��
5�"*3

���/
 � ��* ����� which holds if � is an agent action, 2)
the predicate �

���'�����
 � � ��� �
�0��*$� meaning that nature’s action
* is one of outcomes of the stochastic agent action � in the
situation � , 3) the function symbol � ��������* ���	� that denotes the
probability of nature’s action * in situation � , and 4) the pred-
icate senseCond ��* �
�$� specifying the test condition � serving
to identify the outcome * of the last stochastic action, 5) the
function symbol ���"+ � ��	 ��	 ����� �
�	�-� denotes rewards and costs
as functions of the current situation 	������ ���"� , the action � or
both.

As an example, imagine a robot moving between different
locations: the process of going is initiated by a deterministic
action ��

���
�������� � ��� � �%

� but is terminated by a stochastic ac-
tion �	*�	��6����� � �
� � �%

� that may have two different outcomes:
successful arrival �	*�	������ ��� � ��� � �

� and unsuccessful stop in
a place different from the destination �"*�	���������� � �
� 2 �%

� (the
robot gets stuck in the hall or cannot enter an office because its
door is closed). We represent the process of moving between
locations � � and � � by the relational fluent
 � � *�
 ��� � �
� � �
�	� and
represent a (symbolic) location of the robot by the relational
fluent �����'�
�� �������-�
�	� meaning that � (the office of an em-
ployee, the hall or the main office) is the place where the robot
is. The transitions in the stochastic dynamical system describ-
ing the robot’s motion are characterized by the following pre-
condition and successor state axioms.

Poss � startGo �����! �#"$ %�&�
'!&�(*)+��,��� -��.#& going ���� ��./ 0'!&21 robotLoc�����3 '!&�
Poss � endGoS ��� � -� "
%�&�
'!&�(going ��� � -� " 4'3&�

Poss � endGoF �����! -�#"5 4%�&�
'!&�(*,5��./6 going �����! -��./
'!&718��.:9; �#"�
going ���� -� . =<�>?��@�
'!&-&�(A��,?%�&�@ ; startGo ���� -� . 4%�&CB

going ���� -��./
'!&D1E)F��,G%�&�@ ; endGoS ���� -��.�
%�&-B
going ���� -��./
'!&D1E)F��,G%4 -��. .H&�@ ; endGoF ���� =��. .I 4%�&�6

The real outcome * of a stochastic agent action � can be
identified only from sensory information. This information
has to be obtained by executing sensing actions. In the fol-
lowing section we propose a new representation for sensing
actions providing a seamless integration with the representa-
tion considered in this section.

3 Sensing actions
In contrast to physical actions, sensing actions do not change
any properties of the external world, but return values mea-
sured by sensors. Despite this difference, it is convenient
to treat both physical and sensing actions equally in succes-
sor state axioms. This approach is justifiable if fluents rep-
resent what the robot ‘knows’ about the world (see Figure
1). More specifically, let the high-level control module of the
robot be provided with the internal logical model of the world
(the set of precondition and successor state axioms) and the

axiomatization of the initial situation. The programmer ex-
presses in this axiomatization his (incomplete) knowledge of
the initial situation and captures certain important effects of
the robot’s actions, but some other effects and actions of other
agents may remain unmodeled. When the robot does an action
in the real world (i.e., the high-level control module sends a
command to effectors and effectors execute this command),
it does not know directly and immediately what effects in re-
ality this action will produce: the high-level control module
may only compute expected effects using the internal logical
model. Similarly, if the robot is informed about actions exe-
cuted by external agents, the high-level control module may
compute expected effects of those exogenous actions (if ax-
ioms account for them). Thus, from the point of view of the
programmer who designed the axioms, the high-level control
module maintains the set of beliefs that the robot has about the
real world. This set of beliefs needs feedback from the real
world because of possible contingencies, incompleteness of
the initial information and unobserved or unmodeled actions
executed by other agents. To gain the feedback, the high-level
control module requests information from sensors and they re-
turn required data. We find it convenient to represent infor-
mation gathered from sensors by an argument of the sensing
action: a value of the argument will be instantiated at the run
time when the sensing action will be executed. Then, all the
high-level control module needs to know is the current situ-
ation (action log): expected effects of actions on fluents can
be computed from the given sequence of physical and sens-
ing actions.

�

�

� � � � � � ���

������� �

�

Internal logical
model

+ initial data

+ Golog program

Effectors

Sensors

actions

sensing
data

Environment

(includes other agents)

Exogenous
actions

Figure 1: A high-level control module and low-level modules
interacting with the environment.

In the sequel, we consider only deterministic sensing ac-
tions, but noisy sensing actions can be represented as well.

We suggest representing sensing actions by the functional
symbol �	�"*$�	�0����� # �%

� where � is what to sense, # is term rep-
resenting a run time value returned by the sensors and
 is
time; the predicate �"�	*$�	�!���/
 � ��* ����� is true whenever � is a
sensing action. We proceed to consider several examples of
successor state axioms that employ our representation.

1. Let �	�"*$�	���
	�������	 �
�/�

� be the sensing action that re-
turns the pair � � ������
0� of geometric coordinates of
the current robot location on the two-dimensional grid and

 � � 	�� �����
����
5���"� be a relational fluent that is true if �
����
��
are the coordinates of the robot’s location in � . In this
example we assume that all actions are deterministic (we
do this only to simplify the exposition of this example).
The process of moving (represented by the relational fluent

� >������������ � �� � �� " �� "
'!&) from the grid location �
� � ��
 � � to
the point ��� � ��
 � � is initiated by the deterministic instanta-
neous action '!%�@ �!%
! >��#"����D�2 ��5�� ���"$ ��!"$
%�& and is terminated by
the deterministic action "#��< ! >��#"����:�� ����2 ���" ��!"$
%�& . The robot
may also change its location if it is transported by an exter-
nal agent from one place to another: the exogenous actions

�%$5�0��� � ��
 � �%

� and ���
"��� � ��
 � �

� account for this (and the
fluent

��� *$�/�����

�$	 ���	� represents the process of moving the
robot by an external agent). The followingsuccessor state and
precondition axioms characterize aforementioned fluents and
actions.

5� � 	�� �����
����
5�2	������ ���"�/�'&
�-�
(0
"�
���-�)� �"�	*$�"�0��	6������	����-�%

�+*,�-	���	 ����� �,�.*,
�	���	 �������/
0�'0
��1

��� *$�/�����

�$	 ���	�2* �
(0
"��������
�� �/�3� endMove �
��� ��
�� ������
5�%

�-�40

�	

����*$�-� ���

� 	 ���	�2* �
(0

�-�)� ���
"������
3�

�3�20

5� � 	�� ��� ������
3�
�	�+*,1 ��(0
"��������
�� �-�)� ���
"��������
�� �%

�5*

1 ��(�-�

�/�6� �"�	*$�"�0��	6������	����-�%

��*
1 ��(5����
5���7� ��
�� �%

�-�6� endMove �
����
5��������
�� �%

�'�

where �7	���	 ����� ��
�	���	 ����� denote, respectively, � and
 com-
ponents of the current robot location � .� � # � *�
 ��� � ��
 � ��� � ��
 � �2	 ����� �
�	�-�)&

��(

�-�)� startMove �
� � ��
 � ��� � ��
 � �%

�)0� � # � *�
 �
� � ��
 � ��� � ��
 � ���	��*
1 ��(

�-�)� endMove ��� � ��
 � ��� � ��
 � �%

�'&

%
�2@ �7'98�>��!%�"!<���<�>G��@� 2'!&-&�(��,G%4 �� ���&?@ ; %�@�: "����D ��? �%�& B
%��2@ ��'
8�>��!%�"!<���'!&21)F��,?%- ��7.H ���.H&�@ ; 8<;�%4���7.� ���.I 4%�&DB

��)C,=�D ��? �� . �� . & � >������>�����D ��? �� . �� . &D1?� ���/< @ >BA$���D ��? 4'3&-1
��,G%4 -��&�@ ; '�"B�7'C"���D > >��2<� -��
%�&D1 ���5DE�2<�����&�9; � BF��DE�2<�����&�9; ��&�6

Poss � startMove ���D�2 ����3 9��"$ ��!"$
%�&� 4'3&�(*)C%
�2@ �7'98�>��!%�"!<���'!&-1
)F��,=� ��? �� . �� . & � >������������D ��? �� . �� .
'!&21G�=���I< @�>#A ��� � �� � 4'3&�

Poss � endMove ��� � �� � 9� " �� "
%�&� 4'3&C(� >������>����� � �� � �� " �� "
'!&�
Poss ��%�@�: "����D ��?
%�&�
'!& ()C%
�2@ �7'
8�>��!%�"3<���'!& 1G� ���/< @�>#A$���D ��?
'!&-1

)F��,=�D�� ��5�2 9��"$ ��!"$& � >������>�����D�2 ����! ���"$ ��!"$
'!&�
Poss �H85;�%4���D ��? �%�&�
'!&�(%�� @ �7'
8�>��!%�"!<���'!&�6

Imagine that in the initial situation the robot stays at (0,0);
later, at time 1, it starts moving from (0,0) to (2,3), but when
the robot stops at time 11 and senses its coordinates at time 12,
its sensors tell it that it is located at (4,4). The sensory infor-
mation is inconsistent with the expected location of the robot,
but this discrepancy can be attributed to unobserved actions of
an external agent who transported the robot. Hence, the final
situation is notI%J ; <�>G��'�"#�7'�"���D >$>�� <�
��K? 9K�&� �LCM$&� -<�>G� endMove ��NG �N? �M� �O? �LBL!&�

<�>?� startMove ��N? �N? �M� �O? �L!&� I<P &-&-&�
as we originally expected, but the situation resulting from

the execution of exogenous actions

�%$5�0��Q5��R5�TS � � and
� ��
"��U��TU��TS � � , in the situation when the robot ends moving,
followed by the sensing action. The exogenous actions
occurred at unknown times S � �TS � (we may say about the
actual history only that V�V.WXS �.Y S � WZV#Q).1

2. The robot can determine its location using data from
sonar and laser sensors. But if the last action was not sensing
coordinates ������
0� , then the current location can be determined

1In the sequel, we do not consider how the discrepancy between
results of a deterministic action and observations obtained from sen-
sors can be explained by occurrences of unobserved exogenous ac-
tions. However, our example indicates that inconsistency between
physical and sensory actions can be resolved by solving a corre-
sponding diagnostic problem (e.g., see [McIlraith, 1998]).

from the previous location and the actions that the robot has
executed. The process of going from � to ��� is initiated by the
deterministic action ��

���
��������-����� �%

� and is terminated by the
stochastic action �	*�	��������-�������

� (axiomatized in Section 2).

�����'�
�� �������-�2	 ����� �
�	�-��& �
(0
"� # ������
��5�)� �	�"*$�	���
	�������	 � # �

�
* �7	���	 � # � �,�?*,
 	���	 � # � �,
 *
�3��(�� ���2� office � ���4* inOffice ���-������
�� 0

��� � �?���-*,1 ��(��� inOffice � office �����'������
0�5�20
�
(0
"�
� � �-�)� �"*�	������ ��� � ���-�

�+0 �
(0
"�
� � �/�)� �	*�	���������� � �
�-�%

�20
�����'�
�� �������-���"��* 1 ��(0
"��� � ��� 2 � # �$���)� �	�"*$�	���
	�������	 � # �

�T*

�)� �"*�	������ ��� � ��� 2��%

�-* �)� �"*�	���������� � �
�)2��%

�5� &
where the predicate inOffice ���-������
�� is true if the pair ������
0�

is inside of the office � , the functional symbols bottomY ����� ,
topY ����� , rightX ����� and leftX ����� represent coordinates of top
left and bottom right corners of a rectangle that contains the
office � inside: When the robot stops and senses coordi-
nates, it determines its real location and the high-level con-
trol module can identify the outcome of the stochastic ac-
tion �	*�	��������/�
�����%

� : whether the robot stopped successfully or
failed to arrive at the intended destination.

3. Let
 � # �0� �

� � �����	���"��* �%

� be a stochastic action that
has two different outcomes:
 � # �$� � �

� � �����	���	��* �

� – the
robot gives successfully an

�

� � to � �"���	��* at time
 – and

 � # �$��� �

� � �����	���"��* �%

� – the action of giving an

�

� � to
���	���	��* is unsuccessful. Let �"�	*$�"�0������$5* � # �%

� be the ac-
tion of sensing whether delivery of the

�

� � to � �"���	��*
was successful or not: if it was, then delivery is acknowl-
edged and # =1, if not – the result of sensing is # =0. The
following successor state axiom characterizes how the flu-
ent hasCoffee � ���	���"��* ���	� changes from situation to situation:
whenever the robot is in the office of � �"���	��* and it senses that
one of its buttons was pressed, it is assumed that the ���	���"��*
pressed a button to acknowledge that she has a coffee. From
this sensory information, the high-level control module can
identify whether the outcome of
 � # �0� �

� � �����	���"��* �%

� was
successful or not.

hasCoffee �H8>"B�3'$ -<�>G��@�
'!&-& (
��,?%�&�@ ; �=���#" I � Coffee 8>"#�!'$ �%�&7B hasCoffee �H8%"B�!'$
'!&DB
��,G%4 ���&�@ ; 'C"B�7'�"���� A�:>�D ��?
%�&71 � ; L 1

�2>��
>�%�@ >BA$� office �H8>"#�!'!&�
'!&�6
It is surprisingly straightforward to use regression in our

setting to solve the forward projection task. Let � be a back-
ground axiomatization of the domain (a set of successor state
axioms, precondition axioms, unique name axioms and a set
of first order sentences whose only situation term is ���) and
let � ���	� be a situation calculus formula that has the free vari-
able � as the only situational argument. Suppose we are given
a ground situational term � that may mention both physical
and sensing actions. The forward projection task is to deter-
mine whether

�
	 � � ��� �
Regression is a computationallyefficient way of solving the

forward projection task [Reiter, 2000; Pirri and Reiter, 1999]
when � does not mention any sensing actions. The represen-
tation introduced above allows us to use regression also in the
case when � mentions sensing actions explicitly. Thus, we
can use regression to evaluate tests ���$�/. in Golog programs
with sensing actions: no modifications are required. In addi-
tion, our approach allows us to use an implementation in Pro-
log considered in [Reiter, 2000]. There is also an interesting
connection between our representation of ‘beliefs’ and sens-
ing and the approach to knowledge-based programming [Re-
iter, 2000]. In [Soutchanski, 2001] we show that his approach

and our approach to the solution of the forward projection task
(with sensing actions) are equivalent.

4 The incremental on-line DTGolog
interpreter

The incremental DTGolog interpreter uses the predi-
cate IncrBestDo � � � ������� � ����� � ����������� and the predicate
� � *$�?�-� ���
�0� � �
� � . The former predicate takes as input the
Golog program � � , starting situation � , horizon � and returns
the optimal conditional policy � , its expected utility � , the
probability of success ��� , and the program � � that remains
after executing the first action from the policy � . The latter
predicate tells when the execution of the policy completes:
� � *$�?�-� ���
�0� � �
� � is true if either the program � is � � � (the
null program) or �

��� (a zero cost action that takes the agent
to an absorbing state meaning that the execution failed),
or if the policy � is � � � or �$

��� . In all these cases, � is
simply the reward associated with the situation � . Note
that in comparison to BestDo, IncrBestDo has an additional
argument � � representing the program that remains to be
executed.

IncrBestDo ��� � ���0��� � �
��� � �
����� ��� is defined inductively on
the structure of a Golog program � � . Below we consider its
definition in the case when the program � � begins with a de-
terministic agent action.

IncrBestDo ��� ! � � �
�0��� � ����� � �����������
������
(H1������	�0��� �
�	��*

� � ��� � �-* � � Stop * ���+��� * � � reward ���"�50
�����	���������	�2*�� � � � � * ($���7��� � � ���7� �����$�)�

IncrBestDo ��� � �2	 ����� �
�	�'���7���
� – V�� � � ���7����� �$� ��*� � ��� !
� �)�+* � � ���	+ ����	 ���	��� �7�%* � �.� ���$� 4%&
If a deterministic agent action � is possible in situation � , then
we compute the optimal policy � � of the remaining program
� � , its expected utility � � and the probability of successful ter-
mination ��� � . Because � is a deterministic action, the proba-
bility � �$� that the policy � � will complete successfully is the
same as for the program itself; the expected utility � is a sum
of a reward for being in � and the expected utility of contin-
uation � � . If � is not possible, then the remaining program is
� � � , and the policy is the Stop action, the expected utility is
the reward in � and the probability of success is 0.

Other cases are defined similarly to ���	��

��� , e.g., if the
program begins with the finite nondeterministic choice � � ������ � ��� ! ��� , where � is the finite set ��� � �"&	&"&��2����� and the choice
binds all free occurrences of � in � to one of the elements:

IncrBestDo �-� � ����� � � � � ! � � ���0���! ��
�������$�-����������� ���"��
IncrBestDo �-����	 #$ � 	 &"&	&%	 �&	 #$ � � ! ����������� �
����� �$�-�����������

where �&	 #$ means substitutionof � for all free occurrences of �
in � . Thus, the optimal policy ���$� corresponds to the element
� in � that delivers the best execution. Note that the remaining
program � is the same on the both sides of the definition.

Recall that policies are Golog programs as well. Moreover,
if � is a Golog program that contains many nondeterministic
choices, the optimal policy � computed from � is a conditional
program that does not involve any nondeterministic choices.
This observation suggests that programmers may wish to take
advantage of the structure in a decision theoretic problem and
use explicit search control operators that limit bounds where
the search for an optimal policy has to concentrate. In ad-
dition to the standard set of Golog programming constructs,

we introduce two new operators: �����'�?�-����� and ���
 ������� ������� .
Intuitively, the program �����'�?�-� � � � ! � � means the following.
First, compute the optimal policy � � corresponding to the sub-
program � � , then compute the optimal policy � correspond-
ing to the program ���"! � � . If both sub-programs � � and � � are
highly nondeterministic, then using the operator �����'�?�-� � � � the
programmer indicates where the computational efforts can be
saved: there is no need in looking ahead further than � � to
compute � � . Thus, in the case that a Golog program begins
with �����'�?�-� � �
IncrBestDo �������'�?�-��� � � ! � � �
�0���! ��
��� � ������� ��� ���"��
��(���� � � �
� � ����� � � IncrBestDo � � � ! � � �-�
�0��������� �$� �
� � ����� � ��*

IncrBestDo � � � ! � � �
�0��� ������ � ����������� &
The construct �����'�?�-��� � � limits the search, but once the pol-

icy � � was computed and the first action in � � was executed,
the remaining part of the program has no indication where
the search may concentrate. For this reason, the programmer
may find convenient to use another search control operator
that once used persists in the remaining part of the program
until the program inside the scopes of that operator terminates.
This operator is called ����
 ������� �0� ��� and is specified by the fol-
lowing abbreviation.

IncrBestDo �����
 ������� ����� � � ! � � ������� ����� � �
��������� ������
�
(��7�)� IncrBestDo � � � ! � � �-�������7���
��� � �
����� ����*
�'��� �� � � �7* �! .� �����
 ������� �����7� � ! � � �40
�7�-� � � �-*��! .� � � �'&

According to this specification, an optimal policy � can be
computed without looking ahead to the program � � ; hence,
using ����
 ������� �0� � � � a programmer can express a domain spe-
cific procedural knowledge to save computational efforts.
Note that when � � is Nil, i.e. there will be nothing in � � to ex-
ecute after doing the only action in � , the remaining program
� contains only � � .
4.1 Implementing the on-line interpreter
Given the definitions of IncrBestDo mentioned in the previ-
ous sub-section, we can consider now the on-line interpreta-
tion coupled with execution of Golog programs. The defi-
nitions of IncrBestDo � � � ������� � ����� � ����������� translate directly
into Prolog clauses (we omit them here). The on-line inter-
preter calls the off-line incrBestDo(E,S,ER,H,Pol1,U1,Prob1)
interpreter to compute an optimal policy from the given pro-
gram expression � , gets the first action of the optimal policy,
commits to it, does it in the physical world, then repeats with
the rest of the program. The following is such an interpreter
implemented in Prolog:
online(E,S,H,Pol,U) :-
incrBestDo(E,S,ER,H,Pol1,U1,Prob1),
(final(ER,S,H,Pol1,U1), Pol=Pol1, U=U1 ;
reward(R,S),
Pol1 = (A : Rest),

(agentAction(A), not stochastic(A,S,L),
doReally(A), /*execute A in reality*/
!, /* commit to the result */

online(ER,do(A,S),H,PolFut,UFut),
Pol=(A : PolFut), U is R + UFut ;
senseAction(A),
doReally(A), /* do sensing */

!, /*commit to results of sensing*/
online(ER,do(A,S),H,PolFut,UFut),
Pol=(A : PolFut), U is R + UFut ;
agentAction(A), stochastic(A,S,L),
doReally(A), /*execute A in reality*/

!, /* commit to the result */

senseEffect(A,S,SEff),
diagnose(SEff,L,SN), /*What happened?*/
online(ER,SN,H,PolFut,UFut),
Pol=(A : PolF), U is R + UFut

)
).

The on-line interpreter uses the Prolog cut (!) to prevent
backtracking to the predicate 	���� �"�?���

 : we need this because
once actions have been actually performed in the physical
world, the robot cannot undo them.

In addition to predicates mentioned in section 2, the
on-line interpreter uses the predicate senseEffect ��� �2� V��2�)Q�� ,
the predicate diffSequence ��� �2� �#��� and the predicate
	 � ��
5*$���"�0���)Q3�����
��'� � �"�$� � ��
"�2�)R�� . We describe below their
meaning and show their implementation in Prolog.

Given the stochastic action � and the situation � V , the
predicate senseEffect ��� �2� V��2�3Q0� holds if �)Q is the situation
that results from doing a number of sensing actions neces-
sary to differentiate between outcomes of the stochastic ac-
tion � . The predicate diffSequence ��� �2� �B��� holds if � �#� is
the sequence of sensing actions (� �"! � ��! &"&	& ! � �) specified by
the programmer in the domain problem representation: this
sequence is differentiating if after doing all actions in the
sequence the action chosen by ‘nature’ as the outcome of
stochastic action � can be uniquely identified.
senseEffect(A,S,SE) :- diffSequence(A,Seq),

getSensorInput(S,Seq,SE).

getSensorInput(S,A,do(A,S)) :- senseAction(A),
doReally(A). /*connect to sensors, get data

for a free variable in A */

getSensorInput(S1,(A : Rest),SE) :-
doReally(A), /* connect to sensors,

get data */
getSensorInput(do(A,S1),Rest,SE).

The predicate 	 � ��
5*$���"�0��� V0��� �2�)Q�� takes as its first argu-
ment the situation resulting from getting a sensory input: it
contains ‘enough’ information to disambiguate between dif-
ferent possible outcomes of the last stochastic action � . The
second argument is the list � of all outcomes that nature may
choose if the agent executes the stochastic action � in � V and
the third argument is the situation that is the result of nature’s
action which actually occurred. We can identify which action
nature has chosen using the set of mutually exclusive test con-
ditions senseCond ��*����
�	��� , where �	� is a term representing a
situation calculus formula: if �
� holds in the current situation,
then we know that nature has chosen the action * � (* � belongs
to the list �).
diagnose(SE,[N],do(N,SE)) :-

senseCond(N,C), holds(C,SE).

diagnose(SE,[N|Outcomes],SN):- senseCond(N,C),
(holds(C,SE), SN=do(N,SE) ;

not holds(C,SE),
diagnose(SE,Outcomes,SN)).

Successful tests of the implementation described here were
conducted in a real office environment on a mobile robot B21
manufactured by RWI. The low-level software was initially
developed in the University of Bonn to control Rhino, another
B21 robot, see [Burgard et al., 1999] for details. The tests of
implementation demonstrated that using the expressive set of
Gologoperators it is straightforward to encode domain knowl-
edge as constraints on the given large MDP problem. The op-
erator ���
 ������� ������� proved to be useful in providing heuris-

tics which allowed to compute sub-policies in real time. These
preliminary tests have brought several new important issues,
e.g., how the computation of a new policy off-line can proceed
in parallel with executing actions from the policy on-line.

5 Discussion
The incremental Golog interpreter based on the single-
step S ����*$� -semantics is introduced in [De Giacomo and
Levesque, 1999b]. The Golog programs considered there may
include binary sensing actions. The interpreter considered in
our paper is motivated by similar intuitions,but it is based on a
different decision-theoretic semantics and employs more ex-
pressive representation of sensing. The paper [De Giacomo
and Levesque, 1999a] introduces guarded sensed fluent ax-
ioms (GSFA) and guarded successor state axioms (GSSA) and
assumes that there is a stream of sensor readings available at
any time. These readings are represented by unary sensing
functions (syntactically, they look like functionalfluents). Be-
cause we introduce the representation for sensing actions, they
can be mentioned explicitly in Golog programs or can be ex-
ecuted by the interpreter. The major advantage of our rep-
resentation is that it does not require consistency of sensory
readings with the action theory (this may prove useful in solv-
ing diagnostic tasks: [McIlraith, 1998]). The execution mon-
itoring framework proposed in [De Giacomo et al., 1998] as-
sumes that the feedback from the environment is provided in
terms of actions executed by other agents. Because in this pa-
per we assume that the feedback is provided in terms of sen-
sory readings, this may lead to development of a more realistic
framework. An approach to integrating planning and execu-
tion in stochastic domains [Dearden and Boutilier, 1994] is an
alternative to the approach proposed here.

6 Concluding remarks
Several important issues are not covered in this paper. One
of them is monitoring and rescheduling of policies. Note that
all actions in policies have time arguments which will be in-
stantiated by moments of time: when the incremental inter-
preter computes an optimal policy, it also determines a sched-
ule when actions have to be executed. But in realistic scenar-
ios, when the robot is involved in ongoing processes extended
over time, it may happen that a process will terminate earlier
or later than it was expected.

The diagnostic task that the current version of the on-line
interpreter solves is admittedlyoversimplified. We expect that
additional research integrating the on-line incremental inter-
preter with the approach proposed in [McIlraith, 1998] will
allow us to formulate a more comprehensive version.

7 Acknowledgments
Thanks to Ray Reiter, Maurice Pagnucco, and anonymous re-
viewers for comments on preliminary versions of this paper.
Sam Kaufman provided help with conducting tests on the mo-
bile robot.

References
[Bacchus et al., 1995] Fahiem Bacchus, Joseph Y. Halpern, and

Hector J. Levesque. Reasoning about noisy sensors in the situ-
ation calculus. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, pages 1933–1940,
Montreal, 1995.

[Boutilier et al., 2000] C. Boutilier, R. Reiter, M. Soutchanski, and
S. Thrun. Decision-theoretic, high-level robot programming in
the situation calculus. In Proc. of the 17th National Conference
on Artificial Intelligence (AAAI’00), Austin, Texas, 2000.

[Burgard et al., 1999] W. Burgard, A.B. Cremers, D. Fox,
D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun.
Experiences with an interactive museum tour-guide robot.
Artificial Intelligence, 114(1-2), 1999.

[De Giacomo and Levesque, 1999a] G. De Giacomo and
H. Levesque. Projection using regression and sensors. In
Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, Stockholm, Sweden, 1999.

[De Giacomo and Levesque, 1999b] G. De Giacomo and H.J.
Levesque. An incremental interpreter for high-level programs
with sensing. In Levesqueand Pirri, editors, Logical Foundations
for Cognitive Agents: Contributions in Honor of Ray Reiter,
pages 86–102. Springer, 1999.

[De Giacomo et al., 1998] G. De Giacomo, R. Reiter, and M.E.
Soutchanski. Execution monitoring of high-level robot pro-
grams. In Principles of Knowledge Representation and Reason-
ing: Proc. of the 6th International Conference (KR’98), pages
453–464, Trento, Italy, 1998.

[Dearden and Boutilier, 1994] Richard Dearden and Craig
Boutilier. Integrating planning and execution in stochastic
domains. In Proceedings of the Tenth Conference on Uncertainty
in Artificial Intelligence, pages 162–169, 1994.

[Funge, 1998] J. Funge. Making Them Behave: Cognitive Models
for Computer Animation, Ph.D. Thesis. Dept. of Computer Sci-
ence, Univ. of Toronto, 1998.

[Grosskreutz, 2000] H. Grosskreutz. Probabilistic projection and
belief update in the pgolog framework. In The 2nd International
Cognitive Robotics Workshop, 14th European Conference on AI,
pages 34–41, Berlin, Germany, 2000.

[Lakemeyer, 1999] G. Lakemeyer. On sensing and off-line inter-
preting in golog. In Levesque and Pirri, editors, Logical Founda-
tions for Cognitive Agents: Contributions in Honor of Ray Reiter,
pages 173–189. Springer, 1999.

[Levesque, 1996] H.J. Levesque. What is planning in the presence
of sensing? In Proceedingsof the Thirteenth National Conference
on Artificial Intelligence, volume 2, pages 1139–1145, Portland,
Oregon, 1996.

[McIlraith, 1998] S. McIlraith. Explanatory diagnosis: Conjectur-
ing actions to explain obsevations. In Principles of Knowledge
Representation and Reasoning: Proc. of the 6th International
Conference (KR’98), pages 167–177, Italy, 1998.

[Pirri and Finzi, 1999] F. Pirri and A. Finzi. An approach to percep-
tion in theory of actions: part 1. Linköping Electronic Articles in
Computer and Information Science, 4(41), 1999.

[Pirri and Reiter, 1999] F. Pirri and R. Reiter. Some contributions
to the metatheory of the situation calculus. Journal of the ACM,
46(3):261–325, 1999.

[Reiter, 2000] R. Reiter. Knowledge in Action: Logical Foun-
dations for Describing and Implementing Dynamical Systems.
http://www.cs.toronto.edu/˜ cogrobo/, 2000.

[Scherl and Levesque, 1993] R. Scherl and H.J. Levesque. The
frame problem and knowledge producing actions. In Proceedings
of the Eleventh National Conference on Artificial Intelligence,
pages 689–695, Washington, DC, 1993.

[Soutchanski, 2001] M Soutchanski. A correspondence between
two different solutions to the projection task with sensing. In The
5th Symposium on Logical Formalizations of CommonsenseRea-
soning, New York, USA, 2001.

