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Abstract

We consider an on-line decision-theoretic inter-
preter and incremental execution of Golog pro-
grams. This new interpreter is intended to over-
come some limitations of the off-line interpreter
proposed in [Boutilier et al., 2000]. We introduce
two new search control operators that can be men-
tioned in Golog programs: the on-line interpreter
takes advantage of one of them to save computa
tional efforts. In addition to sensing actions de-
signed to identify outcomes of stochastic actions,
we consider a new representation for sensing ac-
tions that may return both binary and rea valued
data a the runtime. Programmers may use sensing
actions explicitly in Golog programs whenever re-
sults of sensing are required to evaluate tests. The
representation for sensing actionsthat we introduce
allows the use of regression, a computationally ef-
ficient mechanism for evaduation of tests. We de-
scribe an implementation of the on-lineincremental
decision-theoretic Golog interpreter in Prolog. The
implementation was successfully tested on the B21
robot manufactured by RWI.

1 Introduction

The aim of this paper isto provide a new on-line architecture
of designing controllersfor autonomous agents. Specifically,
we explore controllersfor mobile robots programmed in DT-
Golog, an extension of the high-level programming language
Golog. DTGolog aims to provide a seamless integration of
a decision-theoretic planner based on Markov decision pro-
cesses with an expressive set of program control structures
available in Golog. The motivation for this research is pro-
vided in[Boutilier et al., 2000], and we ask the reader to con-
sult that paper for additional technical details and arguments
why neither model-based planning, nor programming aone
can manage the conceptual complexity of devising controllers
for mobile robots. The DTGolog interpreter described in
[Boutilier et al., 2000] isan off-lineinterpreter that computes
the optimal conditional policy =, the probability pr that = can
be executed successfully and the expected utility u of the pol-
icy. The semantics of aDTGolog program p is defined by the
predicate Best Do(p, s, h, 7, u, pr), where s isastarting situ-
ationand h isagivenfinitehorizon. The policy = returned by
theoff-lineinterpreter isaGol og program consisting of these-
quentia composition of agent actions, senseEffect(a) sensing

actions (which serve to identify a real outcome of a stochas-
tic action a) and conditionas (if ¢ then =1 else m5), where ¢
isasituation cal culusformulathat providesatest conditionto
decide which branch of a policy the agent should take given
theresult of sensing. Theinterpreter looksahead up tothelast
choice point in each branch of the program (say, between a-
ternative primitive actions), makes the choice and then pro-
ceeds backwards recursively, deciding a each choice point
what branch is optimal. It is assumed that once the off-line
DTGologinterpreter has computed an optimal policy, the pol-
icy is given to the robotics software to control areal mobile
robot.

However this off-line architecture has a number of limita-
tions. Imagine that we are interested in executing a program
(p1; p2) where both sub-programs p; and p, are very large
nondeterministic DTGol og programs designed to solve‘ inde-
pendent’ decision-theoretic problems: p- is supposed to start
in acertain set of states, but from the perspective of p, it is
not important what policy will be used to reach one of those
states. Intuitively, in this case we are interested in computing
first an optimal policy 7 (that correspondsto p1), executing
1 intherea world and then computing and executing an op-
timal policy m. But the off-line interpreter can return only
the optima policy = that corresponds to the whole program
(p1; p2), spending on this computation more time than neces-
sary: to compute and execute 7 it is not relevant what deci-
sions have to be made during the execution of 7;. The second
limitation becomes evident if in addition to senseEffect sens-
ing actions serving to identify outcomes of stochastic actions,
we need to explicitly include sensing actionsin the program
(and those sensing actions cannot be characterized as stochas-
tic actions with a fixed finite set of outcomes). Imagine that
we are given aprogram

p1; (7o, 1).[(now(t))?; sense(Q, v, t); if ¢ then p, else ps],
wheresense(Q, v, t) isasensing actionthat returnsat timet a
measurement v of a quantity @ (e.g., the current coordinates,
the battery voltage) and the condition ¢ depends on the real
datav that will be returned by sensors (in the program above
p1, p2, p3 are sub-programs, the choice operator = binds vari-
ables v and ¢ and the test now(t)? grounds the current time).
Intuitively, we want to compute an optimal policy =, (corre-
spondingto p1) off-line, execute 7, intherea world, sense v
and then compute and execute an optima policy 7 that cor-
responds to the conditional Golog program in brackets. But
the off-lineinterpreter is not able to compute an optimal pol-
icy if agiven programincludesexplicit sensing actionsand no
information is available about the possible results of sensing.
Notethat the nondeterministic choice operator « (it occursin



front of the program) should not be confused with policies
and m, computed by an interpreter.

We propose to compute and execute optimal policies on-
line using a new incremental decision theoreticinterpreter. It
worksin a step-by-step mode. Given a Golog program p and
astarting situation s, it computes an optimal policy = and the
program p’ that remains when afirst action a in 7 will be exe-
cuted. At the next stage, the action a is executed in the red
world. The interpreter gets sensory information to identify
which outcome of a has actually occurred if a is a stochastic
action: this may require doing a sequence of sensing actions
on-line. The action a (and possibly sensing actions performed
after that) resultsin a new situation. Then the cycle of com-
puting an optimal policy and remaining program, executing
the first action and getting sensory information (if necessary)
repeats until the program terminates or execution fails. In the
context of theincremental on-line execution, we define anew
programming operator optimize(p) that limits the scope of
search performed by theinterpreter. If p isthewhole program,
then no computational efforts are saved when the interpreter
computes an optima policy from p, but if the programmer
writes optimize(pi ); pa, then the on-line incremental inter-
preter will compute and execute step-by-step the Golog pro-
gram p; without looking ahead to decisions that need to be
made in ps. If the programmer knows that the sensing action
sense(Q, v, 1) is necessary to evaluate the condition ¢, then
using the program
optimize(py); (wt, v).[(now(t))?; optimize(sense(Q, v,1));

if o then P2 el&i‘pg]
the required information about ¢ will be obtained before the
incremental interpreter will proceed to the execution of the
conditional. If thesensing action sense(Q, v, t) hasmany dif-
ferent outcomes, then this approach gives computational ad-
vantages over the off-line approach to computing an optimal
policy.

Thus, the incrementa interpretation of the decision-
theoretic Golog programs needs an account of sensing
(formulated in the situation calculus) that will satisfy
severa criteria which naturally arise in the robotics con-
text.  There are several accounts of sensing in the situ-
ation caculus that address different aspects of reasoning
about sensory and physical actions [Bacchus et al., 1995;
De Giacomo and Levesque, 1999a; 1999b; Funge, 1998;
Grosskreutz, 2000; Lakemeyer, 1999; Levesque, 1996;
Pirri and Finzi, 1999; Scherl and Levesgue, 1993].

Below we proposeanew representation of sensing that sim-
plifies reasoning about results of sensing, does not require
consistency of sensory information with the domain theory,
leads to a natural and sound implementation and has connec-
tions with representation of knowledge and sensing consid-
ered in [Reiter, 2000].

In Section 2 werecd| the representation of thedecisionthe-
oreticdomainintroducedin [Boutilier et al., 2000]. In Section
3 we proposearepresentation for sensing actionsand consider
severa examples. In section 4 we consider the on-lineincre-
mental decision-theoreticinterpreter. Section 5discusses con-
nections with previoudy published papers.

2 Thedecision theoretic problem
representation

The paper [Boutilier et al., 2000] introduces the representa-
tion of problem domains that do not include sensing actions.
The representation is based on the distinction between agent
actions (which can be either deterministic or stochastic) and

nature's actions which correspond to separate outcomes of a
stochastic agent action. Nature' sactionsare considered deter-
ministic. They cannot be executed by the agent itself, there-
fore they never occur in policies which the agent executes.
When the agent does a stochastic action a in asituation s, na-
ture chooses one of the outcomesn of that action and the sit-
uationdo(n, s) isconsidered as one of resulting situations. In
accordance with this perspective, the evolution of a stochas-
tic transition system is specified by precondition and succes-
sor state axioms which never mention stochastic agent ac-
tions, but mention only deterministic agent actions and na-
ture's actions. In [Boutilier et al., 2000], it is suggested to
characterize the DTGolog problem domain by: 1) the pred-
icate agent Action(a) which holdsif a is an agent action, 2)
the predicate stochastic(a, s, n) meaning that nature’saction
n is one of outcomes of the stochastic agent action a in the
situation s, 3) thefunction symbol prob(n, s) that denotesthe
probability of nature’saction n in Situation s, and 4) the pred-
icate senseCond(n, ¢) specifying thetest condition ¢ serving
to identify the outcome n of the last stochastic action, 5) the
functionsymbol reward(do(a, s)) denotes rewards and costs
as functions of the current situation do(«, s), the action a or
both.

As an example, imagine arobot moving between different
locations: the process of going isinitiated by a deterministic
action startGo(ly, 12, t) but is terminated by a stochastic ac-
tion endGo(ly,15,t) that may have two different outcomes:
successful arriva endGoS(ly, 15, t) and unsuccessful stop in
a place different from the destination endGoF (14,13, t) (the
robot gets stuck inthe hall or cannot enter an office becauseits
door is closed). We represent the process of moving between
locations!; and [, by therelational fluent going(l, 2, s) and
represent a (symbolic) location of the robot by the relational
fluent robot Loc(l, s) meaning that / (the office of an em-
ployee, the hall or the main office) isthe place where therobot
IS. Thetransitionsin the stochastic dynamical system describ-
ing the robot’ smotion are characterized by thefollowing pre-
condition and successor state axioms.

Poss(startGo(l1,12,t), s) = —(31,1")going(l,!’,s) ArobotLog(1 ,s),
POSS(endGOS(ll, lg, t), S) = going(h s 12, S),
Poss(endGoF(11, 1, t), s) = 3l'.going(l1,1', s) Al # 12,

going(,!’,do(a, s)) = (It)a = startGo(L, !, t) v
going(l,?, s) A =(Ft)a = endGo], ', t)v
going(,?, s) A =(3t,1")a = endGoF(1,1", t).

The redl outcome n of a stochastic agent action a can be
identified only from sensory information. This information
has to be obtained by executing sensing actions. In the fol-
lowing section we propose a new representation for sensing
actions providing a seamless integration with the representa-
tion considered in this section.

3 Sensingactions

In contrast to physical actions, sensing actions do not change
any properties of the external world, but return values mea-
sured by sensors. Despite this difference, it is convenient
to treat both physical and sensing actions equally in succes-
sor state axioms. This approach is justifiable if fluents rep-
resent what the robot ‘knows' about the world (see Figure
1). More specificaly, let the high-level control module of the
robot be provided with theinternal logical model of theworld
(the set of precondition and successor state axioms) and the



axiomatization of the initial situation. The programmer ex-
presses in this axiomatization his (incomplete) knowledge of
the initial situation and captures certain important effects of
therobot’ sactions, but some other effects and actions of other
agentsmay remain unmodel ed. When therobot doesan action
in the real world (i.e., the high-level control module sends a
command to effectors and effectors execute this command),
it does not know directly and immediately what effectsin re-
ality this action will produce; the high-level control module
may only compute expected effects using the interna logica
model. Similarly, if the robot isinformed about actions exe-
cuted by externd agents, the high-level control module may
compute expected effects of those exogenous actions (if ax-
ioms account for them). Thus, from the point of view of the
programmer who designed the axioms, the high-level control
modulemaintainstheset of beliefsthat therobot has about the
real world. This set of beliefs needs feedback from the redl
world because of possible contingencies, incompleteness of
theinitial information and unobserved or unmodeled actions
executed by other agents. To gain thefeedback, thehigh-level
control modul erequestsinformationfrom sensorsand they re-
turn required data. We find it convenient to represent infor-
mation gathered from sensors by an argument of the sensing
action: avalue of the argument will be instantiated at the run
time when the sensing action will be executed. Then, dl the
high-level control module needs to know is the current situ-
ation (action log): expected effects of actions on fluents can
be computed from the given sequence of physical and sens-
ing actions.

Internal logical
model
+initial data
_ | Exogenous
+ Golog progran] | actions Environment
A ] (includes other agents)
ons
Y
« sing
Effectors data
Sensors rd

Figurel: A high-level control module and low-level modules
interacting with the environment.

In the sequel, we consider only deterministic sensing ac-
tions, but noisy sensing actions can be represented as well.

We suggest representing sensing actions by the functional
symbol sense(q, v,t) where ¢ iswhat to sense, v isterm rep-
resenting a run time value returned by the sensors and ¢ is
time; the predicate senseAction(a) is true whenever a isa
sensing action. We proceed to consider severa examples of
successor state axioms that employ our representation.

1. Let sense(Coord,l,t) be the sensing action that re-
turns the pair I = (z,y) of geometric coordinates of
the current robot location on the two-dimensional grid and
gridLoc(x,y, s) be a reationd fluent thet is true if (z, y)
are the coordinates of the robot’s location in s. In this
example we assume that all actions are deterministic (we
do this only to simplify the exposition of this example).
The process of moving (represented by the relationa fluent

moving(z1,y1, T2, y2, s)) from the grid location (z1, 1) to
the point (z5, y2) is initiated by the deterministic instanta-
neous action star t[\loue(Ll, y1, T2, Y2, t) and isterminated by
the deterministic action endMove (w1, y1, 72, Y2, t). The robot
may aso change its location if it is transported by an exter-
nal agent from one place to another: the exogenous actions
take(z1,y1,t) and put(zs,ya2,t) account for this (and the
fluent transported(s) represents the process of moving the
robot by an external agent). Thefollowingsuccessor stateand
precondition axioms characterize af orementioned fluents and
actions.

gridLoc(z,y,do(a, s)) =
((3t,lya=sense(Coord,l,t) A zCrd(l)=xz A yCrd( Y=y) V
(—transported(s) A(Ft, ',y Ya=endMove(z’, v, z,y,t)) V

!
(transpmted( ) (Elt)a—put(a: y,t)) Vv
g”dLocS -(3t, 2y a_put(.r Yy A
-3, t)a = sense(Comd,l,t A
=(3x,y, 2/, y', t)a = endMove(z, y, ', ¢/, 1),

where zC'rd(l), yCrd(l) denote, respectively, z and y com-
ponents of the current robot location /.
moving(z1, Y1, 2, Y2, do(a, s)) =
(Ft)a=startMove(z1, y1, 22, y2, ) V
moving (1, Y1, T2, Y2, 5)A
—(3t)a=endMove(z1, y1, 22, ya, t).

transported(do(a, s)) = (3t,z,y) a=take(z,y,t) vV

transported(s)A =(3t,z’, y Ya=put(z',y', t) v
(m3z, vy, x’, y/)moving(x, y, o, y') A gridLoc(z, y, s)A
(3t,a=sense(Coord, 1, t) A (zCrd(l)#x V yCrd(l) £y).

Poss(startMove(:nl, Y1, T2, Y2, t), s) = -transported(s)A
(El([,‘,y, ,y)movmg( T, Yy, x ,y,S)/\gT’ld[OC(ZJl,yl, )a
Poss(endMove(z1, y1, z2, Y2, t), 8) = moving(z1, y1, £2, Y2, 8),

Posgtake(z, y, t), s) = —transported(s) A gridLoc(z, y, s)A
_'(31‘17 Y, 22, yQ) movmg(ml, Y1,72, Y2, ,)7
Poss(put(z, y, t), s) = transported(s).

Imagine that in the initial situation the robot stays at (0,0);
later, at time 1, it starts moving from (0,0) to (2,3), but when
therobot stopsat time 11 and sensesitscoordi natesat time12,
itssensorstell it that it islocated at (4,4). The sensory infor-
mation isinconsi stent with the expected location of the robot,
but thisdiscrepancy can be attributed to unobserved actionsof
an external agent who transported the robot. Hence, thefinal
situationis not

S3 = do(sense(Coord, (4,4),12), do(endMove(0, 0, 2, 3, 11),
do(startMove(0, 0, 2, 3, 1), So))),

as we originally expected, but the situation resulting from
the execution of exogenous actions take(2,3,7:) and
put(4, 4, T»), in the situation when the robot ends moving,
followed by the sensing action. The exogenous actions
occurred a unknown times 73, 7> (we may say about the
actual history only that 11 < 73y < Ty < 12).1

2. The robot can determine its location using data from
sonar and laser sensors. But if the last action was not sensing
coordinates(z, y), thenthecurrent location can bedetermined

1In the sequel, we do not consider how the discrepancy between
results of a deterministic action and observations obtained from sen-
sors can be explained by occurrences of unobserved exogenous ac-
tions. However, our example indicates that inconsistency between
physical and sensory actions can be resolved by solving a corre-
sponding diagnostic problem (e.g., see [Mcllraith, 1998]).



from the previous location and the actions that the robot has
executed. The process of going from ! to !’ isinitiated by the
deterministic action startGo(l,!’, t) and isterminated by the
stochastic action endGo(l,1’, t) (axiomatized in Section 2).

robot Loc(l, do(a, s)) = (3t,v, z,y) a=sense(Coord, v,1)
AzCrd(v)=z AyCrd(v)=y A
((3p) 1 = office(p) A inOffice(l, z, y) V
l= Hall A —~(3p) inOffice(office(p), x,y) ) V
(Ft,l)a=endGoS(l1,1,t) vV (3t,l1)a=endGoF (I1,1,t) V
robot Loc(l, s)A =(3t, 12,13, v) (a=sense(Coord, v, t)A
a=endGoS(lz,l3,t) ANa=endGoF (I3, 13,1)).

wherethepredicateinOffice(l, z, y) istrueif thepair (z, y)
is inside of the office /, the functional symbols bottomY(!),
topY(!), rightX({) and leftX(l) represent coordinates of top
left and bottom right corners of arectangle that contains the
office I insidec  When the robot stops and senses coordi-
nates, it determines its real location and the high-level con-
trol module can identify the outcome of the stochastic ac-
tionendGo(l,!’,t): whether therobot stopped successfully or
failed to arrive at the intended destination.

3. Let give(item, person,t) be a stochastic action that
has two different outcomes: giveS(item, person,t) — the
robot gives successfully an item to person a timet — and
giveF (item, person,t) — the action of giving an item to
person is unsuccessful. Let sense(Ackn,v,t) be the ac-
tion of sensing whether delivery of the item to person
was successful or not: if it was, then ddivery is acknowl-
edgﬂed and v»=1, if not — the result of sensing is »=0. The
following successor state axiom characterizes how the flu-
ent hasCoffeg(person, s) changes from situation to situation:
whenever therobot isintheoffice of person and it sensesthat
one of its buttonswas pressed, it is assumed that the person
pressed a button to acknowledge that she has a coffee. From
this sensory information, the high-level control module can
identify whether the outcome of give(item, person,t) was
successful or not.

hasCoffee(pers, do(a, s)) =
(3t)a = giveS(Coffee, pers, t) v hasCoffeg(pers, s) V
(3t,v)a = sense(Ackn,v,t) Av = 1A
robot Loc(office(pers), s).

It is surprisingly straightforward to use regression in our
setting to solve the forward projectiontask. Let D be a back-
ground axiomati zation of the domain (a set of successor state
axioms, precondition axioms, unique name axioms and a set
of first order sentences whose only situation term is .Sy) and
let ¢(s) be asituation calculus formulathat has the free vari-
able s astheonly situational argument. Supposewe are given
a ground situationa term S that may mention both physical
and sensing actions. The forward projection task is to deter-
mine whether

D = o(9) o |

Regressionisacomputational ly efficient way of solvingthe
forward projection task [Reiter, 2000; Pirri and Reiter, 1999]
when S does not mention any sensing actions. The represen-
tation introduced above alowsusto useregression dso inthe
case when S mentions sensing actions explicitly. Thus, we
can use regression to evaluate tests (¢)7 in Golog programs
with sensing actions: no modifications are required. In addi-
tion, our approach alowsusto use an implementationin Pro-
log considered in [Reiter, 2000]. There isaso an interesting
connection between our representation of ‘beliefs and sens-
ing and the approach to knowledge-based programming [Re-
iter, 2000]. In[Soutchanski, 2001] we show that hisapproach

and our approach to the solution of theforward projectiontask
(with sensing actions) are equivalent.

4 Theincremental on-line DTGolog
interpreter

The incrementd DTGolog interpreter uses the predi-
cate IncrBestDo(py, s, p2, h, m,u,pr) and the predicate
Final(p,s,m,u). The former predicate takes as input the
Golog program p1, starting situation s, horizon h and returns
the optimal conditional policy =, its expected utility u, the
probability of success pr, and the program p, that remains
after executing the first action from the policy =. The latter
predicate tells when the execution of the policy completes:
Final(p, s, m, u) istrueif either the program p is Nil (the
null program) or Stop (azero cost action that takes the agent
to an absorbing state meaning that the execution failed),
or if the policy = is Nil or Stop. In dl these cases, u is
simply the reward associated with the situation s. Note
that in comparison to BestDo, IncrBestDo has an additional
argument p, representing the program that remains to be
executed.

IncrBestDo(p1 , s, pa, h, 7, u, pr) is defined inductively on
the structure of a Golog program p;. Below we consider its
definition in the case when the program p; beginswith a de-
terministic agent action.

IncrBestDo(a; p1, s, pa, h, T, u, pr)déf
[-Poss(a, s)A
pa=Nil A\T=S0pA pr=0A u = reward(s) V
Poss(a,s) Apz =p1 A 3(p', 7' o, pr')
IncrBestDo(ps, do(a, s), p’, h=1, @', u', pr') A
7= (a;7") Au = reward(s) + u' A pr = pr'].

If adeterministic agent action a ispossiblein situation s, then
we compute the optimal policy = of the remaining program
p1, itsexpected utility »’ and the probability of successful ter-
mination pr’. Because a is adeterministic action, the proba-
bility pr’ that the policy =" will complete successfully isthe
same as for the program itself; the expected utility » isasum
of areward for being in s and the expected utility of contin-
uation«’. If a is not possible, then the remaining programiis
Nil, and the policy is the Sop action, the expected utility is
thereward in s and the probability of successisO.

Other cases are defined similarly to Best Do, eg., if the
program beginswith thefinite nondeterministic choice (7 (z :
7)p); p', where r isthefinite set {cy, . .., ¢, } and the choice
bindsall free occurrences of z in p to one of the elements:

IncrBestDo((7(z : T)p); p’, s, pr, b, pol, u,pr)déf
IncrBestDo((plgy | - | plen)iP's s, pr, by pol, u, pr)

wherep|? means substitutionof ¢ for all free occurrences of =
in p. Thus, theoptima policy pol correspondsto the e ement
cint that deliversthe best execution. Notethat theremaining
program p, isthe same on the both sides of the definition.
Recall that policiesare Golog programsas well. Moreover,
if p isa Golog program that contains many nondeterministic
choices, theoptimd policy = computed from p isaconditional
program that does not involve any nondeterministic choices.
This observation suggests that programmers may wish to take
advantage of the structurein adecision theoretic problem and
use explicit search control operators that limit bounds where
the search for an optimal policy has to concentrate. In ad-
dition to the standard set of Golog programming constructs,



we introduce two new operators. local(p) and optimize(p).
Intuitively, the program local(p1); p» means the following.
First, computetheoptimal policy 7, correspondingto thesub-
program p1, then compute the optima policy = correspond-
ing to the program 7 ; p». If both sub-programsp; and p, are
highly nondeterministic, then using the operator [ocal(p+ ) the
programmer indicates where the computational efforts can be
saved: thereis no need in looking ahead further than p; to
compute ;. Thus, in the case that a Golog program begins
with local(p)

IncrBestDo(local (p1); p2, s, pr, b, 7, u,pr)déf
(Hpa ™, Ulaprl)lnchaDo(pl; Nlla S, P, h‘a T, Ulaprl)/\

IncrBestDo(m1; pa, s, pr, h, 7, u, pr).

. The construct local limits the ch, but once the pol-
icy m was comgﬁtaecg%lr?d t e}ISI’St acts?gn Pn w1 Was exeCLF[)ed,

the remaining part of the program has no indication where
the search may concentrate. For thisreason, the programmer
may find convenient to use another search control operator
that once used persists in the remaining part of the program
until the programinsidethe scopes of that operator terminates.
Thisoperatoriscalled optimize(p) andisspecified by thefol-
lowing abbreviation.
IncrBestDo(optimize(p1); p2, S, pr, h, 7, u, pr)déf
(3p') IncrBestDo(p1; Nil, s, p', b, 7, u, pr)A
(p' # Nil Ap, = (optimize(p'); p2) V
p' = Nil ANpr = pa).

SRR TSGR To T BN 7 e
using optimize(p: ) aprogrammer can express adomain spe-
cific procedural knowledge to save computationa efforts.
Notethat when p’ isNil, i.e. therewill be nothingin p, to ex-
ecute after doing the only action in , the remaining program
pr containsonly ps.

4.1 Implementing the on-lineinterpreter

Given the definitions of IncrBestDo mentioned in the previ-
ous sub-section, we can consider now the on-line interpreta-
tion coupled with execution of Golog programs. The defi-
nitions of IncrBestDo(p1, s, pa, h, 7, u, pr) trandate directly
into Prolog clauses (we omit them here). The on-lineinter-
preter callstheoff-lineincrBestDo(E,SER H,Pol1,U1,Probl)
Interpreter to compute an optimal policy from the given pro-
gram expression F, gets thefirst action of the optima policy,
commitsto it, doesitin the physical world, then repeats with
the rest of the program. The following is such an interpreter
implemented in Prolog:

online(E S H Pol,U :-
incrBestDo(E, S, ER H, Pol 1, U1, Probl),

( final (ER S, H, Pol 1,Ul), Pol=Pol1, U=UL ;

reward(R S),
Pol1 = (A : Rest),
( agentAction(A), not stochastic(A S, L),
doReal ly(A), /*execute Ain reality*/
|

!, /* commt to the result */
online(ER do(A S), H, Pol Fut, UFut),

Pol =(A : Pol Fut), Uis R + UFut ;
senseActi on(A),
doReal ly(A), /* do sensing */

', /*commt to results of sensing*/
online(ER do(A S), H Pol Fut, Urut),
Pol =(A : PolFut), Uis R + UFut ;
agent Action(A), stochastic(A S L),
doReal | y(A), /*execute Ain reality*/
!, /* commit to the result */

senseEffect (A 'S, SEff),

di agnose(SEff, L, SN, /*Wat happened?*/
onl i ne( ER SN, H, Pol Fut, UFut),

Pol=(A : PolF), Uis R + UFut

)
)

The on-line interpreter uses the Prolog cut (!) to prevent
backtracking to the predicate do Really: we need thisbecause
once actions have been actualy performed in the physica
world, the robot cannot undo them.

In addition to predicates mentioned in section 2, the
on-lineinterpreter uses the predicate senseEffect(A, S1, 52),
the predicate diffSequence(A, Seq) and the predicate
diagnose(S2, OutcomesList, S3). We describe below their
meaning and show their implementation in Prolog.

Given the stochastic action A and the situation S1, the
predicate senseEffect(A, S1,.52) holdsif S2 isthe situation
that results from doing a number of sensing actions neces-
sary to differentiate between outcomes of the stochastic ac-
tion A. The predicate diffSequence( A, Seq) holdsif Seq is
the sequence of sensing actions (ay; as; . . .; a,,) specified by
the programmer in the domain problem representation: this
sequence is differentiating if after doing all actions in the
sequence the action chosen by ‘nature’ as the outcome of
stochastic action A can be uniquely identified.

senseEffect (A 'S, SE) :- diffSequence(A Seq),
get Sensor | nput (S, Seq, SE).

get Sensor |l nput (S, A, do(A'S)) :- senseAction(A),

doReal | y(A). /*connect to sensors, get data
for a free variable in A */
get Sensor | nput (S1, (A : Rest),SE) :-
doReal ly(A), /* connect to sensors,
get data */

get Sensor | nput (do(A, S1), Rest, SE).

The predicate diagnose(S1, L, 52) takes asitsfirst argu-
ment the situation resulting from getting a sensory input: it
contains ‘enough’ information to disambiguate between dif-
ferent possible outcomes of the last stochastic action A. The
second argument isthelist I of all outcomesthat nature may
chooseif the agent executes the stochastic action A in.S1 and
thethird argument isthe situation that is theresult of nature’s
action which actudly occurred. We can identify which action
nature has chosen using the set of mutually exclusivetest con-
ditions senseCond(n;, ¢;), where ¢; isaterm representing a
situationcaculusformula: if ¢; holdsinthe current situation,
then we know that nature has chosen the action n; (n; belongs
tothelist ).

di agnose(SE, [N, do(N, SE)) : -
senseCond(N, C, holds(C, SE).

di agnose( SE, [ N| Qut cones], SN): - senseCond(N, C),
( holds(C, SE), SN=do(N, SE) ;
not hol ds(C, SE),
di agnose( SE, Qut cones, SN) ).

Successful tests of theimplementation described here were
conducted in area office environment on amobile robot B21
manufactured by RWI. The low-level software was initialy
developedinthe University of Bonnto control Rhino, another
B21 robot, see [Burgard et al., 1999] for details. The tests of
implementation demonstrated that using the expressive set of
Gologoperatorsitisstraightforwardto encode domain knowl -
edge as constraints on the given large MDP problem. The op-
erator optimize(p) proved to be useful in providing heuris-



ticswhichalowed to compute sub-policiesinrea time. These
preliminary tests have brought several new important issues,
e.g., how thecomputation of anew policy off-linecan proceed
in parallel with executing actions from the policy on-line.

5 Discussion

The incremental Golog interpreter based on the single-
step Trans-semantics is introduced in [De Giacomo and
Levesque, 19990]. The Golog programsconsi dered there may
include binary sensing actions. The interpreter considered in
our paper ismotivated by similar intuitions, but itisbased ona
different decision-theoretic semantics and employs more ex-
pressive representation of sensing. The paper [De Giacomo
and Levesque, 1999a] introduces guarded sensed fluent ax-
ioms (GSFA) and guarded successor state axioms(GSSA) and
assumes that there is a stream of sensor readings available at
any time. These readings are represented by unary sensing
functions(syntactically, they look likefunctiond fluents). Be-
cause weintroducetherepresentati on for sensing actions, they
can be mentioned explicitly in Golog programs or can be ex-
ecuted by the interpreter. The mgjor advantage of our rep-
resentation is that it does not require consistency of sensory
readingswith the action theory (thismay prove useful in solv-
ing diagnostic tasks: [Mcllraith, 1998]). The execution mon-
itoring framework proposed in [De Giacomo et al., 1998] as-
sumes that the feedback from the environment is provided in
terms of actions executed by other agents. Because in thispa
per we assume that the feedback is provided in terms of sen-
sory readings, thismay lead to devel opment of amorereslistic
framework. An approach to integrating planning and execu-
tionin stochastic domains [Dearden and Boutilier, 1994] isan
alternative to the approach proposed here.

6 Concludingremarks

Severa important issues are not covered in this paper. One
of them ismonitoring and rescheduling of policies. Notethat
all actionsin policies have time arguments which will be in-
stantiated by moments of time; when the incremental inter-
preter computes an optimal policy, it aso determines asched-
ule when actions have to be executed. But in realistic scenar-
ios, when therobot isinvol ved in ongoing processes extended
over time, it may happen that a process will terminate earlier
or later than it was expected.

The diagnostic task that the current version of the on-line
interpreter solvesisadmittedly oversimplified. We expect that
additiona research integrating the on-line incrementa inter-
preter with the approach proposed in [Mcllraith, 1998] will
allow usto formulate a more comprehensive version.
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