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Abstract

To accelerate CNN inference, existing deep learning frameworks focus on optimizing intra-

operator parallelization. However, a single operator can no longer fully utilize the available par-

allelism given the rapid advances in high-performance hardware, resulting in a large gap between

the peak performance and the real performance. This performance gap is more severe under smaller

batch sizes. In this work, we extensively study the parallelism between operators and propose Inter-

Operator Scheduler (IOS) to automatically schedule multiple operators’ parallel execution through a

novel dynamic programming algorithm. IOS consistently outperforms state-of-the-art libraries (e.g.,

TensorRT) by 1.1 to 1.5× on modern CNN benchmarks.
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Chapter 1

Introduction

Convolutional neural networks (CNNs) have achieved state-of-the-art performance across many tasks,
including computer vision [26, 17], machine translation [46, 12], and game playing [33, 43]. The
success comes at the cost of growing computational requirements. The high demand for computation
makes efficient inference more critical in real deployment [16, 6, 22].

A common practice to improve inference efficiency is parallelization. Deep learning frameworks
such as Tensorflow [1] and Pytorch [40] exploit intra-operator parallelism, which parallelizes arith-
metic operations within a single CNN operator (e.g., convolution). However, due to the rapid
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Figure 1.1: The trends of average computation per convolution, number of convolutions in a CNN
and hardware peak performance. Device peek performance increases while average computation per
convolution decreases, leading to a larger utilization gap. VGGNet and GTX 980Ti, Inception V3,
and GTX 1080, NASNet and Tesla V100 are chosen as representatives for 2013, 2015, and 2018
respectively. All FLOPs are measured for single precision.

advances in high-performance hardware, intra-operator parallelism is no longer sufficient to obtain
efficient resource utilization. As shown in Figure 1.1, the peak FP32 performance of a GPU has
increased from 5.8 TFLOPs/s in 2013 to 15.7 TFLOPs/s in 2018 (shown in red). NVIDIA Tesla
A100 even reaches a peak FP32 performance of 19.5 TFLOPs/s.

Meanwhile, there is a recent trend in CNN design to replace a single branch of convolutions
with multiple branches of convolutions, which is advantageous due to increased model capacity
under a fixed computation budget [48, 57, 52]. As a result, the number of convolutions grows while

1
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the computation FLOPs in each convolution becomes smaller. For example, the average floating-
point operations (FLOPs) per convolution has decreased from 2330 MFLOPs/kernel in VGG to 82
MFLOPs/kernel in NASNet. This exacerbates the device’s under-utilization problem.
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Figure 1.2: Different execution schedules for a computation graph on NVIDIA Tesla V100 GPU.
Operators scheduled to run in parallel are placed at the same level between two dotted lines called
a stage. Computation (GFLOPs), performance (TFLOPs/s), and hardware utilization (%) for each
stage are profiled on the right. Both sequential and greedy schedules result in low resource utilization
(48%-62%) and high latency (0.37-0.48ms). Our schedule yields higher utilization (70%) and lower
latency (0.33ms).

To address this problem, recent work explores inter-operator parallelism by executing multiple
CNN operators in parallel guided by different heuristics [50, 21, 30]. For example, MetaFlow [21]
fuses multiple operators matching a specific pattern into a larger operator to increase operator
granularity. Tang et al. [50] proposes a greedy strategy that directly executes all available CNN
operators on CPU to maximize resource utilization. These approaches apply different heuristics to
optimize local parallelization across a few CNN operators; however, such techniques do not lead
to a globally optimal schedule for the entire CNN architecture. For example, given an input CNN
(Figure 1.2 (1)), a greedy schedule (Figure 1.2 (2)) would perform convolutions [a], [c], and [d] in
parallel, and run convolution [b] in a subsequent stage upon the completion of the previous stage.

This greedy schedule is sub-optimal for two reasons. First, a greedy schedule eagerly puts more
operators in the early stages (as soon as they are available for execution) and fewer operators in
subsequent stages, resulting in low utilization in later stages. Second, executing too many operators
on the device concurrently may lead to resource contention problem that hurts the performance. For
example, as shown in Figure 1.2, the greedy schedule (2) suffers from resource contention problem in
the first stage and low-utilization problem in the second stage, comparing to our proposed schedule
(3).

Obtaining an optimized schedule to parallelize a CNN model is a challenging task. On the
one hand, the number of schedules grows exponentially with the number of operators, making it
infeasible to evaluate all possible schedules exhaustively. For example, a network with 33 operators
can have 9.2 × 1022 number of feasible schedules. On the other hand, an optimal schedule also
depends on hardware specifications and inference settings (e.g., batch size). A high-end GPU (e.g.,
Tesla V100) can efficiently execute a schedule with many operators in parallel, while a low-end GPU
(e.g., Tesla K80) might suffer from resource contention using the same schedule. A large batch size
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naturally offers more intra-operator parallelism, while a small batch size has a stronger need for
inter-operator parallelization. Therefore, given a diverse set of CNN architectures, hardware, and
inference settings, it is hard to devise an efficient schedule manually for all scenarios.

To address this challenge, we propose IOS, an inter-operator scheduler that accelerates CNN in-
ference by combining intra- and inter-operator parallelism. We observe that different schedules share
common sub-schedules; thus, IOS adopts a dynamic programming technique to explore the schedule
space and finds a highly optimized schedule under low search cost. We evaluate IOS on modern
CNN models, including Inception-V3 [48], RandWire [52], NasNet-A [57], and SqueezeNet [19]. IOS
consistently outperforms the sequential schedule and greedy schedule. IOS achieves 1.1 to 1.5×
inference speedup compared to existing deep learning libraries (e.g., TensorRT). Furthermore, IOS
demonstrates the necessity of customizing the scheduling policy for different hardware and inference
configurations. IOS can achieve up to 1.15× inference speedup by customizing the scheduling recipe
compared to itself with no customization.

Our contributions are summarized as follows:

• We point out a major bottleneck for efficient CNN inference: existing intra-operator parallelism
cannot saturate modern hardware’s high parallelism, especially for recent multi-branch CNN
models. Inter-operator parallelism is crucial.

• We propose a novel dynamic programming algorithm to find a highly optimized schedule for
inter-operator parallelization. This technique is platform-agnostic and can serve as a general
technique for popular frameworks such as TensorFlow [31] and TVM [6].

• We apply IOS to various hardware and inference settings and show that the different config-
urations require different schedules. We can automatically customize the scheduling policy
for different hardware and inference configurations. The specialized schedules consistently
outperform existing deep learning libraries with 1.1 to 1.5× measured speedup in inference.



Chapter 2

Background

2.1 GPU Basics

DRAM Controller
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SM SM SM SM

L2 Cache

Stream Multiprocessor (SM)

Shared MemoryL1 Cache

Register File

Warp Scheduler

Register File

Warp Scheduler

CUDA CoresCUDA Cores

Processing Unit Processing Unit

Figure 2.1: An overall architecture of modern GPUs. Each GPU contains tens of stream multipro-
cessors (SMs). All SMs share the L2 cache. Each SM contains several (e.g., 2 or 4) processing units.
All these processing units share the L1 cache and shared memory. Each processing unit contains a
warp scheduler, register file, and cores for arithmetic computation.

The Graphics Processing Unit (GPU) provides higher instruction and memory throughput than
CPU, and is more suitable for workloads that can be decomposed into multiple independent parallel
sub-workloads.

To define the workload, we write a piece of code called kernel that will be executed N times by
N different threads, where N is specified when we launch the kernel. Once a kernel is launched,
we have a grid1 of threads to be executed on the GPU. The threads in a grid are partitioned into
thread blocks. The threads in a thread block can communicate through block-scoped shared memory,
and are able to synchronize. The threads in a thread block are further partitioned into warps of
threads. For NVIDIA GPU, a warp usually contains 32 threads. Threads in a warp always execute
a common instruction.

Figure 2.1 shows an overall architecture of modern GPU. A GPU contains tens of stream multi-
processors (SMs). When we launch a kernel, the GPU distributes the thread blocks of the derived
grid onto the stream multiprocessors. Thread block will be executed on a multiprocessor and each
multiprocessor may contain multiple thread blocks. When thread blocks terminate on a multipro-

1We adopt the terminology from NVIDIA GPUs[36], but the concepts are applicable to other GPUs (e.g., AMD
GPU).
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cessor, the multiprocessor will execute remaining thread blocks from the grid. Each multiprocessor
contains a small number of warp schedulers. Each warp scheduler keep a pool of active warps (i.e.,
warps in execution status). At each cycle, each warp scheduler issues instructions from an eligible
warp in its active warps that is eligible to execute it current instruction. Each thread in a grid uses
a fixed number of registers and the number is determined during compilation. Each thread block in
a grid uses a fixed size of shared memory that is determined during compilation or kernel launching.
The number of registers of each thread and the size of shared memory of each thread block limit the
maximum number of resident thread blocks on each stream multiprocessor.

Compared to CPU, GPU performs better on tasks that can be decomposed into massive inde-
pendent subtasks while CPU performs better on task with strong serial dependency. There are a
lot of transistors in CPU are not used for the actual computation units (e.g., ALU), but for the
components reducing single thread execution interrupting, (e.g., large cache, speculative execution,
and branch prediction). However, in GPU, transistors are mostly used for allowing more concurrent
computation (e.g., large number of ALUs and large register file). In CPU, each thread has its own
execution status (i.e., context that contains the values in each registers). When a processor swaps to
another thread, it is necessary to save the current thread’s context, which incurring a series of high
cost operations. However, instead of doing the expensive context saving and restoring on CPU, when
GPU wants to switch to other threads, GPU can directly issue the instructions in other threads,
because GPU is designed to keep the execution contexts of all active threads on the chip. That’s
why GPU’s register file is so large. With this design, GPU is able to do very lightful context switch
when one thread (more precisely, warp) is stalled by some reason (e.g., memory access, hardware
pipeline dependency). As long as there are eligible warps every cycle, each warp scheduler is able
to issue active warp’s instruction and hide the latency of other stalled active warps. Thus, it is
important to keep a large number of active warps on GPU.

2.2 Convolution Neural Network
We usually represent a network by a data flow graph. In the graph, each node is an operator (also
called layer). Each edge represents a tensor that is the output of the source operator and an input
of destination operator. The input data flows following the data flow graph, is precessed by each
operator it passed by, finally and reaches the end of data flow graph.

The input of the convolution neural network (CNN) is usually a tensor with shape (B,C,H,W ),
where B is the batch size, C is the number of channels, H and W are the height and width of the
input image. We usually use a large batch size for training (e.g., B = 32) to have a better device
utilization; on the other hand, we usually use single batch (e.g., B = 1) for inference to reduce end to
end latency. The input of a CNN usually has 3 channels, representing the intensity of reg, green and
blue colors, respectively. The H and W depends on the the input image itself. For ImageNet[11],
we usually normalize the images to size 224× 224.

2.2.1 Network Layers

A convolution neural network (CNN) usually consists of network layers such as convolutions, pooling,
normalizations, and activations.
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Convolution Layer

The convolution layer is the main layer in a convolution neural network. Its input is a tensor with
shape (N,Cin,Hin,Win). Each convolution has a weight tensor with shape (Cout, Cin,KH ,KW ). Its
output is also a tensor with shape (N,Cout,Hout,Wout). Each convolution also has some parameters.
Besides number of output channels Cout, number of input channels Cin, kernel size KH ,KW , each
convolution layer also has the stride parameters (SH , SW ) and padding parameters (PH , PW ). The
output image-dimension size can be derived from the input size and the parameters

Hout = ⌊Hin + 2PH −KH

SH
+ 1⌋ Wout = ⌊Win + 2PW −KW

SW
+ 1⌋

Each element of the output tensor is defined by formula 2.2.1:

Y [n, cout] =

Cin∑
cin=0

X[n, cin] ⋆ Weight[ cout, cin]

where X is the input tensor, Y is the output tensor, Weight is the weight tensor, ⋆ is a 2-D correlation
operator.

For example, when kernel size and stride are 1× 1 and padding size is 0, we have formula 2.2.1

Y [n, cout, h, w] =

KH−1∑
i=0

KW−1∑
j=0

Cin∑
cin=0

X[n, cin, h+ i, w + i] ∗Weight[ cout, cin, i, j]

The convolution layer also has other dimensions(e.g., 3-D or 1-D), but the commonly used one
for image tasks is the 2-D convolution defined above.

There are some variants of convolution are proposed to reduce the computation required by
above regular convolution. To deploy CNNs to mobile device, MobileNet[41] is proposed to use
separable convolutions. A separable convolution contains two adjacent convolutions. The first
one is a convolution that with the same number of input channels and output channels. And it
only conducts the channel-wise 2d correlation operation. Such a convolution is called depth-with
convolution. The second convolution is a regular convolution with kernel size 1× 1.

Pooling Layer

Pooling layer is used to aggregate the information and down sampling in the spatial dimension (H
and W ). Two kinds of pooling are commonly used, maximum pooling and average pooling. There
are also kernel size and padding size parameters for pooling layer. When padding is zero, we can
define each output element as in formula 2.2.1.

Y [n, cout, h, w] =
1

KH ×KW

KH−1∑
i=0

KW−1∑
j=0

X[n, cin, h ∗ SH + i, w ∗ SW + i]

This formula defines the average pooling, and the maximum pooling is similar but replacing the
averaging of the subregion into its maximum value.
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Normalization Layer

Normalization layer is used to update the value distribution. It is an effective way to make the
training more stable and achieve better performance. The most commonly used normalization in
CNN models is batch normalization[20].

The batch normalization will compute the average and standard deviation of all elements varying
in batch dimension and spatial dimensions. Given the input tensor with shape (N,C,H,W ), batch
normalization first compute the average and standard deviation of each slice of (N,H,W ). Then,
for each slice of (N,H,W ), it performs a element-wise linear computation as follows

y =
x− E[x]√
V ar[x] + ϵ

× α+ β

where α and β are optional affine parameters. During training, we usually calculate the running
mean and running standard deviation. During inference, we fixed the mean and standard deviation,
which makes the batch normalization a normal element-wise linear layer. A common optimization
for inference is to fuse the batch normalization into the adjacent convolution layer.

Activation Layer

Activation layer is a element-wise non-linear function on the input tensor. The commonly used
activation function in CNNs is ReLU [3]. The ReLU activation function is defined as follows

y = ReLU(x) = max(x, 0).

A common used design pattern of CNNs is Conv-BatchNorm-ReLU.

Concatenation Layer

In deep learning, we may concatenate two tensors along one dimension to get a new tensor, which
helps us to extract information from both tensors in following layers. In CNNs, we usually concate-
nate the tensors along the channel dimension.

2.2.2 Dataflow Graph Structure

We can classify the convolution neural networks into two categories in terms of whether it has the
parallelism between operators (i.e., inter-operator parallelism). One category includes the CNNs
with sequential structure (e.g., AlexNet[26]), and the other category includes CNNs with multi-
branch structure (e.g., Inception V3[48]). Figure 2.2 demonstrates the two kinds of convolution
neural networks.

The skip connection[17] is proposed to alleviate the gradient vanishing problem[39], which allows
us to design much deeper network. With skip connection, the common practice to design the
convolution neural networks becomes to design the network blocks first, then stacking the blocks.

Besides the hand-crafted convolution neural networks, neural architecture search (NAS)[56, 29,
4] is proposed to search the architecture (i.e. network structure) of CNNs. One important class of
CNNs found by NAS contains multiple branches[49, 52].
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Figure 2.2: Two Categories of Convolution Neural Networks. The networks in the first category
contains a sequence of layers with strictly sequential dependency, such as AlexNet in (a). The ones
in the second category contains layers with branched-structure, such as Inception V3 in (b). To
simplify the figure, we omitted the normalization layer and activation layer after each convolution
layer.

For both categories of CNNs, existing frameworks execute each CNN layer by layer on GPU. This
make sense when the parallelism with each operator (e.g., convolution) is able to saturate the whole
GPU. However, this assumption no longer holds when the network designers tend to use smaller
convolutions while the underlying GPU is getting more powerful, as shown in Figure 1.1. This trend
leads to serious low-utilization of the GPU.

2.3 Low Utilization Problem
There are several reasons of low device-utilization when we execute a neural network on GPU, as
shown in Figure 2.3, and the low-utilization can be alleviated via running multiple kernels on the
GPU simultaneously.

Low Occupancy

Each stream multiprocessor has a limited number of warp schedulers (e.g., 2 for Fermi[37] archi-
tecture and 4 for Kepler[38] architecture). Each warp scheduler maintain a pool of limited active
warps. Thus, there is a limit on active warps on a stream multiprocessor. We usually call the ratio
of the actual number and maximum number of the active warps occupancy of the kernel. GPU
heavily depends on the inter-thread parallelization and fast thread context switch to hide the long
latency of instruction execution. Thus, a large number of active warps (i.e., high occupancy) are
important to achieve high throughput. However, this is not always true. When we design the kernel
for computation workload that will access the inputs multiple times (e.g., matrix multiplication
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and convolution), it is important to reduce the global memory access by caching the loaded data
in shared memory and registers and reuse them. The usage of large number registers and shared
memory limits the number of resident thread blocks and thus limits the occupancy. Some kernels
like element-wise operation (e.g., element-wise addition) can be parallelized with this kernel to uti-
lize the idle warp schedulers. Taking a real convolution kernel from cuDNN[8] as an example, it
has 256 threads in a thread block and each thread has 126 32-bit registers. Thus, this thread block
needs 256 × 126 × 4 bytes = 126 KiB registers. In most modern NVIDIA GPUs, the register file
for a multiprocessor has only 256 KiB, which means we can only have 2 resident thread blocks on
a multiprocessor. The theoretical maximum number of active warps is 256/32 ∗ 2 = 16. If we run
the kernel on a NVIDIA GPU with compute capacity 8.6 (e.g., RTX 3070 Laptop) that supports
concurrent execution of 48 warps, the theoretical occupancy is only 33.3%.

Kernel is Small

Another reason of low utilization is that the kernel for network inference can be very small. Network
inference usually takes small batch size (e.g., batch size 1), which makes the kernel has limited number
of thread blocks. For example, if we use the kernel in above example to execute a convolution with
batch size 1, input channels 375, output channels 750, kernel size 3×3, strides 1×1 and input image
size 15 × 15, we will get only 48 thread blocks. If we run on a GPU in above example that has 40

SMs, only about half of the SMs will be used and the remaining half would be in idle status. This
under-utilization would get more severe when the convolution gets smaller.

Tail Effect

Existing reports [32] have found tail effect when we run a kernel. A grid is finished only when the
last thread block reach to the end of its execution. At the very late stage of execution, a lot of
SMs are in idle status. This effect is not a big problem if we have a lot of waves of thread blocks
to be executed because the tail effect in the last wave would be amortized by the large number of
waves. However, the tail effect would be severe when the number of thread block waves that would
be distributed to the GPU is small.

With inter-operator parallelization, above problems will be largely alleviated. If we launch a
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kernel with low theoretical occupancy due to large register usage with another kernel with very low
level of register usage (e.g., element-wise addition), the overall occupancy can be improved. We
can launch multiple small convolution kernels to have enough thread blocks filled into the stream
multiprocessors, which alleviates the under-utilization problem caused by small kernels. When we
launch multiple kernels concurrently, the tail effect for each kernel would also be alleviated greatly
because when a kernel is about to finish, we can use the thread blocks from other kernels to saturate
the idle multiprocessors and the tail effect will only appear at the end of all executed kernels.

However, it is non-trivial to get a high performance inter-operator parallelization schedule. Fig-
ure 1.2 shows that the greedy schedule that launches all available kernels each time is sub-optimal
because it does not consider the neural network holistically. In the next chapter, we will formulate
the inter-operator scheduling problem, and introduce our proposed IOS (Inter-Operator Scheduler)
to address this problem.

2.4 Classical Task Scheduling
In this section, we give the definition of classical task scheduling and existing methods to address this
problem. Finally, we explain why existing works do not work well on the inter-operator scheduling
problem on GPU.

2.4.1 Task Graph and Schedule

Task scheduling has existed for decades. In classical task scheduling[44] problem, the input is a
directed-acyclic graph called task graph.

Definition 1 (Task Graph). A task graph is a directed acyclic graph (DAG) G = (V,E,w, c).
The target workload consists of tasks in V . Each directed edge e = (u, v) represents a dependency
between task u and task v (i.e., task v depends on u). Each node u in V has a computation cost
w(u), representing the computation time used to completes task u. Each edge e = (u, v) also has a
communication cost c(e), representing the time used to transfer the output of u to v when needed.

Given the task graph and number of processors, the output of a scheduling algorithm is a schedule
defined below.

Definition 2 (Schedule). Given a task graph G = (V,E,w, c) and the number of processors n, a
schedule is a function pair (ts, proc), where

• ts : V → Q+
0 is the start time function. ts(u) is a non-negative number representing the start

time of task u.

• proc : V → P is the processor allocation function. Task u will be executed by processor
proc(u).

There are two components in a schedule: the start time function and the processor assignment
function. The start time function is task’s temporal assignment and the processor assignment is a
spatial assignment. A valid schedule must make sure

• No two tasks are running at the same processor at the same time.
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• If there is a path from task u to task v in the task graph, task v can only start after completion
of task u (i.e., ts(u) + w(u) <= ts(v)).

It has been proved that classical task scheduling problem is NP-hard [44]. The existing state-of-
the-art heuristic algorithms [51] for classical task scheduling are list scheduling, clustering and their
variants.

2.4.2 List Scheduling

The idea of list scheduling[2, 9, 18, 23, 24, 45, 53] is assign the processor of each task by a given
order. There are two steps in the algorithm.

1. Sort the nodes in task graph according to a priority scheme and precedence constraint. The
precedence constraint indicates that the order is a topological order of the task graph. The
priority scheme allows us to assign the important tasks to processor first. There are different
ways to choose the priority scheme.

2. Enumerate the nodes following the order found in previous step, for each node u

(a) Choose a processor p to run task u,

(b) Assign the start time of u on processor p, and make sure there is no overlap with existing
tasks on processor p.

The schedule satisfies the precedence constraint because it schedule tasks in a topological order
of task graph. It assigns the start time by avoiding overlap with existing tasks. Thus the schedule
generated by list scheduling is valid. The question is how to choose priority scheme and how to
choose the processor for each u.

One commonly used priority scheme is to put high priority on the tasks on critical path. When
list scheduling chooses the processor p for task u, a commonly used heuristic method is to choose a
processor to make the start time of u as early as possible.

2.4.3 Clustering

The idea of list scheduling is to assign each task according to a list of given tasks. The idea of
clustering [42, 10, 28, 15, 25, 42], however, is to first determine which tasks should be assigned to
the same processor. The clustering heuristic usually follows the following three steps

1. Find a partition of the tasks in task graph. Each component in the partition is called a cluster.

2. Because the number of clusters may be more than the number of processors, we need assign
each cluster to a processor.

3. Assign the start time of each task to make it satisfy the non-overlap constraint and precedence
constraint.

The motivation [42] of clustering is that, given two tasks should be run on the same processor
when there is no constraint on the number of processors, they should also be executed on the same
processor in any real system that has limited number of processors.
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2.4.4 Challenges of Existing Methods

One key difference between the inter-operator scheduling problem on GPU and classical task schedul-
ing problem is that the parallel execution of multiple tasks on GPU will interfere with each other.
The modern GPUs have multiple processors (e.g., stream multiprocessor on NVIDIA GPU) and a
task (e.g., a GPU kernel) is executed on all processors. It is different from the multi-core CPU and
multi-nodes network where each task is executed on a single processor. Besides this, we can only
get the parallel execution time for kernel A and B on GPU by actual measurement, and it is hard
to infer the execution time of parallel execution from the separate execution time of A and B. Thus,
these algorithms can not be directly used in the task scheduling problem on GPU.
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Methods

This chapter introduces our Inter-Operator Scheduler (IOS) in four parts. Section 3.1 formulates the
problem IOS wants to solve. Section 3.2 elaborates the IOS design in details. Section 3.3 gives the
time complexity of IOS and its proof. Section 3.4 introduces the pruning optimizations to reduce
the search time of IOS.

3.1 Problem Formulation
This section defines the schedule in IOS and formulates the problem.

Conv [c]

Matmul [e] 

Conv [d]

Conv [a]

Conv [b]

Conv [c]
Matmul [e] 

Conv [d]

Merged Conv  [a & b]

split
Stage 1

(Operator Merge)

Stage 2
(Concurrent Execution)

Schedule Q = [     {a, b} “operator merge”, 
                         {c, d, e} “concurrent execution”]

(1) Computation Graph (2) A Feasible Schedule Q

Input / Output

Group 1

Group 2

Figure 3.1: For a given computation graph (left), a possible schedule is shown to the right. There are
five operators in the graph: convolutions a-d and matrix multiplication e. The schedule partitions
operators into 2 stages. The first stage merges convolution a and b into a larger convolution; this
parallelization strategy is named operator merge. The second stage partitions operator c, d and e
into two groups, {c, d} and {e}. The operators in the same group are executed sequentially while
different groups in the same stage are executed concurrently. This parallelization strategy is named
concurrent execution. Stages are executed one-by-one.

Computation Graph. A CNN is defined by a computation graph G = (V,E), where V is the
set of operators, and E is the edge set representing dependencies. A computation graph is a directed
acyclic graph (DAG). Each operator in the graph represents an operator such as convolution and

13
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matrix multiplication. Each edge (u, v) is a tensor that is an output of operator u, and an input of
operator v. Figure 3.1 (1) shows the computation graph of a simple CNN.

Stage. To take advantage of inter-operator parallelism in a CNN architecture, its computation
graph is partitioned into multiple stages. Stages are executed sequentially and the operators in
the same stage are executed according to a certain parallelization strategy. Figure 3.1 (2) shows
a possible schedule that partitions the input graph into two stages, where the first stage contains
operator a and b, and the second stage contains operator c, d, and e. The parallelization strategy
is discussed below.

Parallelization Strategy. Each stage adopts one of the following two parallelization strategies:
operator merge and concurrent execution. ISO considers both of them and automatically picks the
more efficient one for each stage. The choice depends on operator types, input tensor shapes, and
the hardware device to perform CNN computations.

To be eligible for operator merge, the operators’ type must be the same while the hyperparameters
can be different. For example, two convolutions with the same stride but different kernel sizes can
be merged. The smaller kernel will be padded with zeros to fit the large kernel, so we can stack
their kernels together. In Figure 3.1 (1), if Conv[a] has 128 3x3 kernels while Conv[b] has 256 3x3
kernels, we can stack their kernels together and replace Conv[a] and [b] by a Merged Conv[a&b]
with 384 3x3 kernels. Besides increasing parallelism, it also reduces the memory accesses to the input
tensor from twice to only once. A split operator is required to partition the merged convolution’s
output to recover the original outputs of Conv[a] and Conv[b].

Under concurrent execution, the operators in the stage are partitioned into disjoint groups. More
specifically, if two operators are connected by an edge, they are partitioned into the same group.
Different groups within the same stage are executed concurrently, while the operators within the
same group are executed sequentially. IOS considers simultaneous executions of operators with
different types. In the second stage of Figure 3.1 (2), the three operators are partitioned into two
groups. The first group contains operators Conv[c] and Conv[d] while the second group contains
operator Matmul[e]. The two groups are executed concurrently while Conv[c] and Conv[d] are
executed sequentially in their group.

Schedule. We define a schedule Q of a computation graph G as

Q = {(S1, T1), (S2, T2), . . . , (Sk, Tk)},

where Si is the set of operators in the ith stage and Ti is the corresponding parallelization strategy,
either “concurrent execution” or “operator merge”. For example, the schedule for Figure 3.1 (2) is:

Q = {({a, b}, operator merge), ({c, d, e}, concurrent execution)}.

The schedule Q executes the network from the first stage (S1, T1) to the last stage (Sk, Tk) sequen-
tially. Si may contain only one operator if it is the best choice (e.g., a very large operator that
saturates the entire GPU).

Problem Formulation. Let c be a cost function defined on a computation graph G and schedule
Q. We aim to find a schedule Q∗ to minimize the cost function for a given computation graph G, i.e.,
Q∗ = argminQc(G,Q). In this work, the cost function c(G,Q) is defined as the latency of running
G following schedule Q.
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3.2 Inter-Operator Scheduler (IOS)

3.2.1 Dynamic Programming
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d
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d
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d
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S’ S’

(1) Operators V (2) S’ is an 
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(3) S’ is not an 
ending of V
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(4) Partition graph by 
endings recursively

V-S’₁

S’₂

S’₃

S’₁

Figure 3.2: The illustration of ending. (1) shows all the operators V . S′ in (2) is an ending of V .
However, S′ in (3) is not an ending of V because there is an edge from d to g (from S′ to V − S′).
We can partition a graph by selecting an ending for remaining operators recursively, as shown in (4),
where S′

1 is an ending of V while S′
2 is an ending of V − S′

1.

To find an optimized schedule for a CNN architecture, we first partition its computation graph
G = (V,E) into V −S′ and S′, where all edges between V −S′ and S′ start from V −S′ and end in
S′. Such S′ is called an ending of V , as illustrated in Figure 3.2. There can be many endings of V .
The last stage’s operators in V ’s optimal schedule must be an ending of V . We can enumerate the
ending S′ of V and convert the original problem to a sub-problem that finds the optimal schedule
for V − S′. The whole graph can be scheduled by applying the partition recursively.

𝐶𝑜𝑠𝑡 𝑆 = min
!! "#$ %& # '#() ()#*& +, !

(𝐶𝑜𝑠𝑡 𝑆 − 𝑆- + 𝑆𝑡𝑎𝑔𝑒𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑆- )

a b

c

f ge

d

Best schedule’s 
latency of 𝑆

𝑆 is the ops to 
be scheduled

𝑆′ is a candidate 
for last stage of 𝑆

𝑆 − 𝑆′ are ops remaining to be 
scheduled in a sub-problem

Latency of stage 𝑆′

Figure 3.3: Dynamic programming algorithm used to find the optimal schedule given the cost model.

Let cost[S] be the latency of an optimal schedule for S. Let StageLatency[S′] be the latency
of stage (S′, T ) where T is the better parallelization strategy for S′ among the two possible ones.
We formalize this idea as the formula in Figure 3.3. In the formula, S′ is an ending of S, and
cost[∅] = 0. Finally, cost[V ] is the latency of an optimal schedule for the entire computation graph
G. To construct the optimal schedule we found, we record the corresponding S′ that minimizes the
latency for each S (i.e., cost[S]) in choice[S].
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Algorithm 1 Inter-Operator Scheduler (IOS)
Input: a computation graph G = (V,E),

and a schedule pruning strategy P
Output: a schedule found by IOS

1: Let cost[S] = ∞ for all S ⊆ V but cost[∅] = 0
2: Let choice[S] = ∅ for all S ⊆ V
3: function InterOpeatorScheduler(G)
4: V = all operators in computation graph G
5: Scheduler(V )
6: Q = empty list
7: S = V
8: while S ̸= ∅ do
9: S′, T = choice[S]

10: Insert stage (S′, T ) before the head of Q
11: S = S − S′

12: return the schedule Q

13: function Scheduler(S)
14: if cost[S] ̸= ∞ then
15: return cost[S]
16: for all ending S′ of S satisfying pruning strategy P do
17: LS′ , TS′ = GenerateStage(S′)
18: LS = Scheduler(S − S′) +LS′

19: if LS < cost[S] then
20: cost[S] = LS

21: choice[S] = (S′, TS′)

22: return cost[S]
23: function GenerateStage(S′)
24: Partition S′ into disjoint groups: S′

1, S
′
2, . . . , S

′
k.

25: Lconcurrent = latency of parallel execution of {S′
i}

26: if operators in S′ can be merged then
27: Lmerge = latency of merged operator
28: else
29: Lmerge = ∞
30: if Lconcurrent < Lmerge then
31: return Lconcurrent, “concurrent execution”
32: else
33: return Lmerge, “operator merge”

3.2.2 Pseudo Code Implementation

With this general idea, we implement IOS in three functions InterOperatorScheduler (L3-12), Sched-
uler (L13-22) and GenerateStage (L23-33), as shown in Algorithm 1. InterOperatorScheduler takes
a computation graph as an input and returns the optimal schedule found by IOS. Scheduler is a
recursive function implementing the dynamic programming algorithm to find the optimal schedule
for a subset of operators in G. GenerateStage chooses a better parallelization strategy for given
operators S′.

InterOperatorScheduler (L3-12) is the entry function. It takes a computation graph G as an
input and returns an optimized schedule Q. This function calls Scheduler with operators V as an
argument (L5). After calling Scheduler, the global variable cost[S] stores the latency of an optimal
schedule for S, while choice[S] stores the last stage in the corresponding optimal schedule. Once
choice[·] is obtained, we can construct the schedule found by IOS (L6-11). We start with an empty
list as the initial state of our schedule (L6) and let S be all the operators in G. We inquire about
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the last stage (S′, T ) of S by choice[S] and put it at the head of the current schedule Q. We repeat
this process by letting S = S − S′ to get the remaining operators’ schedule in all previous stages
(L8-11). S = ∅ indicates that we have discovered an optimized schedule Q for G.

Scheduler (L13-22) is the core part of our algorithm. It implements the dynamic programming
algorithm recursivly, taking a subset of V as the state. It takes a set of operators S as an input and
returns the minimal latency for S among all schedules. Because Scheduler may be called multiple
times with the same argument S, for repeated calls, we cache the previous results cost[S] to avoid
redundant computations (L14-15). To find an optimal schedule for S, we enumerate its last stage
operators S′ and reduce the problem into a sub-problem for S−S′ (L16-21). We use GenerateStage
to choose a better parallelization strategy TS′ for S′ and get the latency LS′ (L17). LS is the minimal
latency for S when taking S′ as the last stage’s operators (L18). We enumerate all possible endings
of S and record the minimal latency LS and the corresponding last stage (S′, TS′) in cost[S] and
choice[S], respectively (L19-21).

GenerateStage (L23-33) chooses a better parallelization strategy from “concurrent execution”
and “operator merge” for a given stage S′. It returns the parallelization strategy and the correspond-
ing latency. It directly measures the latencies of both parallelization strategies on the hardware. The
“concurrent execution” strategy partitions S′ into multiple disjoint operator groups: S′

1, S
′
2, ..., S

′
k.

Operators in different groups are executed concurrently while operators in the same group are ex-
ecuted sequentially. For the “operator merge” strategy, if all the operators in S′ can be merged
into a single operator (L26), we merge them and measure the latency of the merged operator (L27).
Otherwise, we set Lmerge to infinity to force ourselves to choose the “concurrent execution” strategy.

3.2.3 An Example

Figure 3.4 demonstrates how IOS discovers an optimized strategy for an input graph with three
operators a, b, and c. Figure 3.4 (2) shows the dynamic programming process, the Scheduler
in Algorithm 1. For simplicity, we only consider the concurrent execution parallelization strategy.
There are six states (the operators to be scheduled, S) in the process. We start with all the operators
in the computation graph as state S = {a, b, c} (L5). For each state S, Scheduler enumerates the
ending S′ of S. The latency of S contains two parts: latency of S′ as a stage and the latency of
S−S′. While the result of S′ is measured on the device directly (LS′), the optimal latency of S−S′

is obtained via solving the sub-problem recursively. 1 to 12 shows the computation path. Note
that IOS memorizes the results for each calculated state to avoid redundant computations. Thus,
step 7 visits state S = {a}, and IOS gets its latency directly (L15) because it has been previously
visited by step 2 . Scheduler stores the latency (cost[·]) and last stage (choice[·]) in its optimal
schedule. We can construct the best schedule for the whole computation graph using choice[·], as
shown in Figure 3.4 (3). An optimal schedule found by IOS is shown in (4). Both stages take
“concurrent execution” as the parallelization strategy.
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S = {a, b} Choice

choice[{a, b}] {a, b}
cost[{a, b}] 0.6 ms

S = {a} Choice

choice[{a}] {a}
cost[{a}] 0.4 ms

S = {c} Choice

choice[{c}] {c}
cost[{c}] 0.3 ms

S = {a, c} Choice

choice[{a, c}] {c}
cost[{a, c}] 0.7 ms

S = {} Choice

choice[{}] {}
cost[{}] 0 ms

S = {a, b, c} Choice

choice[{a, b, c}] {b, c}
cost[{a, b, c}] 0.8 ms

a
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b

a c
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b

a c
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Figure 3.4: An example to illustrate how IOS finds the schedule. The computation graph to be
optimized is shown in (1). It has three operators, a, b, and c, where a is followed by b, and c
is independent with a and b. The states and transitions between these states are presented in (2).
Here state means the operators to be scheduled, and transition means the dependency between states
(edges in (2)). Any path from state S = {a, b, c} to S = {} is corresponded with a schedule. Upon
finishing the dynamic programming process (Scheduler), the best schedule for the computation graph
can be constructed according to choice[·], as shown in (3). The schedule found by IOS is shown in (4).
For simplicity, in this example, we only consider the concurrent execution parallelization strategy.

3.3 Time Complexity of IOS

3.3.1 Exponential to Graph Width instead of Size

In this subsection, we give the time complexity of IOS. We take set operations (L18, L24) and latency
measurement operations (L25, L27) as atom operations to make the analysis clear. To analyze the
time complexity of IOS, we count the number of executions of L17-21, since they dominate the whole
algorithm’s execution. This number equals the number of edges (i.e., transitions) in Figure 3.4 (2).
Furthermore, it is equivalent to count the number of pairs (S, S′), where S is a state and S′ is an
ending of S. Here we define the width of a directed acyclic graph and provide the time complexity
of Algorithm 1.

Definition 3 (Width d of a DAG). We call d the width of a directed acyclic graph G if we can find
at most d operators in G such that there is no path connecting any two of them.

Theorem (Time Complexity of IOS). The time complexity of Inter-Operator Scheduler (IOS) is
O(

(
n/d+2

2

)d
), which can be relaxed to O((nd + 1)2d), where n is the number of operators in the
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computation graph and d is its width.

In fact, there are computation graphs that can reach this bound, so we can not improve it without
other restrictions on the schedule space. Proof can be found in the following subsections.

Model n d
(
n/d+2

2

)d
#(S, S′) #Schedules

Inception V3 11 6 2.6× 104 4.9× 103 3.8× 106

Randwire 33 8 3.7× 109 1.2× 106 9.2× 1022

NasNet 18 8 5.2× 106 3.1× 105 7.2× 1012

SqueezeNet 6 3 2.2× 102 51 1.3× 102

Table 3.1: For the largest block of each benchmarked network, we list the number of operators n,
the width d, the upper bound of transitions

(
n/d+2

2

)d
, the real number of transitions #(S, S′), and

number of schedules.

Modern convolution neural networks usually construct the network by stacking multiple blocks,
making it possible to optimize each block separately. In this case, n and d refers to the number of
operators within a block and the block width, rather than the full network. We list the information
of the largest block for each network benchmark in Table 3.1.

The total number of feasible schedules is exponential to the number of operators (e.g., up to
9.2 × 1022 for Randwire [52]). Such a huge number makes it prohibitive to manually design or
enumerate the schedules. However, by reusing the results of common sub-schedules in the schedule
finding process, IOS finds the optimal schedule within 4 hours for each network with no pruning
strategy used. The time complexity of IOS is only exponential to the width of the computation
graph, which is usually very small and acceptable (e.g., ≤ 8 in all benchmarked networks).

3.3.2 Preliminary Definitions and Theorems

In this subsection, we give the definition of chain and anti-chain, Dilworth’s theorem [13], and a
corollary, which is used in our proof later.

Definition 4 (Chain and antichain). A chain is a subset of a partially ordered set such that any
two distinct elements in the subset are comparable. An antichain is a subset such that any two
distinct elements in the subset are incomparable.

Definition 5 (Chain decomposition of partial order set). A chain decomposition of a partial order
set is a partition of the elements of the ordered set into disjoint chains.

Theorem (Dilworth’s Theorem). In any finite partially ordered set, the largest antichain has the
same size as the smallest chain decomposition.

We apply the Dilworth’s theorem to a directed acyclic graph and can get the following corollary.

Corollary 1. Let G = (V,E) be a directed acyclic graph and d be the width of G. We can
decompose V into d sets such that any two vertices in the same set can be connected by a path in
G.

Proof. Let P = (V,E′) be the partial order derived from G by transitive closure. Then that two
elements u, v in V are comparable in P is equivalent to that there is a path between them in G.
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Thus, the width d of G equals the size of largest antichain of P . We apply the Dilworth’s Theorem
to P and can get a decomposition of V into d chains in P : S1, S2, . . . , Sd. Because Si is a chain in
P , any two elements in Si are comparable, which means there is a path bridge them in G.

3.3.3 Time Complexity Proof

In this subsection, we will prove the time complexity of IOS. Then we will show that the upper
bound can be reached by some computation graph.

Lemma 1. If S′
1 ends S and S′

2 ends S − S′
1, then S′

1 ∪ S′
2 also ends S (S′ ends S means that S′ is

an ending of S).

Proof. We prove it by contradiction. If S′
1 ∪ S′

2 does not end S, there must exist (u, v) ∈ E such
that u ∈ S′

1 ∪ S′
2 and v ∈ S − S′

1 ∪ S′
2. Then we have u ∈ S′

1 or u ∈ S′
2. If u ∈ S′

1, we can get the
contradiction that S′

1 is not an ending of S because v ∈ S−S′
1 ∪S′

2 ⊆ S−S′
1. If u ∈ S′

2, we can also
get the contradiction that S′

2 is not an ending of S−S′
1 because v ∈ S−S′

1∪S′
2 = (S−S′

1)−S′
2.

Lemma 2. Let S be a possible argument of Scheduler, we have V − S ends V .

Proof. We can rewrite S as S = V −
∪m

i=1 S
′
i, where m ≥ 0 and S′

k ends V −
∪k−1

i=1 S′
i according to

L17 in Algorithm 1. By repeating apply Lemma 1, we can get that
∪m

i=1 S
′
i ends V , which means

V − S ends V .

Lemma 3. Let V ′ be a subset of V and any two operators in V ′ are bridged by a path. Let c be
the size of V ′. Then

|{(S ∩ V ′, S′ ∩ V ′) | S′ ends S, V − S ends V }| =

(
c+ 2

2

)

Proof. Because any two operators in V ′ is bridged by a path in G, operators in V ′ are ordered
sequentially. Because V −S ends V , there are only c+1 possible sets of S ∩V ′ because S must be a
prefix in the sequential ordered operators, including empty set. S′∩V ′ is a suffix of S∩V ′, including
empty set. Then there are

∑c
i=0

∑i
j=0 1 = (c+2)(c+1)

2 =
(
c+2
2

)
possible pairs of (S ∩ V ′, S′ ∩ V ′).

Theorem. The time complexity of inter-operator scheduler is O(
(
n/d+2

2

)d
), which can be relaxed

to O((nd + 1)2d), where n is the number of operators in the computation graph and d is its width.

Proof. We only need to count the number of pairs of (S, S′) that can reach L17 of Algorithm 1
because L17-21 dominates the execution time of the scheduler, where S is a subset of V that is
taken as the argument of Scheduler and S′ is an ending of S. By Lemma 2, V − S ends V . By
Corollary 1, we can decompose V into d disjoint partitions V1, V2, . . . , Vd and any two operators
u, v in the same partition can be bridged by a path in G. We can build a one-to-one mapping that
maps pair (S, S′) to 2d-dimension tuple (S ∩ V1, S

′ ∩ V1, . . . , S ∩ Vd, S
′ ∩ Vd) based on the partition.

Then we only need to count the number of valid tuples to get the number of valid pairs. By Lemma
3, the possible number of pairs (S ∩ Vi, S

′ ∩ Vi) is
(
ci+2
2

)
. Then an upper bound of the tuples is∏d

i=1

(
ci+2
2

)
. It is an upper bound but not the exact number because currently we only consider

the dependency inside each partition Vi and ignored the dependency between different partitions.
So the upper bound of the number of pairs of (S, S′) is

∏d
i=1

(
ci+2
2

)
. It can be relaxed to

(
n/d+2

2

)d
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because
∑d

i ci = n and it is maximized when ci are equal. For simplicity, it can be further relaxed
to (nd + 1)2d.

(2, 1)
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(1, 1) 

(2, 2)

(c, 2)

(1, 2)

(2, 3)

(c, 3)

(1, 3)

(2, d)

(c, d)

(1, d)

Figure 3.5: The example to make the time complexity O(
(
n/d+2

2

)d
) tight. The time complexity for

this graph is O(
(
c+2
2

)d
)

The computation graph shown in Figure 3.5 is an example to demonstrate that the time com-
plexity of O(

(
n/d+2

2

)d
) can be reached.

In this example, there are d independent paths and each path has c operators. Because the paths
are independent with each other and there is no edge between two different paths, we can get the
upper bound O(

(
c+2
2

)d
) by the analysis in above time complexity proof.

3.4 Reduce the Search Time by Schedule Pruning
It is difficult for a dynamic programming algorithm to stop early, because it gets the best result at
the very end. To reduce the search time, IOS introduces schedule pruning to reduce the exploration
space by restricting the max number of groups and the max number of operators within a group.
We define the pruning strategy P as a boolean function of S and S′. We only enumerate the ending
S′ of S that satisfies the pruning strategy P , that is, P (S, S′) = True (L16 of Algorithm 1). The
pruning strategy consists of two parameters r and s: P (S, S′) = True if and only if ending S′ has
at most s groups and each group has at most r operators.

After applying the pruning strategy P , the time complexity is reduced from O((nd + 1)2d) to
O((nd + 1)d(r + 1)s). Of course, there is a trade-off between the search cost and the quality of the
discovered schedule. We evaluate this trade-off in Section 4.6.1.
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Experiments

4.1 Implementation Setup
IOS is a framework-agnostic algorithm and can be implemented in popular frameworks. We imple-
ment the dynamic programming scheduling algorithm in Python and the execution engine in C++.
The latency of a stage is directly measured in the execution engine to guide the scheduling. The
execution engine is based on vendor-provided library cuDNN [8] and supports operators’ parallel
execution. To concurrently execute multiple groups of operators, IOS puts different groups into
different CUDA streams. Kernels in different CUDA streams will be executed in parallel if there
are enough computation resources. Throughout the experiments, we use cuDNN 7.6.5, cuda 10.2,
NVIDIA driver 450.51.05, and adopt TensorRT 7.0.0.11 and TVM 0.7 as baseline libraries.

Networks #Blocks #Operators Operator Type
Inception V3 11 119 Conv-Relu

Randwire 3 120 Relu-SepConv
NasNet 13 374 Relu-SepConv

SqueezeNet 10 50 Conv-Relu
Table 4.1: The CNN benchmarks. Number of blocks, number of operators and the main operator
type for each network are listed in the table. Here “Conv-Relu” means a convolution followed by a
ReLU activation and “Relu-SepConv” means ReLU activation followed by seperatble convolution.

We benchmark four modern CNNs in the experiment: Inception V3 [48], RandWire [52], NasNet-
A [57] and SqueezeNet [19]. Table 4.1 shows the number of blocks, the number of operators, and
the main operator type for each network. IOS supports the user-defined schedule unit. In this
experiment, we take the operator type shown in the table, besides other operators such as Concat,
as the basic schedule unit. Some models (e.g., ResNet [17]) might have limited inter-operator
parallelization opportunities. For example, for ResNet-50 and ResNet-34, we can only achieve 2% to
5% speedup by paralleling the downsample convolutions. We do not consider it as our benchmarked
model in the rest of the evaluation.

We conduct each experiment 5 times and report the average performance. We adopt the schedule
pruning strategy with r = 3 and s = 8 and conduct each experiment on NVIDIA Tesla V100 unless
otherwise stated. The IOS optimization cost for Inception V3 and SqueezeNet is less than 1 minute
and the IOS optimization cost for Randwire and NasNet is within 90 minutes.

22
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Figure 4.1: End-to-end performance comparison of different schedules across different CNNs on
batch size one. The throughput is normalized to the best one for each model.
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Figure 4.2: End-to-end performance comparison of different frameworks across different CNNs on
batch size one. The throughput is normalized to the best one for each model.

4.2 Comparison of Different Schedules
We first compare the inference performance among different schedules with batch size one. We com-
pare five schedules: sequential schedule, greedy schedule, IOS-Merge schedule, IOS-Parallel schedule,
and IOS-Both schedule. The sequential schedule executes the operator one-by-one according to cer-
tain topological ordering. The greedy schedule puts all the operators that can be executed currently
in one stage, and repeats this process until all operators have been scheduled. IOS-Merge, IOS-
Parallel, and IOS-Both schedules use the proposed approach to find the schedule but take different
parallelization strategies. IOS-Merge only takes the “operator merge” strategy. IOS-Parallel only
takes the “concurrent execution” strategy. IOS-Both considers both parallelization strategies. All
schedules are executed on IOS execute engine for a fair comparison.

Figure 4.1 shows that IOS-Both outperforms all the other four schedules. The greedy schedule
gets good results on RandWire and NasNet. However, it degrades the performance of SqueezeNet
because of the overhead of synchronization. Because we can not merge “Relu-SepConv” operators
in RandWire and NasNet, IOS-Merge gets the same schedule as Sequential, and IOS-Both gets the
same schedule as IOS-Parallel. IOS-Both considers two parallelization strategies and outperforms
all the other four schedules. In later experiments, “IOS” refers to “IOS-Both” by default.

4.3 Comparison of cuDNN-based Frameworks
For popular frameworks, there are two ways to exploit the intra-operator parallelism. Frameworks
such as Tensorflow [31], TASO [22], and TensorRT [35] use the vendor-provided library cuDNN.
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Frameworks such as TVM [6] and Ansor [55] search the tensor program schedule for each kernel.
TVM also supports to call external libraries such as cuDNN to implement some kernels (e.g., con-
volution). In this subsection, we compare the performance of cuDNN-based frameworks with batch
size one. Larger batch size is studied in the ablation study section.

There are five baselines: Tensorflow, Tensorflow-XLA, TASO, TVM-cuDNN, and TensorRT.
Tensorflow-XLA is the tensorflow framework with XLA optimization turning on. TVM-cuDNN is
the TVM framework that compiles a convolution neural network with cuDNN library, which would
use the convolution kernel provided by cuDNN to execute convolutions. All other operators such
as addition and concatenation would use their own kernels. For fair comparison, we only compare
cuDNN-based libraries here. The comparison between TVM-AutoTune and IOS can be found in
the ablation study section. Figure 4.2 shows that IOS consistently outperforms all five baseline
frameworks on four benchmark CNNs. IOS can achieve 1.1 to 1.5× speedup comparing to the state
of the art library TASO, TVM-cuDNN, and TensorRT.

4.4 More Active Warps Improve Utilization
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Figure 4.3: Active Warps for sequential schedule and IOS schedule. We use the model in Figure 1.2
in this experiment.

As introduced in Section 2.1, model operators are mapped to GPU kernels to execute. A kernel
invokes a collection of threads that are grouped into multiple thread blocks. Thread blocks are
distributed to stream multiprocessors (SMs). Each thread block on a SM is further partitioned into
multiple warps. A warp, as a basic execution unit, contains a fixed number of threads (e.g., 32 for
NVIDIA GPU) to execute in a Single Instruction Multiple Thread (SIMT) fashion.

A warp is considered active from the time it is scheduled on an SM until it completes the last
instruction. SM can hide the warps stall caused by memory accesses through fast context switching:
at every cycle, each warp scheduler will pick an eligible warp and issue instructions. If no eligible
warp is available for a warp scheduler, the no instruction will be issued from this warp scheduler
and a cycle is wasted. Increasing the number of active warps is an effective approach to increase the
likelihood of having eligible warps to execute at each cycle. Thus, it is crucial to increase the number
of active warps. Figure 4.3 shows the number of active warps on the whole GPU throughout the
repeated execution of both the IOS and the Sequential schedule, sampled using NVIDIA’s CUPTI
profiling toolset every 2.1 ms. IOS schedule achieves 58% more active warps on average compared
to the Sequential schedule. This explains the reason for IOS overall performance speedup.
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4.5 Consistent Speedup on Other Devices
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Figure 4.4: End-to-end performance comparison of different schedules across different CNNs on
batch size one. The throughput is normalized to the best one for each model. This experiment is
conducted on NVIDIA RTX 2080Ti.
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Figure 4.5: End-to-end performance comparison of different frameworks across different CNNs on
batch size one. The throughput is normalized to the best one for each model. This experiment is
conducted on NVIDIA RTX 2080Ti.

In addition to results on NVIDIA Tesla V100 (Volta architecture), we also conduct experiments
on NVIDIA RTX 2080Ti (Turing architecture) to show that our optimization is generally effective
across different GPU architectures. We use the same models and baselines for comparisons as in
Section 4.2 and Section 4.3.

Figure 4.4 shows that IOS with two parallelization strategies (i.e., IOS-Both) outperforms all
other schedules. In particular, IOS-Both achieves 1.1× to 1.5× speedup comparing to the sequential
schedule. Figure 4.5 shows that IOS outperforms all other cuDNN-based frameworks1 on Inception
V3, RandWire, and NasNet. IOS achieves comparable performance with TASO and TensorRT on
SquuezeNet. These results align with the results on V100.

4.6 Ablation Study

4.6.1 Schedule Pruning Reduces Search Time

To explore the trade-off between optimized latency and optimization cost (i.e. search time), we
experiment Inception V3 and NasNet with pruning strategy parameters r = {1, 2, 3} and s = {3, 8}.

1TASO runs out of GPU memory on NVIDIA 2080Ti for RandWire and NasNet.
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Figure 4.6: Trade-off between the optimized latency and the optimization cost for Inception V3 and
NasNet. Two pruning strategy parameters r and s are used to prune the schedule space. r limits
the maximum number of operators in each group while s limits the maximum number of groups in
a stage. The left axis shows the optimized latency, and the right axis shows the optimization cost.

As shown in Figure 4.6, when s and r get smaller, the optimization cost decreases at the cost of
larger network latency. This is because smaller s and r restrict the schedules that IOS explores, thus
reduce the optimization cost and increase schedule latency. By setting r = 1 and s = 8, IOS still
achieves 1.59× and 1.37× speedup for Inception V3 and NasNet, comparing to sequential schedule.
Meanwhile, the optimization cost for each network is within 30 seconds and 18 minutes, respectively.

4.6.2 Specialized Scheduling is Beneficial

Specialization
for Different 
Batch Sizes

Optimized for

1 32 128

Execute 
on

1 4.03 4.50 4.63
32 29.21 27.44 27.93
128 105.98 103.74 103.29

Specialization
for Different 

Devices

Optimized for

K80 V100

Execute 
on

K80 13.87 14.65
V100 4.49 4.03

(1) Specialization for Batch Sizes (2) Specialization for Devices

Table 4.2: Latency (ms) of specialized schedules for batch size 1, 32 and 128, and specialized schedules
for NVIDIA Tesla K80 and V100. The best performance is achieved when the schedule is specialized
for each batch size and device. Each row is the batch size or device that the model is executed on.
Each column is the batch size or device that IOS optimized for. InceptionV3 is used as a benchmark.

Different workloads (e.g. network with different batch sizes) have different computation features;
thus it is necessary to specialize the schedule for different workloads. We optimize Inception V3
with batch size 1, 32 and 128. Then we execute the network with these schedules on batch size 1, 32
and 128 separately. In Table 4.2 (1), the numbers in a row represents the latency executed with the
same batch size but using schedules optimized for different batch sizes. The specialized schedule for
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each batch size achieved the best result. To explore the specialization for devices, we also optimize
the network on both NVIDIA Tesla K80 and V100 with batch size one. Table 4.2 (2) shows that
the specialized schedule for each device also achieved better results.
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Figure 4.7: The schedule found by IOS for the last block of Inception V3. Operator a-e are con-
volution operator while operator P is the pooling operator. Schedule (1) and (2) are optimized for
batch size 1 and 32, respectively. There are two stages in schedule (1) while there are 4 stages in
schedule (2). Schedule (1) is 28% faster than schedule (2) on batch size 1. Schedule (2) is 8% faster
than schedule (1) on batch size 32.

IOS discovers different schedules for different batch sizes. For example, Figure 4.7 shows the
schedule of the last block of Inception V3 optimized for batch size 1 and 32, respectively. There are
two stages in the schedule (1), which is optimized for batch size 1 while there are four stages in the
schedule (2), which is optimized for batch size 32. The schedule (1) is 28% faster than the schedule
(2) on batch size 1, while the schedule (2) is 8% faster than (1) on batch size 32. There are two
differences between them. The first one is that convolution f and g in the schedule (2) are merged
into a single convolution. This is because activation (the output tensor of an operator) is the memory
bottleneck at large batch size. It is more crucial to reduce memory access, even at the cost of larger
computation cost. Merging can reduce the memory access, because the merged kernel only access
the output of convolution c once, instead of twice in the schedule (1). However, because the kernel
size of f and g are 3x1 and 1x3, respectively, their kernel size would be expanded to 3x3 by padding
zeros, which increases the amount of computation. Another difference between the schedule (1) and
(2) is that the schedule (2) has more stages than the schedule (1). We found a similar phenomenon
for large batch sizes because of resource contention. When multiple operators are executed on the
device, there is a conflict over access to the shared resources such as the last-level cache, making the
concurrent execution degrades the performance. This gets more severe for larger batch sizes because
the demand for shared resources gets larger.

4.6.3 Blockwise Speedup in Inception V3

To explore the speedup for different blocks, we compare the performance of each block of Inception-
V3 [48] between sequential and IOS schedule (Figure 4.8). IOS consistently runs faster than the
sequential schedule. The speedup for the individual block is up to 2.3×, and the end-to-end speedup
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Figure 4.8: IOS consistently outperforms sequential executions on each block of Inception-v3.

is 1.6×. More speedup is achieved for back blocks because the width gets larger and more inter-
parallelism is possible.

4.6.4 Consistent Improvement for Different Batch Sizes
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Figure 4.9: The throughput comparison of Sequential schedule, TVM-cuDNN, TASO, TensorRT
and IOS on batch size 1 to 128 for Inception V3. TASO runs out of memory with batch size 128.

In real-world applications, we need to handle different batch sizes for inference. For example,
for real-time applications on edge devices, we usually use a batch size of one to reduce latency. In
contrast, in cloud settings, the larger batch size is preferred to increase throughput. Changing the
workload requires different inter-operator parallelization schedules. We optimize Inception V3 with
the batch sizes of 1, 16, 32, 64, 128, and compare the throughput. Figure 4.9 shows that the through-
put increases with the batch size. When the batch size is larger than 128, the performance saturates,
and the throughput does not increase significantly anymore. The throughput of IOS outperforms
all the baselines consistently on all batch sizes. Even though a larger batch size provides more data
parallelism, we can still utilize inter-operator parallelism to further improve the throughput.
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4.6.5 Intra- and Inter-Operator Parallelism
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Figure 4.10: End-to-end performance comparison between TVM-AutoTune and IOS. TVM-
AutoTune and IOS are orthogonal because TVM focuses on the intra-operator parallelism while IOS
focuses on inter-operator parallelism. They can be combined to boost the inference performance
further. The optimization cost of IOS is two orders of magnitude less than TVM.

TVM exploits the intra-operator parallelism by searching the schedule for each kernel on a specific
device. IOS focuses on inter-operator parallelism and leaves the exploitation of intra-operator par-
allelism to cuDNN library. Although intra- and inter-operator parallelism is orthogonal and can be
combined, we compare TVM and IOS here to give some insight into each parallelism’s benefit. As
shown in Figure 4.10, TVM takes 208 GPU hours while IOS only takes 3 GPU hours to optimize
the four networks. IOS outperforms TVM on Inception V3 and SqueezeNet. This is because only
utilizing intra-parallelism can not provide enough parallelism for the powerful computing device.
Meanwhile, TVM outperforms IOS on Randwire and NasNet, because TVM finds more efficient
kernels for separable convolutions, which occupy the majority of operators in Randwire and NasNet.
We believe the combination of TVM and IOS would boost the performance further and leave this
for future work.
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Related Work

Graph transformation. MetaFlow [21] performs functional-preserving graph transformations to
optimize DNN architectures. Merging operators with the same input enables more parallelism (a
larger operator compared to two small sequential operators) and reduces accesses to GPU memories.
TASO [22] further introduces an automated generation of substitution rules and it explores more
mathematically equivalent DNN architectures of the input one comparing to MetaFlow. MetaFlow
and TASO consider the whole computation graph and search for highly optimized substitution
strategies. However, the inter-oprator parallelism utilized by MetaFlow and TASO is still limited as
only the same type of operators can be merged.

To address the large schedule space problem, IOS utilizes dynamic programming to take ad-
vantage of the common sub-schedules among different schedules. Also, IOS supports concurrent
execution of different types of operators, addressing the limitation of MetaFlow and TASO.

CNN Design. Several lightweight design primitives have been recently introduced to improve
the efficiency of CNNs. Examples include SequeezeNet [19], MobileNet [41] and ShuffletNet [54].
However, such design patterns cannot fully utilize the hardware. Hardware under-utilization becomes
more severe as accelerators are getting more powerful (shown in Figure 1.1). On the other hand,
multi-branch CNNs become a trend in model architecture design, including both manually designed
networks [47, 19, 48] and the networks discovered by neural architecture search [5, 57]. With a
fixed computation budget, multi-branch CNNs use more small convolution primitives, which further
amplifies the resource under-utilization problem on modern hardware.

Intra-operator Parallelism. Current deep learning frameworks (e.g., TensorFlow and Py-
Torch) generally focus on intra-operator parallelism, which executes arithmetic operations within
a single operator in parallel (e.g., tiled matrix multiplication). Tensorflow and PyTorch are built
upon vendor-provided libraries (e.g., cuDNN), a set of DNN compute primitives heavily optimized
by vendor engineers to achieve near-peak machine performance. However, these DNN operators are
executed sequentially on a hardware device. The degree of parallelism within an operator is limited;
thus, intra-operator parallelism cannot provide sufficient parallelizable computation to feed powerful
hardware devices. As a result, the hardware is often under-utilized using these frameworks.

Different from manual performance tuning, Auto-Halide [34], TVM [6] and Ansor [55] exploit
intra-parallelism through automatically learning efficient schedule for individual DNN kernels. This
automation saves a large amount of engineering effort and can generate more efficient DNN kernels

30
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than the manually designed counterparts. However, still, all these libraries only focus on intra-
operator parallelism but do not exploit inter-operator parallelism.

Inter-Operator Scheduling. Recent work has explored inter-operator scheduling. Tang et
al. [50] proposes a greedy heuristic approach, Graphi, that executes all available CNN operators
whenever possible to saturate CPU’s computation capability. The greedy strategy does not holis-
tically optimize the computation graph’s performance, hence yields unbalanced and sub-optimal
schedules. Rammer[30] optimizes the execution of DNN workloads by holistically exploiting par-
allelism through inter- and intra- operator co-scheduling, enabling a richer scheduling space for
executing a DNN model. IOS focuses on the inter-operator scheduling and leaves the intra-operator
scheduling to the hardware. Nimble[27] is a DNN engine that supports parallel execution of DNN
operators on GPU and minimizes the scheduling overhead using ahead-of-time (AOT) scheduling.
The scheduling algorithm used in Nimble does not consider the latency of each operator, while IOS
is a profile-based scheduler.



Chapter 6

Future Work

In this work, we proposed IOS to explore the scheduling of inter-operator parallelization of a multi-
branch model. There are still some directions we can explore based on IOS:

1. Parallelizing multiple models on the same device. Currently, we only studied the parallelization
of a single model on a single device. However, there are still cases that we need to run multiple
different models on the same device. How to coordinates the parallelization of operators from
different models remain an open question.

2. Optimizing the model with a single branch of operators. If the given model has no inter-
operator parallelization opportunity, there is nothing IOS can do to improve the performance.
How to increase the device-utilization of single-branched small network is still a very challeng-
ing problem.

3. Intra- and inter-operator co-scheduling. Existing kernels from vender libraries [8, 35] and
tensor program compilation [6, 7, 55] assume that each kernel occupies the whole underlying
device (e.g., GPU). However, when we do inter-operator parallelization, this assumption is no
longer valid. Thus, how to search the intra- and inter-operator schedules is still a challenging
problem.

4. Expanding IOS on other workloads. In this work, we focus on optimizing CNN models. How-
ever, IOS is a very general algorithm and is also applicable to other models with inter-operator
parallelization opportunity.

5. Explore schedule algorithm on other schedule space. The IOS schedule space contains sched-
ules with multiple dependency-preserving stages. This is not the only schedule space we can
consider. Another schedule space that partition the computation graph into different operator
streams with dependency on this streams is also deserve consideration. However, we can not
directly use IOS to search schedule in this schedule space because the optimal substructure
property no longer holds for schedules in this schedule space.

We leave the exploration in the future work.
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Conclusion

In this work1, we observe that the sequential execution of CNNs no longer provides sufficient paral-
lelization opportunities to fully utilize all the computation resources, especially for the single-batch
inference on a power GPU. In machine learning community, the number of float operators (FLOPs)
instead of the latency or throughput on actual device is often used as the metric of execution per-
formance because the later metrics might vary from different devices. Thus, we can easily find a
network [49, 29] that contains a lot of small operators because multi-branched structure with more
small operators can have a better accuracy performance. But the same FLOPs might not indicate
the same latency or throughput because whether we can map the workloads to underlying hard-
ware is also a key factor to influence the execution efficiency. A network with multi-branched small
operators usually under-utilizes the hardware when we execute each operator one by one.

To address the under-utilization problem, we propose IOS that combines intra- and inter-operator
parallelism. Inter-operator parallelism provides more parallelization opportunity than only utilizing
intra-operator parallelism. We adopt dynamic programming to find an efficient schedule that better
utilizes the hardware. We have proved that the time complexity of our algorithm is only exponential
in the width of computation graph (i.e., the maximum number of parallelizable operators), which is
usually small for CNNs. A pruning technique is also introduced to reduce the search time.

We did extensive experiments to show the efficacy of IOS. We compared IOS with existing state-
of-the-art libraries (e.g., TensorRT) and showed that IOS achieves 1.1 to 1.5× speedup on modern
CNNs. We also compared different schedules and profiled the active warps of sequential schedule
and IOS schedule to show that IOS finds highly optimized schedule.

1This thesis is a based on our published conference paper [14] at MLSys 2021.
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