ENABLING PRIVACY-PRESERVING MODEL PERSONALIZATION
VIA ON-DEVICE INCREMENTAL TRAINING

Jiacheng Yang

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical & Computer Engineering
University of Toronto

© Copyright 2022 by Jiacheng Yang

Enabling Privacy-Preserving Model Personalization
via On-Device Incremental Training

Jiacheng Yang
Master of Applied Science

Graduate Department of Electrical & Computer Engineering
University of Toronto
2022

Abstract

Inference on edge devices (e.g., smartphones) is becoming increasingly common,
benefiting from low latency inference and user privacy by keeping data on-device.
However, on-device training is still considered impractical due to mobile computa-
tional and memory capacity constraints. Nevertheless, on-device training is an im-
portant direction for enabling privacy-preserving model personalization, whereby a
model is customized to a user’s preferences and behaviors. We propose MolL. which
enables privacy-preserving, efficient, and accurate model personalization by perform-
ing compute-intensive training on a curated global dataset in the cloud, and con-
tinuing training incrementally on-device using a user-specific local dataset. MolL
proposes three key optimizations — global dataset mixing, layer freezing, and fea-
ture map caching — to ensure high accuracy predictions and to dramatically reduce
on-device training time. MolLL reduces the training time of an image classification
model from 3.1 years to 48 minutes and an audio tagging model from 5.2 months to
61 minutes. MolL achieves local/global on-device accuracy comparable to training
on centralized local/global datasets in the cloud, deviating at most 7.3% for global

accuracy and 0.9% for local accuracy.

ii

iii

Acknowledgments

First and foremost, I would like to thank my supervisor Gennady Pekhimenko for the
opportunity to conduct research at the University of Toronto. During the journey
of doing research, I have encountered many challenges. It is through your continu-
ous guidance and feedback that I was able to develop my research skills, which has
empowered me to continue my research as a Ph.D. student.

I would like to thank my collaborators James Gleeson and Mostafa Elhoushi who
have been there to provide helpful and thoughtful research suggestions to broaden
my horizons. I would also like to thank Serina Tan, Shang Wang, and Hongyu Zhu.
It is your experience and insight that make my graduate student life enjoyable.

I would like to thank all my lab mates for creating such a great academic atmo-
sphere where we exchange creative ideas freely. Despite everyone having a different
cultural background, being able to work and think together has always been my most
memorable time.

Last but not least, I would like to sincerely thank my parents. Doing research has
never been easy and is often frustrating. It is your constant and considerate support

that rescues me from endless self-doubt during my hardest time.

iv

Contents

Introduction

1.1 Overview o

1.2 Background
1.2.1 Basics of Deep Learning
1.2.2 Image Classification with Convolutional Neural Networks . . .

1.2.3 Audio Tagging with Convolutional Neural Networks

Related Works

2.1 Efficient On-Device Inference
2.2 Incremental Learning
2.3 Transfer Learning

2.4 Federated Learning oL

Challenges of On-device Training

3.1 Hardware Limitations of Edge Devices
3.2 Catastrophic Forgetting Phenomenon
3.3 Lack of DL Framework Support

Enabling On-device Incremental Training

4.1 Global Dataset Mixing
4.2 Layer Freezingo
4.3 Feature Map Caching

Evaluation

5.1 Experimental Settings 0L
5.1.1 Incremental Classification with MobileNetV2
5.1.2 Audio Tagging with YAMNet

5.2 Overall Training Time and Accuracy

5.3 Ablation Studies

O O O ==

11
11
12
12
13

14
14
17
17

18
18
19
20

5.3.1 Global Dataset Mixing 28

5.3.2 Layer Freezing oL 30

6 Conclusion 31
6.1 Summary 31
6.2 Limitations and Future Works 31
Bibliography 33

vi

List of Tables

1.1 Comparison between a typical cloud GPU and a smartphone SoC. . . 3
3.1 Comparison between hardware on cloud servers and on edge devices.. 14

5.1 Examples of manual mappings from labels in the local dataset to labels
in the global dataset. o 0oL 24

vii

List of Figures

1.1
1.2
1.3

3.1

3.2

4.1
4.2
4.3

0.1
5.2

5.3

5.4

5.9

5.6

5.7

5.8

[lustration of global/local dataset and global/local model.
[lustration of forward and backward pass of DNN training.

An example of log mel-spectrogram transformation.

Comparison between mobile CPU and GPU on matrix multiplication
kernels. oL

Comparison between mobile CPU and GPU on convolutional kernels.

[lustration of global dataset mixing.
[Mustration of layer freezing.

[lustration of feature map caching.

A demo of a real training workload on a smartphone.
Examples in the global dataset Dg and the local dataset Dy in image
classification.o
Overall results of personalizing MobileNetV2 on image classification. .
Overall results of personalizing YAMNet on audio tagging.
Comparison of different sharing ratio o of global dataset mixing in
image classification. L L oo
Comparison of different sharing ratio o of global dataset mixing in
audio tagging.
Comparison among different numbers of trainable layers n for layer
freezing LF(n) in image classification.
Comparison of accuracies of different number of trainable layers n for

layer freezing LF(n) in audio tagging.

viii

15
16

19
20
21

23

24

26

26

28

28

29

29

ix

Chapter 1

Introduction

In this chapter, we explore the potential benefits and challenges of moving training
of deep neural networks (DNN) from the cloud directly onto the user’s mobile smart-
phone device. Besides the obvious privacy benefits of keeping user’s data on-device,
we show that on-device training allows us to tailor DNNs to the user’s behaviors and
preferences, achieving better accuracy than just using the pre-trained models down-
loaded from the cloud. While training from scratch on-device suffers from intolerable
training time due to hardware limitations, we propose using incremental training,
where we perform pre-training DNNs on expansive user-general datasets in the cloud,
and minimal fine-tuning with user-specific data on-device. Unfortunately, incremen-
tal training with high accuracy and efficiency is non-trivial to achieve on today’s
smartphone devices. In particular, a notorious phenomenon called incremental train-
ing will naturally occur. To address the challenges of on-device training, we introduce
our framework of Mobile Incremental Training (MoIL) in which we propose three key

optimizations, global dataset mixing, layer freezing, and feature map caching.

1.1 Overview

The recent success of deep learning (DL) in areas such as computer vision [19, 2|, nat-
ural language processing |01,], and speech recognition |1 7] has resulted in an increas-
ing interest in deploying DNN inference directly on edge devices such as smartphones
and home appliances |7, 30, 34]. On-device inference offers several benefits over per-
forming inference in the cloud. First, since sensitive user data (e.g., images and voices)
are never exposed to cloud servers, the user’s privacy is thus preserved. Second, on-
device inference avoids network requests to the cloud, thereby reducing the inference
latency. To achieve effective and efficient on-device inference, smartphones are now

equipped with powerful dedicated accelerators (e.g. GPUs and NPUs). These accel-

2 CHAPTER 1. INTRODUCTION

erators are capable of on-device DNN inference with DNNs designed to run within
mobile hardware constraints |22, 12, 30]. Meanwhile, many DL frameworks [1, 51,

| can further optimize DNNs (e.g. pruning and quantization |16]) for these acceler-
ators to meet the strict hardware constraints of edge devices. The ecosystem of both
hardware and software can achieve real-time DNN inference in practice, which elim-
inates the dependency of cloud servers and network connections for DNN inference

and hence ameliorates privacy concerns.

Just as on-device inference enables privacy-preserving low-latency applications, on-
device training can enable privacy-preserving adaptation of DNNs to specific users
through model personalization. Model personalization tailors trained DNNs to better
match the user’s preferences and behaviors, which is critical for achieving high accu-
racy on samples that are underrepresented or even not present in the cloud dataset
that the DNNs are originally trained on. For example, a user can introduce new
food types for nutrition applications [37] or add new words for keyboard prediction
applications [18]. One approach to model personalization is to collect and upload
the user’s data to cloud servers, re-train the DNNs using powerful cloud hardware,
and then download the updated DNNs back to the user’s device [15]. However,
uploading the user’s data to the cloud obviously raises privacy concerns and poses
security risks. Furthermore, tethering DNN training to cloud servers requires reliable
high-bandwidth network connections, which thus makes real-time model updates im-
possible when such network conditions are poor. If on-device training were available,
the user’s data would never leave the device, and the resulting privacy, security, and

network issues could be averted.

Unfortunately, on-device training is still generally considered intractable due to
mobile hardware limitations and a lack of DL framework and mobile System-on-Chip
(SoC) vendor library support. For example, as shown in Table 1.1, the theoretical
FP32 FLOPS of a commonly used cloud GPU NVIDIA A100 (19.5 TFLOPS [18])
is approximately 27x as much as that of an Apple A13 Bionic chip [35, 9]. On the
other hand, the lack of DL framework support further prevents DNN researchers from
exploring on-device training application scenarios that would motivate specialized
hardware support for backward operators in the first place, resulting in a Chicken-or-
the-Egg dilemma. As a result, naively training DNNs on edge devices today suffers
from intolerably long training times that overwhelm memory, battery, and can even
cause thermal throttling issues. Consequently, DNN training is considered prohibitive

on-device and is offloaded to cloud servers.

To enable on-device training, we propose Mobile on-device Incremental Learning

(MolL). Since the greatest barrier to on-device training today is the disparity between

1.1. OVERVIEW 3

NVIDIA A100 [19] | Apple A13 Bionic [35, 9]
TDP 400W ~ 6W
Memory 40GB HBM2 4GB LPDDR4X
Memory bandwidth 1,555 GB/s 42.7 GB/s
Number of transistors 5.4 x 1010 8.5 x 107
FP32 19.5 TFLOPs 736 GFLOPs

Table 1.1: Comparison between a typical cloud GPU and a smartphone SoC.

edge and cloud hardware, we adopt an incremental training approach, whereby the
model is pre-trained on a large global dataset in the cloud, and then incrementally
personalized on-device on a user-specific local dataset. This approach avoids a large
portion of on-device training time while still preserving user privacy. For simplicity,
unless otherwise noted, we refer to the pre-trained model as the global model (i.e.,
model trained on the global dataset) and the model after incremental training as the

local model. We delineate the general process of model personalization in Figure 1.1.

To make on-device incremental training both efficient and capable of producing
models with high accuracy comparable to training on centralized global /local datasets
in the cloud, MolL must address two key challenges. First, we must avoid any signifi-
cant sacrifice of global accuracy in favor of local accuracy during incremental training,
since both accuracies are important for realistic application scenarios. Unfortunately,
naively continuing training on-device using the local dataset leads to catastrophic
forgetting [32] whereby the model overfits the local dataset and labels originally rec-
ognized in the global dataset are quickly forgotten early in training. We reproduced
this phenomenon using ImageNet as a global dataset and a bird species dataset as a
local dataset (Section 5.1), where we observed a 69% accuracy drop in global accuracy
after 20 epochs of training, from which the global accuracy never recovered. Second,
the on-device training process must satisfy strict on-device compute and memory
requirements. Prior works that perform model personalization through incremental
learning [29, 58, 58] do not fit within mobile hardware constraints. In particular,
these methods require full model training that can take days to complete a single

epoch on smartphones, and that will exceed on-device memory capacity.

To address the challenges of deploying incremental training to edge devices, MolL
contains three key optimizations that enable on-device training of off-the-shelf pre-
trained models (e.g., from Hugging Face [57] or torchvision [11]) by allowing a con-
figurable trade-off between training time, local accuracy, and global accuracy. First,
global dataset mizing (GDM) mixes a small portion of the global dataset with the
device’s local dataset to ensure previously learned knowledge is not forgotten as new

knowledge is acquired. The size of mixed global data is carefully chosen so as not to

4 CHAPTER 1. INTRODUCTION

88s|
(@ — - i ‘ quulcom @ —)
Pretraining android

Random Global model Local model

initialized model
% Global dataset % Local dataset
User behaviors & preferences

Cloud Server Edge Device

Figure 1.1: Illustration of global/local dataset and global/local model.

overwhelm mobile compute resources while balancing the optimization of both local
and global accuracy. Second, layer freezing (LF) reduces the compute and memory
usage of backpropagation by freezing the weights of the layers at the start of the
network thereby limiting gradient flow to only the remaining layers of the model,
which serves to naturally preserve features learned during pre-training thus preserv-
ing global accuracy. Finally, feature map caching (FMC) further reduces the compute
time of backpropagation by bypassing the forward pass of the frozen layers. Surpris-
ingly, for models used in image classification tasks, the size of cached feature maps
can be even smaller than the original input images; hence, this optimization can help
enable efficient storage needed for the GDM optimization.

Our contributions are summarized as follows:

e We demonstrate that existing on-device accelerators can provide at most a 6.2x
speedup for on-device training time and that this is insufficient, providing at
most a reduction from 3.2 years to 6.4 months. This motivates our approach of

incremental learning to reduce on-device compute/memory requirements.

e We propose MolL that solves two key challenges with on-device incremental
learning: (1) catastrophic forgetting, and (2) mobile hardware constraints. Prior
works either do not preserve global accuracy [0, (1], do not preserve user privacy
[33, 18], do not fit within on-device compute/memory [29, 58, 58], or are limited

to inference and cannot be applied directly to training [22, 12, 23, 19, 5.

e We demonstrate how to tune Moll.’s hyperparameters to enable training of dif-
ferent DNN models by choosing the correct trade-off between local accuracy,

global accuracy, and training time specific to a given application scenario (i.e.,
DNN model and dataset).

e We show that MolLL makes on-device training on today’s mobile smartphones
possible by training models well within an 8-hour overnight period during which

the phone is typically idle and charging. MolL reduces training time of an

1.1. OVERVIEW 5

image classification model, MobileNetV2 [12], from 3.1 years to 48 minutes and
an audio tagging model, YAMNet [15], from 5.2 months to 61 minutes. MolL
achieves local/global on-device accuracy comparable to training on centralized
local/global datasets in the cloud, deviating at most 7.3% for global accuracy

and 0.9% for local accuracy.
The remainder of this thesis is structured as follows:

e In the remainder of Chapter 1, we provide basic background knowledge on
stochastic gradient descent with a focus on two mobile application scenarios

that form the focus of our study, image recognition and audio tagging.

e Chapter 2 compares and contrasts MolLL with previous works on incremental
learning and on-device training. We show that existing prior works do not con-

sider mobile hardware constraints.

e In Chapter 3, we identify key challenges that prevent on-device training from
being possible on today’s smartphones. In particular, mobile accelerators (e.g.
GPUs and NPUs) provide insufficient speed-ups for reducing total training time,
and to make matters worse, there is no DL framework support for running back-
ward operators on mobile accelerators, causing huge overhead that overrides the

benefit of using these accelerators.

e Chapter 4 introduces MolL: with the three proposed key optimizations. Global
dataset mixing alleviates catastrophic forgetting [32] and preserves global accu-
racy. Layer freezing reduces time spent backpropagation time by freezing part of
the DNNs and only training the remaining layers. Feature map caching further

reduces backpropagation time by caching feature maps after the frozen layers.

e Chapter 5 evaluates the effectiveness of the proposed framework on two tasks,
image classification and audio tagging. We show by experiments that we can
achieve training both image classification (48 minutes) and audio tagging (61

minutes) models overnight.

e Chapter 6 concludes this thesis with a discussion of future directions required for
making end-to-end deployment of on-device training practical in today’s mobile
applications through techniques such as automatic local/global dataset reconcil-

iation, and device-assisted labeling of local datasets.

6 CHAPTER 1. INTRODUCTION

1.2 Background

In this section, we will introduce the basics and the background of this thesis including
the formulation and basic algorithms of deep learning and incremental training and

commonly used network architectures for various tasks.

1.2.1 Basics of Deep Learning

A deep neural network (DNN), also named as deep model, is a parameterized function
o0 = M(x;0) where 0 is the model parameters, x stands for the input to the deep
model, and o denotes the output of the deep model. For different tasks, the input
and the output of the deep model may vary. For example, the input can be an RGB
pixel image represented as a matrix, the mel-spectrogram of an audio recording, or
a sequence of words encoded as a one-hot vector. The output can be a vector of
probabilities (how likely the image or the audio is labeled with a class), or a sequence

of vectors standing for the likelihood of the next word in machine translation.

Though different from each other, deep models are often organized in a layer-
by-layer manner and hence can be formulated as follows (see the forward pass in
Figure 1.2),

F, = Ll(X; 91)
F, = L2(F1; 92)

(1.1)
Fn—l = Ln—l(Fn—Q; On—l)
M(x;60) = L,(F,_1;6,)

in which Fy, is called the feature map of the k-th layer. Note that some convolution
networks such as Inception |16, 17] can have branches, but those architectures are still
feedforward when viewed in the building block perspective and hence the formulation

is still applicable.

To measure how well the deep model performs, we have an objective function
L(0;%,y) to measure the “distance” between the network outputs M(x;) and the
ground truth y and by minimizing this objective function we can find the optimal set
of model parameters. For classification tasks, we often use softmax cross-entropy as

our objective function. In this case, £(80;x,y) is defined as,

Forward

1.2. BACKGROUND 7
L(6;x,y)
F.,._1 o —> Backward

| El/ Vel

Vo, L ""‘7F Le—=Vp,L+— -+ «—Vg, Le—V L
Vo, L Vo,L Ve, L

Figure 1.2: Illustration of forward and backward pass of DNN training.

L(0;x,y) = —1, - log (Softmax (o))
—o[y] + log (Z eo[k]) (1.2)
keC

where o represents the outputs of the deep model M(x;8), C stands for all possible

classes, and 1. denotes the one-hot indicator vector, namely,

L =4 (13)
0 i#c

For tagging problems where a dataset item can have multiple labels, we often use

sigmoid cross-entropy loss, namely,

L(6;x,y) = — | Y logo(ok]) + Y log(1 — o(o[k])) (1.4)

key kéy

where o(-) denotes the Sigmoid function,

1
1+e®

o(x) = (1.5)

To train the model on a dataset D which contains pairs of input and output, we

use gradient descent (GD) to iteratively optimize the objective,
0t—|—1 = Ot - ’YVQE(O, D) (16)

The gradient with respect to the parameters of each layer can be solved by back-

propagation (see backward pass in Figure 1.2), namely,

Ve, L =5, . (F)VE, L (1.7)

Fri

8 CHAPTER 1. INTRODUCTION

VoL =g, (00)VE,. L (1.8)

where J[(x) is transpose of the Jacobian matrix [52| of a vector function f with
respect to the variable x.

Note that directly solving the gradient on the full dataset is slow and often pro-
hibitive due to the large memory footprint of storing intermediate activation maps.
In practice, we often use batch gradient descent (BGD) as an alternative instead. The

loss function of BGD is defined as follows,

Lpcp(0; D) = Egui(p) |—;| Z L£(0;xi, ;) (1.9)
(xi,y:)EB
where B denotes the batch uniformly sampled from the dataset D.

Recently, researchers have found momentum-based optimizers (e.g. RMSProp [21]
and Adam [27]) can speed-up the convergence of training. These optimizers introduce
optimizer’s state which we represent as ¢ and we can generalize each optimization
step as,

011, $i+1 = OptimizerStep(g, 0;, ¢¢,7) (1.10)

where g is the gradient of the current batch.

For evaluation or inference of deep models, we can deduce the predictions from the
deep model’s outputs. For classification tasks, we typically choose the index of the
largest outputs as the predicted label. The whole training and evaluation procedure

is illustrated as Algorithm 1.

Algorithm 1 Training and evaluation of a deep model

function FFRAIN(]V7 GInity ¢Inita D, ’}/)
0 «— Olnit
¢ — ¢Init
for i € [0, N) do
for B € Batchify(RandomShuffled(D)) do
8 < Vora 2 xiynen L0 %i, 4i)
0, ¢ < OptimizerStep(g, 0, ¢,7)
end for
end for
return 6
end function
function EVALUATE(O, x)
0+ M(x;0)
return arg max.cc o[c|
end function

Note that in evaluation we often also have a metric function to measure the per-

1.2. BACKGROUND 9

formance of deep models. The main difference between the metric function and the
objective function is that the objective function can be used in gradient descent and
hence is required to be differentiable. But oftentimes, the objective function is not
a direct benchmark tool to show the deep model’s performance. On the other hand,
the metric function does not need to be differentiable and often it can benchmark
the deep model directly. In classification tasks, for example, the metric function we
often used is top-k accuracy which is how many correct predictions among the top
k-th outputs from the deep model. However, top-k accuracy is not differentiable and
hence cannot be used as the objective function. Instead, softmax cross-entropy is

often used to optimize the deep model.

1.2.2 Image Classification with Convolutional Neural Networks

Convolution neural network (CNN) is the backbone of DNNs for numerous computer
vision tasks. For CNN, autonomous driving uses image recognition to detect obstacles
and pedestrians with CNN as its backbone [8]. FaceNet [13], a widely applied face
detection method, also relies on CNN and triplet loss to extract feature vectors of
given facial images. Those feature vectors can then be used to decide whether two

images are in the same cluster.

Among all computer vision tasks, perhaps the most straightforward one to use
CNN is the image classification task. Once trained, the deep model can classify given
images into predefined classes that are present in the training dataset. The finding of
CNN greatly improves the accuracy of image classifier and also many other computer
vision tasks compared to manual feature engineering methods such as SIFT [31]. On
ImageNet [10], a large labelled dataset for object detection and image classification,
convolution-based deep neural networks (e.g. ResNet152) can even outperform the

median of human annotators [19].

In this thesis, our settings and requirements of training CNNs on edge devices
mimic doing incremental updates in the image recognition system of autonomous
cars. The CNN is first pre-trained on the global dataset containing a wide variety
of classes of images in an effort to recognize objects as general as possible. Then
the model is incrementally trained on the user’s local dataset which represents the
images in the user’s frequently-visited places. After incremental training, the deep
model should perform well on the user’s local dataset and simultaneously preserve

the accuracy on the global dataset.

10 CHAPTER 1. INTRODUCTION

[}
°
3
£ 0.25 N
< £ 6000
2 0.00- >

. o
3 g 4000
N o 4 3
5 7025 g 2000
g g
§ -0501, : : : : N
=z 0 20000 40000 60000 80000

Samples
(a) The waveform of a piece of audio. (b) The log mel-spectrogram of the same audio.

Figure 1.3: An example of log mel-spectrogram transformation.

1.2.3 Audio Tagging with Convolutional Neural Networks

Audio tagging is a widely used technique in many applications. For example, in a
musical application users can ask the application to classify their favorite music into
different musical genres. In this scenario, a deep model will be asked to tag a piece of
audio with a pre-defined set of labels. The audio can be seen as a sequence of numbers
each of which represents a sample on the audio waveform. Multiple preprocessing
techniques exist to transform the 1-D audio waveform to a 2-D spectrogram. As an
example, the spectrogram in the mel scale, also known as the mel spectrogram, is a
compact 2-D representation of the original audio (illustrated in Figure 1.3).

One common approach to feed audio to deep models is to treat the spectrogram
as images and then use convolutional networks for tagging. Note that different from
classification problem where an item only falls into one class, in audio tagging a piece
of audio can be tagged with multiple labels, and the sigmoid cross-entropy is used as

the objective function instead for training audio tagging models, namely

L(0:x,y) = = S Ik € yllogaloy) + (1 — [k € y)log(1 — ol0)) (1.11)
keC
where o is the outputs of the deep model.

In this thesis, we follow the same routine to preprocess the audio data and feed
them to a lightweight convolutional network called YAMNet [15]. We mimic the
potential incremental updates to an audio tagging application where the model is
first pre-trained with a large global dataset and then incrementally updated with the
user’s local dataset. After incremental training, the fine-tuned deep model should
achieve better accuracy than the pre-trained model on the local dataset while still

preserving the accuracy on the global dataset.

Chapter 2

Related Works

In this chapter, we provide a high-level comparison of MolL against different cate-

gories of techniques for enabling on-device training and model personalization; de-

tailed comparisons are provided below.

2.1

Efficient On-Device Inference approaches reduce the compute requirements of
on-device inference, but still rely on the cloud for training. In contrast, MolL
conducts training on-device without cloud involvement thereby preserving user

data and model privacy.

Incremental Learning approaches rely on knowledge distillation from a larger
model which is too compute/memory heavy to be applied on-device.In contrast,
MolL tailors the SGD algorithm to run within on-device compute/memory re-

quirements.

Transfer Learning only optimizes local accuracy at the expense of global accu-

racy, whereas MolL. optimizes both during model personalization.

Federated Learning distributes SGD across devices, but sacrifices privacy by
aggregating weights on centralized machines, whereas Mol preserves user data

and model privacy by keeping weights and user data on-device.

Efficient On-Device Inference

Since on-device training suffers from obvious hardware limitations, training workloads

are offloaded to the cloud and only inference is conducted on-device. To improve

the efficiency of on-device inference, researchers have invented multiple techniques

which can be classified into two categories, efficient DNN architectures and deep

compression.

11

12 CHAPTER 2. RELATED WORKS

Different from MolL, prior works mainly focused on improving the efficiency of
on-device inference while training workloads are offloaded to the cloud due to large
compute requirements. To enable real-time inference under strict hardware limita-
tions, prior works either invent efficient DNNs [22, 12, 23] with fewer compute FLOPS
or DNN compression techniques [19, 5] to further speedup DNN inference. However,
training with these lightweight DNNs incurs even more memory footprint |13] than
the naive version (e.g. ResNet-34 [19]) and hence still requires the presence of cloud
hardware. Moreover, the DNN compression techniques incur non-negligible accu-
racy loss and training with compressed networks is still an open research question
[28]. Besides, they also do not resolve the catastrophic forgetting issue. Hence, these

techniques still cannot enable on-device training.

2.2 Incremental Learning

One of the assumptions of deep learning is that the training datasets are prepared
beforehand and evenly distributed. However, unfortunately in real-world scenarios,
the dataset is collected in an incremental manner and the distribution of the collected
dataset can evolve over time. To tackle this challenge, it is natural to also incremen-
tally fine-tuning the existing DNN to the newly collected data. Unfortunately, naively
fine-tuning the DNN suffers notoriously from the catastrophic forgetting problem [32].

While MolL solves catastrophic forgetting by global dataset mixing and layer freez-
ing, most incremental learning literature tackle this challenge by knowledge distilla-
tion [29, 58, 58]. However, these techniques only focus on preserving the global
accuracy and still requires to backpropagate the full model. Hence, these techniques
alone do not solve compute and memory restrictions in on-device training. But they

are orthogonal and can be integrated into MolL to better preserve the global accuracy.

2.3 Transfer Learning

Transfer learning also tackles the accuracy and the computational challenges of DNN
training by starting from an existing pre-trained DNN. However, different from MolL,
transfer learning targets a local task that is different from the pre-training task and
only local accuracy is considered. Transfer learning can be used to improve training
accuracy when the data are not sufficient to train a DNN from scratch. For example,
BERT [(] is a pre-trained language model which is trained on a large unsupervised

corpus’, and the pre-trained BERT model can be fine-tuned using transfer learning to

IBERT was trained on BooksCorpus (800M words) and English Wikipedia (2,500M words) [6].

2.4. FEDERATED LEARNING 13

achieve better accuracy than a model trained from scratch [61]. In computer vision,
pre-training on ImageNet is a de facto standard starting point for object detection
[12]. However, since transfer learning only targets the local task, the accuracy on the
global task still suffers from catastrophic forgetting and hence cannot be used in our

on-device training scenario.

2.4 Federated Learning

Federated learning (FL) alleviates privacy issues associated with collecting user data
when training deep models from scratch in a centralized cloud server. Instead, FL
performs a distributed stochastic gradient descent (SGD) algorithm and only collects
the gradients from the edge devices every few steps. However, most FL approaches |33,

| still require a centralized weight server to aggregate gradients for training. This
cloud dependency incurs potential privacy and security concerns |10, (2] whereas in

MolL the local dataset never leaves the user’s device and hence privacy is guaranteed.

Chapter 3
Challenges of On-device Training

On-device incremental training suffers from two main challenges: (1) alleviating catas-
trophic forgetting and preserving the accuracy on the global dataset, and (2) making
the whole training process fit within the edge device hardware constraints. Unfortu-
nately, current DL frameworks have poor support for on-device training, which causes
a significant overhead when using on-device DL accelerators such as GPUs and NPUs
[53] for training. Hence, we conclude that simply using DL accelerators does not

resolve the challenges.

3.1 Hardware Limitations of Edge Devices

Comparison with Cloud Hardware

Table 3.1 shows the major differences of hardware specifications between cloud and
edge devices. Note that edge devices can range from self-driving cars to IoT devices.
Some of them, e.g. self-driving cars, can be equipped with powerful graphics cards.
However, in this work, we focus on smartphones since they are the most widely used
edge devices today.

There are two major differences in hardware constraints between cloud and edge

devices. First, edge devices have significantly lower memory capacity and speed.

Scenarios | Product | Memory | TDP | FP32 (TFLOPs)
RTX 2080 Ti 11GB GDDR6 250W 13.45
Cloud Server | Tesla V100 16GB HBM2 450W 31.33
TPU v3 32GB HBM2 ~200W 14
Smartphones Apple A13 | 4GB LPDDR4X 6W 0.73
Kirin 990 8GB LPDDR4X 8W 0.89
IoT Devices | Arduino Uno 2KB SRAM <1W

Table 3.1: Comparison between hardware on cloud servers and on edge devices.

14

3.1. HARDWARE LIMITATIONS OF EDGE DEVICES 15

I
o
S

81 cPU 6.13 401 cPU 30.50 cPU 50.91 334.57 cPU
. GPU . GPU 60 mmm GPU . GPU

~
w
vl
o

o
v
o

L

w

o

o

30.89

w
N
o

s)

N

w

o

N
o
o

Latency (ms)
w
o

Latency (ms)
w B
Latency (ms)
N
o
N
o
Latency (m
-
w
o

N
=
o

L

un

o

o

=
o
L

=
w
L
S
o
L

0.12
] ol ol
N=128 N=512 N=1024 N =2048

Figure 3.1: Comparison between mobile CPU and GPU on matrix multiplication kernels.

Though the table shows smartphones can have comparable memory size to cloud
hardware, the memory is unified and shared by the operating system, making the
actual available memory less than that in the specs. In our experiments, we observe
that an application using more than 75% of the total memory can trigger swapping
and can forcefully reboot the smartphone. Moreover, compared to cloud hardware
which is equipped with dedicated memory, the memory throughput is much less on
edge devices. For example, NVIDIA 2080Ti is equipped with GDDR6 memory whose
maximum data transfer rate is 18 Gbits/s per pin [55] whereas LPDDR4X memory
only delivers 4.2 Gbits/s per pin [50] at maximum. Second, the power budget for
edge devices is much more constrained. A typical cloud server is often plugged and
cooled down with air conditioners. In contrast, edge devices are typically running
on batteries in small form factors, and heat produced by their chips can, in turn,
constrain the device and even force it to run at a lower frequency to prevent the
device from overheating.

Limitations on Mobile GPUs

DL accelerators such as GPUs and TPUs [25] have been critical for enabling training
on cloud servers. A natural question to ask is whether using mobile GPUs can achieve
similar benefits when conducting training on-device. To answer this question, we
investigated the best case speedup from using mobile GPUs for on-device training
based on both empirical measurements of performance-critical GPU optimized DNN
operators, and theoretical FLOPS improvements of mobile GPUs over mobile CPUs.

For empirical measurements, we select two widely used kernels in DNNs: 2-
dimensional convolution and matrix multiplication as representative operators. We

measure the latency of these kernels with a variety of hyperparameter configurations

16 CHAPTER 3. CHALLENGES OF ON-DEVICE TRAINING

44.03 55.04 274.43 500 430.15 cPU
60 | 300 - GPU
50 48.82
400
50 250 1
401
2 2 40/ & 2001 £ 300
2% 9 9 9
3 3301 g0 3
© © © © 200
- 201 - - -
204 100 1 80.96
7.40 100 -
10 101 50
0- 0- 0- 0-
kernel_size =1 kernel_size =3 kernel_size =5 kernel_size =7

Figure 3.2: Comparison between mobile CPU and GPU on convolutional kernels.

on both the mobile CPU and GPU. Figure 3.1 shows the comparisons on the matrix
multiplication kernels of two N x N matrices. We observe that using GPUs is only
superior to CPUs when the size of the matrix is large. A similar phenomenon can
also be seen on convolutional kernels (Figure 3.2) where the GPU has clear benefits
over the CPU only when the kernel size is large enough. In particular, we observe
at most a 3.3x speedup from the GPU when kernel size is 5 or 7, which are rare
kernel sizes in CNNs. However, for the common kernel sizes of 1 or 3, the GPU is
either 6x slower than the CPU in the former, or only 14% faster in the latter. These
results contradict the common knowledge that GPUs can run much faster than CPUs
on deep learning based tasks [3]. On mobile phones, GPUs are only useful when the

kernel is sufficiently compute-intensive.

For our theoretical best case speedup, we optimistically considered the manufac-
turer’s stated theoretical FLOPS of mobile GPU (1,720 FLOPS) and mobile CPU
(276 FLOPS'). Hence, the best case speedup for using the mobile GPU is 6.2x and
can shrink the on-device training time of MobileNetV2 for an image classification task
(see Section 5.1.1) from 3.2 years to 6.2 months, which still cannot make on-device
training practical in this scenario. Besides, in practice, the advantages of the GPU

can be undermined by memory, API overheads, and temperature issues.

As a result, we conclude that naively replicating the cloud DNN training process
in the mobile context will incur extremely long training times and is hence infeasible

on today’s mobile devices.

1The Samsung S21 Ultra 5G has 1 core at 2.84 GHz, 3 cores at 2.42 GHz, and 4 cores at 1.80 GHz and hence the
theoretical throughput can be calculated as (2.84 GHz + 3 x 2.4 GHz + 4 x 1.8 GHz) x 16 FLOP /cycle = 276 FLOPS

[54].

3.2. CATASTROPHIC FORGETTING PHENOMENON 17

3.2 Catastrophic Forgetting Phenomenon

The catastrophic forgetting phenomenon [32| naturally arises when performing incre-
mental training on a user’s local dataset, causing accuracy on the global dataset to
diminish as we train the DNN. Our evaluation (Section 5.3.1) reproduces this phe-
nomenon by incrementally training without any global dataset leading to close-to-zero
global accuracy, indicating that the knowledge the DNN learned from the pre-training
process is completely forgotten. In many scenarios of incremental training, retaining
the accuracy of the original dataset is a must-have feature. As an example, a smart
photo application can automatically extract and classify a person’s face from photos.
Though the goal of incremental training is to make the image classifier inside the
application recognize new objects or the faces of the user’s families more accurately,
the classifier should still be able to classify other common objects as usual. A usable
on-device incremental training framework should therefore also aim to alleviate the

forgetting issue and incur affordable accuracy loss on the global dataset.

3.3 Lack of DL Framework Support

To support on-device inference, many hardware vendors design their own dedicated
DL frameworks |24, 60, 38, 51, 50] to optimize DNN workloads on the device. Among
these frameworks, only MNN [24] and TensorFlow Lite [51]| support on-device training,
but this support is still experimental. The major issues for current DL frameworks
to support on-device training come from the absence of the native backward operator
support, which leads to suboptimal performance of the backpropagation algorithm.
For example, Android provides NNAPI [I| which can accelerate mobile inference
using NPUs. On the other hand, TFLite supports GPUs for on-device DNN inference.
However, they have no GPU support for backward operators. Attempting to use these
accelerators for training on-device can cause partitioning of the computational graph
into subgraphs running on CPUs and subgraphs running on accelerators, which results
in undesirable data copies/movements and large overheads that typically negate the

benefit of using these accelerators in the first place.

Chapter 4

Enabling On-device Incremental

Training

In this chapter, we introduce our three key optimizations in MolL to solve the chal-
lenges of on-device incremental training. First, global dataset mixing (GDM) allows
us to alleviate the catastrophic forgetting issue [32]| and to preserve the global dataset
accuracy. Second, layer freezing allows us to further preserve global accuracy and re-
duce computational overheads of backpropagation by reducing the number of layers
being trained. Finally, feature map caching can prune out unnecessary forward passes
on the frozen layers during layer freezing by caching the feature maps. By combining
all these three techniques, we are able to alleviate the catastrophic forgetting issue [32]
and achieve global and local accuracy similar to training on centralized local/global

datasets in the cloud with much lower computational requirements.

4.1 Global Dataset Mixing

[lustrated in Figure 4.1, we propose global dataset mixing (GDM) to mitigate the
issue of catastrophic forgetting section 3.2 by incrementally training the DNN on a
mixture of the local dataset Dy and a small fraction («) of the global dataset Dg.
The hyperparameter « € [0, 1] determines how much data we borrow from the pre-
training dataset. Specifically, instead of just training on Dy, we propose to train on

a mixture of datasets D), which is defined as follows,

Dy = Dy, U SamplePerClass(Dg, «) (4.1)
SamplePerClass(D, o) = U Sample({(z,y) € D]y = k}, a) (4.2)
keC

18

4.2. LAYER FREEZING 19

i Pre-training R @3 Incremental | £,
' training g

Global dataset Global model Local model

SamplePerClass(-,)

| - —— %

| Union Mixed dataset

S

Local dataset

Figure 4.1: Illustration of global dataset mixing.

where Sample(D, o) denotes uniformly randomly sampling « percent entries from the
set D. Note that a = 0 means we borrow nothing from the pre-training dataset and
solely train the deep model on the local dataset (Dy; = D). When a = 1, we train
the deep model on both global and local dataset (Dy; = Dy UDg). An N-epochs
incremental training procedure on the mixed dataset D), can then be formulated as
TRAIN(N, Orandommit; @RandomInits Par,Y) (see Algorithm 1 for details).

To satisfy the restrictive compute and storage requirements of edge devices, we
want « to be as small as possible. In our experiments, we found that only borrowing
1% of the pre-training data (i.e., & = 0.01) is sufficient to preserve accuracy on the

pre-training dataset (see Section 5.3.1).

4.2 Layer Freezing

Practical on-device training requires the computation in training loops to be afford-
able for edge devices. However, naively training on an edge device is two orders of
magnitude slower than that on a model server. As an example, one iteration of back-
propagation on MobileNetV2 on the Samsung Galaxy S21 mobile phone is 173x (6055
ms) slower than on NVIDIA RTX 2080 Ti GPU (35 ms). This gap is mainly due to
the huge difference in available computational resources, as shown in Section 3.1.
We propose to freeze parts of the models and only train the remaining layers
to aggressively reduce the compute requirements, which is illustrated in Figure 4.2.
Specifically, we split the model M(+; @) into two parts, Mp(+; @) denoting the frozen
part and Mg(+; Or) denoting the remaining trainable part of the model, such that,

M(50) = Mp(Mp(-;0r); 0r) (4.3)

20 CHAPTER 4. ENABLING ON-DEVICE INCREMENTAL TRAINING

Forward
—_—
=t vy o
) 2
; -Iayers
\) l -Trainable

L— V L layers
Vgnﬁ

Figure 4.2: Illustration of layer freezing.

During training, we only update the trainable layers’ weights 8z and leave the
frozen layers’ weights @ fixed. Consequently, during backpropagation the gradients
from the frozen layers do not need to be computed, thereby drastically reducing
the training time. Furthermore, during the forward pass, we only need to retain
the feature maps for layers being trained for backpropagation, and hence with layer
freezing we have lower memory footprint, allowing us to use the same batch sizes as
in cloud-based training.

In terms of accuracy, layer freezing further mitigates the forgetting issue since
there are fewer trainable layers, allowing some knowledge from the global dataset
to be preserved. However, it is important to note that the local accuracy can be
affected by the number of trainable layers. Having fewer trainable layers results in less
plasticity in the DNN. In the most extreme case, we can make the whole network not
trainable, which naturally preserves all the pre-trained knowledge but also prevents
personalizing the network to the user’s local dataset. Therefore, we need to carefully
select the number of layers to train. Fortunately, in our evaluation, we observe that
we only need to make a few layers trainable to achieve acceptable local accuracy (see
Section 5.3.2 for details).

4.3 Feature Map Caching

As demonstrated in Figure 4.3, when layer freezing is applied, we observe an important
side effect: across different gradient update steps, if we pass the exact same batch
of data through the frozen layers, we will compute the same feature maps for the
frozen layers. Hence, across different gradient update steps, rather than recomputing
the forward pass of frozen layers for each batch, we can instead cache the feature
maps of the last frozen layer for each training sample and feed the feature map of

the final frozen layer into the first trainable layer. This optimization has several

4.3. FEATURE MAP CACHING 21

The forward pass only needs to be done once p

Forward
—_—
i 3y
") / 2
; -Iayers
\) l -Trainable

L V L layers
Fyrpe = Mp(+;0F) VG L

is fixed and can be cached

Figure 4.3: Illustration of feature map caching.

important characteristics. First, this optimization does not affect the local/global
accuracy, since we are simply caching computation. Second, we only need to cache
the feature maps of the last n-th frozen layer, since gradients will not flow to preceding
layers. Third, as the model is updated, we can still re-use the cached feature map in
subsequent epochs (i.e., it does not become stale) since the preceding layer weights
are frozen, effectively freezing the feature maps for a given input sample. Note that
besides samples from the training set, we also cache feature maps for samples from

the validation set to speed up evaluation.

Algorithm 2 MolL: Mobile Incremental Training Framework

function TRAIN(N7 elnita (Z)Pre—Traineda DG7 DL; «, 7)

Dy < Dy, USamplePerClass(Dg, «) > Global dataset mixing
[0Fr; Or] < O

¢ — ¢Init

for (x;,y;) € Dy do > Cache feature maps to the disk

h; + MF(XZ‘; 0F)
Store h; to the disk.
end for
for i € [0,N) do
for B € Batchify(RandomShuffled(D,,)) do
For each item (x;,y;) € B, read corresponding h; from the disk.
g VGRﬁ > xiyiyes LMr(hi; Or), y;) > Layer freezing
0r, ¢ < OptimizerStep(g, Or, @,)
end for
end for
return [0F; Og]
end function

In Algorithm 2, we show how to augment the core SGD training algorithm to
incorporate MolLl’s three techniques (global dataset mixing (GDM), layer freezing

(LF), feature map caching (FMC)) for enabling on-device incremental training.

Chapter 5

Evaluation

MolL allows us to reduce total training time to within a realistic time budget of
less than an hour so it can easily be performed overnight or when charging. We
reduce image classification training time from 3.2 years to 0.8 hours and audio tagging
training time from 0.4 years to 0.5 hours, thereby demonstrating that MolL. makes
model personalization possible on today’s mobile smartphones.

Currently, we mostly focused on image classification and audio tagging models,
since these are common mobile use cases for which realistic scenarios for on-device
training exist. Supporting additional models requires intensive engineering effort and
is part of our future work. In particular, there is no major framework support for
on-device training, and, as result, deploying the training stage of a new task/model
requires re-implementing the entire training loop, including data pre-processing, on-
device. While generalizing MolL to other tasks may have different trade-offs, e.g., on
global dataset mixing and layer freezing (as demonstrated in our ablation study in
Section 5.3), we believe that it is conceptually straightforward to apply MolL to new
tasks/models, as it does not impose any major restrictions on the training datasets,

loss functions, and optimizers.

5.1 Experimental Settings

The experimental platform we used is Samsung Galaxy S21 Ultra 5G [11] equipped
with Snapdragon 888 SoC. Figure 5.1 shows one of our real training workloads on
the device. Although production builds of TensorFlow Lite (TFLite) [51] only ship
with support for inference operators, we can enable portable CPU-based implemen-
tations of backward operations by recompiling TensorFlow Lite with FlexDelegate

[44] enabled'. Unless otherwise noted, our mobile implementation strictly uses the

1The TFLite we use is built from GitHub source with commit 316726a03e6.

22

5.1. EXPERIMENTAL SETTINGS 23

S A{ R 100%8

MobileNN

4 Auto scroll

Figure 5.1: A demo of a real training workload on a smartphone.

mobile CPU, since currently there is no support from mobile SoC vendor libraries or
DL frameworks for backward operators on mobile GPUs nor neural processing units
(NPUs).

5.1.1 Incremental Classification with MobileNetV?2

In this scenario, we consider a hypothetical user that is an avid bird watcher and has
compiled a local dataset of photos of various birds (inputs) and their corresponding
species (labels). The user wants to tune the image classifier on the device to better
classify those specific bird species while preserving the ability to recognize common
objects.

To emulate this use case, we mimic the user’s routine by using ImageNet [39] as
the global dataset, and the “225 bird species” dataset [11] from Kaggle as the local
dataset, as illustrated in Figure 5.2. The ImageNet dataset is composed of 1,000
classes of images which denote common objects that an image classifier could be
asked to classify. The 225 bird species dataset contains 225 classes of birds species,
representing the dataset that the user collects. We use MobileNetV2 as our model
architecture, which is widely used on smartphones for object detection and image

classification [12, 59]. The global model is constructed in the cloud by training on

24 CHAPTER 5. EVALUATION

v B PRSI,

(a) Global dataset D¢ (ImageNet) (b) Local dataset Dy, (225 bird species dataset)

Figure 5.2: Examples in the global dataset D¢ and the local dataset Dy, in image classification.

Local ‘ Global ‘ Local ‘ Global

Dog Dog, Bark, Domestic animals, | Rain Rain, Natural sounds
Animal

Rooster | Crowing, Rooster, Livestock, | Sea waves Waves, Ocean, Natural sounds
Animal

Pig Pig, Oink, Livestock, Animal Laughing Human voice, Laughter

Cow Cattle, Moo, Livestock, Animal | Keyboard typing | Typing, Computer keyboard

Table 5.1: Examples of manual mappings from labels in the local dataset to labels in the global
dataset.

ImageNet using 4 RTX 2080 Ti GPUs?. We use top-1 accuracy as a key metric to

measure the model accuracy on both global and local datasets.

5.1.2 Audio Tagging with YAMNet

In this scenario, we consider a user who has downloaded a general-purpose audio
tagging application and wants to customize the DNN to better recognize nearby
environmental sounds (e.g., clock ticks, can opening, and fireworks). For example,
this type of audio tagging technique could be useful for home surveillance camera
deployments that provide users with a summary of important detected activity over
the course of a day.

Different global and local audio datasets often have semantically overlapping but
non-identical label names that must be reconciled before training. This scenario is
more commonly encountered in audio tagging than image classification since unlike
image classification tasks, audio tagging is often framed as a multi-label classification
problem. Hence, it is common for a single audio sample to have multiple valid labels.
For example, an audio sample of a barking dog may be labeled only with “Dog”
in the local dataset, where the local label “Dog” semantically maps to the global
labels “Animal” and “Bark” from the global dataset (more examples are shown in

Table 5.1). Hence, in order to train on combined local and global datasets, labels of

2All hyperparameters to pre-train the deep model identical to the original paper [42].

5.2. OVERALL TRAINING TIME AND ACCURACY 25

the local dataset must be mapped to labels of the global dataset so that local training
samples can be re-labeled accordingly®. This reconciliation is important to perform
since otherwise the model may be arbitrarily punished for correctly predicting missing
labels and may not learn effectively. We leave techniques for automatically reconciling
local and global labels to future work, and instead leave the task of label reconciliation
to the user.

The model we use is YAMNet [45], which is a commonly used DNN model for
audio tagging tasks on smartphones. To measure the model accuracy, we use the
same metric as prior works [20], Area Under the Curve (AUC) using the trapezoidal
rule, as our metric function. In the pre-training process, we trained 10 epochs on
AudioSet using Adam optimizer with a learning rate 0.0005. The training set contains
19,070 items and the validation set contains 17,477 items®. The pre-trained model
can achieve nearly the same AUC score (0.956) as the official model (0.950). The local
dataset we use is the ESC-50 dataset [37] containing 2,000 audios of 50 classes. We
use 1,600 audios as the training set and the remaining 400 audios as the validation

set.

5.2 Overall Training Time and Accuracy

In this section, we present the training time and accuracy results for each of the
two application scenarios. Given that naively training entire models from scratch on
the phone can take years, we found it beneficial to conduct experiments exploring
the local and global accuracy trade-offs of our optimizations on desktop GPUs first.
Nevertheless, unless otherwise noted, all of our cited training times are based on real
mobile hardware (Samsung S21 Ultra 5G), which we obtain by extrapolating from

the steady-state throughput of running for 30 training iterations.

Image Classification

Figure 5.3 compares the overall total training time, global accuracy, and local accuracy
of three proposed techniques on personalizing an image classifier. GDM(a) denotes
global dataset mixing with « as the percent of the global dataset we mixed in for
on-device training, LF(n) denotes freezing all but except the last n layers, and FMC
indicates feature map caching.

As shown in Figure 5.3a and Figure 5.3b, the naive approach of training on both

the full global and the local dataset from scratch until convergence delivers the best

3We choose to map local to global labels, since the global labels are more diverse and subsume the local labels.
4Note that some audio samples in AudioSet are not available due to copyright issues.

26 CHAPTER 5. EVALUATION

ol 0.717 10{0.068 0984 (965 0966 27595
0.644 0.644 100]
3 0.6 3 o8] 74x
2 e
> —
Sos| 0.502 g Z10]
<< © o
s c 061 g 371.2
O 0.44 o =
® © o
= S £ 1074
© 031 © 0.4 <
> > o
- - =
Q0.21 Q
202 S 10 4
~ = 0.2
0.1
100 4
0.0 0.0 1

Training GDM(1%) GDM(1%)+ GDM(1%)+ Training GDM(1%) GDM(1%)+ GDM(1%)+ Training GDM(1%) GDM(l%)+ GDM(1%)+
from scratch LF(1) LF(1)+FMC from scratch LF(1) LF(1)+FMC from scratch LF(1) LF(1)+FMC

(a) Accuracy on global valida- (b) Accuracy on local validation (c) Time for training till conver-
tion set D¢. set Dr,. gence.

Figure 5.3: Overall results of personalizing MobileNetV2 on image classification.

1.0
0956 0940 0947 0.947 10lo0ss 0994 0994 0.994 3779
10° 4
08 osl
=
() 0] ~ 491x
0.6 o °
é S 0.6 £ 107/
0 n]
O (@) g
o) =) <
< o4 < 0.4 c
0
F 101 7.7 Overnight (8h
0.2 0.2 yx
1.9
1.8x
100 4 l\l.o
0.0 ” 0.0 —)
Tra\r\\r\g GDM(O A% M(‘) lo/o\‘\' M- 1%+ Tra\“‘“g GDN\\O A% M(Q 1%) MO 19%)+ _“ammg oML o) o, 19+ "o, 10+
from S &v CR@TIC from S eP CR@+MC crom seratc® CPMFG) O3+ FMC

(a) Accuracy on global valida- (b) Accuracy on local validation (c¢) Time for training till conver-
tion set Dg. set Dr,. gence.

Figure 5.4: Overall results of personalizing YAMNet on audio tagging.

global accuracy and close to the best local accuracy. In comparison, mixing only
1% of the global dataset (GDM(1%)) suffers from the catastrophic forgetting issue
[32] and loses 21.5% in global accuracy. However, when we only train the last layer
and freeze the remaining layers (LF (1)), the forgetting issue is alleviated by a large
margin and consequently, we only observe 6.6% accuracy loss on the global dataset.
As discussed in section 4.3, feature map caching does not affect the accuracy on both
global and local datasets (the accuracy stays the same).

Though accuracy loss of 6.6% is non-negligible, we trade off this accuracy loss
with the reduced training time, which is compared in Figure 5.3c. Though training
from scratch can achieve better global accuracy, every training epoch consumes 184

hours, and training to convergence requires 150 epochs, which adds up to 3.2 years,

5.3. ABLATION STUDIES 27

making it infeasible to conduct naive training on such devices. In contrast, by training
incrementally from a pre-trained model using GDM(1%), we only need 60 epochs and
the training set (i.e. 1%Dg U Dy) is much smaller than that of the baseline (i.e.
D¢ U Dyp). This can drastically reduce the whole training time to 371.2 hours (74x
speed-up). Applying LF(1) together with GDM(1%) can reduce the training time to
12.3 hours (30.1x speed-up) since we only need to train the last layer that reduces
overall backpropagation time. Feature map caching® can further reduce the training
time to 48 minutes (15.7x speed-up) since we eliminate forward pass time by skipping
computing feature maps for all but the last layer. In combination, these optimizations
reduce total training time from 3.2 years down to 48 minutes which is well within
an 8-hour overnight period when the device is idle for training. Hence, MolLL makes

model personalization possible on today’s smartphone devices.

Audio Tagging

In the scenario of audio tagging, we observe similar conclusions in Figure 5.4. The
only difference is that the forgetting issue is less severe. This is mainly due to the
reconciliation process we did for local dataset labels and hence the distribution on
the local dataset is similar to the global dataset. As shown in Figure 5.4a, when just
mixing a portion of global dataset (i.e., GDM(0.1%)), we only observe 1.6% AUC
score decrease. Layer freezing can preserve more global accuracy (0.9% accuracy
loss). On the local dataset (Figure 5.4b), all proposed techniques achieve almost
identical results.

In terms of the training time (Figure 5.4c¢), the baseline, namely naively training
from scratch for 10 epochs on both datasets, takes 5.2 months, which is impractical
for edge devices. By leveraging 0.1% of the global dataset we can reduce the training
time to 3.8 hours (491x speed-up). With layer freezing, we can further shrink the
training time to 0.9 hours (4.1x speed-up). By applying feature map caching ©, we
can achieve the training time of 61 minutes (1.8x speed-up), well within a limit of

overnight charging scenario.

5.3 Ablation Studies

In this section, we discuss the trade-off between accuracy and training time by choos-

ing different hyperparameters for global dataset mixing and layer freezing.

5Note that the cached feature maps only take 1,280 FP32 values (5,120 bytes), whereas 3 x 2242 ~ 1.5 x 10°
integers (602,112 bytes) to store the original image (117.6x storage reduction).

6The raw 10-seconds audio waveform takes 625 KB each while the feature map of each audio waveform takes 960
KB (50% more storage).

28 CHAPTER 5. EVALUATION

371.2

0.7 —— GDM(a =0%) 3173

—— GDM(a =0.1%)

1.00
0.6 GDM(a = 0.5%) PRIV | 274.2
GDM(a =1.0%) S S it = s I 1 263.4

P

0.95 /

(h)

N
=]
3

Training Time
&
g

Top-1 Accuracy
Top-1 Accuracy

,ﬂ
S
3

—— GDM(a =0%)

~—— GDM(a=0.1%)
GDM(a =0.5%)

‘ GDM(a =1.0%)

w
S

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Epochs Epochs GDM(0%) GDM(0.1%) GDM(0.5%) GDM(1%)

(a) Accuracy curve on the global (b) Accuracy curve on the local dataset (c) Total training time.
dataset Dg. Dy.

Figure 5.5: Comparison of different sharing ratio « of global dataset mixing in image classification.

2774

2500

— GDM(a=0%) 0.995
0.955 —— GDM(a=0.1%)
GDM(a = 0.5%)
0.990

GDM(a = 1.0%) 2000
0.950

0.985

0.945 1500 1490

0.980
0.940

AUC Score
AUC Score

0.975 "o 1000

Training Time (min)

0.935

0.970 —— GDM(a =0%)
—— GDM(a=0.1%) 500 462
GDM(a = 0.5%)
GDM(a = 1.0%) 206

0.930

0.965

0.925

8 10

4 6 4 6
Epochs Epochs GDM(0%) GDM(0.1%) GDM(0.5%) GDM(1.0%)

(a) Accuracy on the global dataset D¢. (b) Accuracy on the local dataset Dy. (c¢) Total training time.

Figure 5.6: Comparison of different sharing ratio « of global dataset mixing in audio tagging.

5.3.1 Global Dataset Mixing

In global dataset mixing, we must select the hyperparameter « representing what
percentage of the global dataset to keep on-device to mix with our local dataset when
training. Large o (< 100%) will help retain global accuracy and will increase total
training time whereas small o (> 0%) will suffer from catastrophic forgetting [32]
that reduces global accuracy but decreases total training time.

Figure 5.5 explores global dataset mixing with different sharing ratios a on the
image classification task. If we just do incremental training on the local dataset (i.e.,
GDM(0)) the accuracy on the global dataset will wane very quickly (Figure 5.5a),
which is known as catastrophic forgetting [32]. In contrast, as we mix more and
more global data for incremental training, the forgetting issues become less and less
severe. On the local dataset, we observe the accuracy curves are almost overlapped
(Figure 5.5b), demonstrating that global dataset mixing itself does not bring any

accuracy penalty on the local dataset. However, even though training on more global

5.3. ABLATION STUDIES 29

371
0.70
2
0.65 1.00 10
=
0.60 " 29.20
0.95 .
3 g £
© 0.55 g = 18.39
5
9 Y = 1231
& o050 209 £
- - %
& & ©
0.45 o
° 2 085 =
0401 Gom(1.0%) — GDM(1.0%)
—— GDM(1.0%)+LF(3) 0.80 —— GDM(1.0%)+LF(3)
0.35 GDM(1.0%)+LF(2) GDM(1.0%)+LF(2)
GDM(1.0%)+LF(1) GDM(1.0%)+LF(1) 10°
0.30 0.75
0 10 20 30 40 50 60 0 10 20 30 40 50 60 GDM(1%) GDM(1%)+ GDM(1%)+ GDM(1%)+
Epochs Epochs LF(3) LF(2) LF(1)

(a) Accuracy on the global dataset D¢g. (b) Accuracy on the local dataset Dr. (c) Total training time.

Figure 5.7: Comparison among different numbers of trainable layers n for layer freezing LF(n) in
image classification.

0.9575 0.995

102 90 78

0.9550 0.990

0.9525 0.985

0.9500 0.980
10t

AUC Score
AUC Score

0.9475
0.975

Training Time (min)

0.9450

0.970 / — GDM(a=0.1%)

—— GDM(a = 0.1%)+LF(3)

~——— GDM(a = 0.1%)+LF(2)
GDM(a =0.1%)+LF(1)

— GDM(a=0.1%)
0.9425] —— GDM(a=0.1%)+LF(3)
—— GDM(a =0.1%)+LF(2)

GDM(a = 0.1%)+LF(1)

0.965 10°

0.9400

0 2 4 6 8 10 0 2 4 6 8 10 GDM(O-\"/"’GDM(OA"M om0 A% E p(0.1%)+
Epochs Epochs LFG3) LF(2) LF(D

(a) AUC on the global dataset Dg¢. (b) AUC on the local dataset Dry. (c) Total training time.

Figure 5.8: Comparison of accuracies of different number of trainable layers n for layer freezing
LF(n) in audio tagging.

data is better to preserve the global accuracy, we also increase the number of batches
in every epoch, which consequently increases the total training time (Figure 5.5¢). As
a trade-off between the training time and the global accuracy, for image classification

we choose the sharing ratio o = 1%.

Figure 5.6 compares different sharing ratios on the audio tagging task. On the
global dataset, the forgetting issue still exists but the level of forgetting is much less
severe than that of the image classification (Figure 5.6a). With at most 3% global
accuracy loss on all explored « values, we chose to train YAMNet for only 10 epochs
since we found the model converged on the local dataset. On the local dataset, mixing
more global dataset incurs slight but negligible local accuracy loss (< 1%) Figure 5.6b.

In this scenario, we choose to mix o = 0.1% of the global dataset.

30 CHAPTER 5. EVALUATION

5.3.2 Layer Freezing

Figure 5.7 compares different numbers of trainable layers for image classification. On
the global dataset, we found that the more layers being frozen, the better we can
preserve accuracy on the global dataset (Figure 5.7a). However, we observe slight
local accuracy loss (Figure 5.7b). This is mainly attributed to less plasticity of the
network due to layer freezing. However, we trade off this slight local accuracy loss
with huge training time benefits. As shown in Figure 5.7¢c, training the last 3 layers
still requires training time of 29.2 hours while only training the last layer requires
only 12.3 hours. In this scenario, we chose to only train the last layer since we can
already achieve high accuracy on the local dataset (96.6%).

Figure 5.8 shows the comparison in the scenario of audio tagging. On the global
dataset, though the catastrophic forgetting issue |32] is much less severe, we still found
that training the last layer results in the least accuracy loss on the global dataset
(Figure 5.8a). However on the local dataset, training just the last layer converges
much slower than training more layers (Figure 5.8b). Asshown in Figure 5.8¢, training
more layers does not significantly increase the training time and hence we chose to
train the last 3 layers (i.e., LF(3)).

Chapter 6

Conclusion

6.1 Summary

In this thesis, we discuss the limitations of current DNN deployment where model
personalization can only be done in the cloud, which suffers from privacy and net-
working issues. Naively porting training directly from the cloud to the device results
in training times on the order of months and even years due to mobile hardware
limitations. To tackle these challenges, we propose MolL, where we tailor the train-
ing process to mobile hardware constraints. MolLL can enable on-device incremental
training of models typically only trained from scratch in the cloud, reducing on-device
training time from years to merely a few hours. Further, local accuracy can be opti-
mized without suffering global accuracy loss from catastrophic forgetting [32]. While
on-device training is generally constrained by hardware limitations, MolIL proves that
on-device training is possible and can alleviate privacy and networking issues during

incremental training.

6.2 Limitations and Future Works

Though in this thesis we have shown on-device incremental training is practical by
our proposed techniques, it has the following known limitations. First, for more
complicated tasks such as language modeling, we need to train more layers to achieve
useable accuracy. However, training more layers results in increasing training time.
In this case, training DNNs for those tasks is still considered intractable and requires
further considerations. Second, as mentioned in the discussion for audio tagging, we
assume the local dataset is well-labeled. However, in practice, the user’s dataset is
often unlabeled, insufficiently labeled, or has noisy labels. For example, in a photo

app, the user may be unwilling to label a large number of photos. In this scenario,

31

32 CHAPTER 6. CONCLUSION

the on-device model personalization framework should be responsible to provide a
user-friendly interface for labeling. Third, in this work, we assume we know the
best hyperparameters for global dataset mixing and layer freezing beforehand by
measuring accuracy on cloud servers. However, in practice, the hyperparameters
need to be tuned automatically on the user’s device, which can result in multiple
training runs.

Hence, we propose several future directions. First, it has been shown that the
training set can be further eliminated by importance sampling [26]. This technique
is of great importance in the context of on-device training. By training on less data,
we can reduce the batches needed, and hence the network can converge faster. Sec-
ond, in this work, we only use CPUs for training. However, modern smartphones
are equipped with dedicated deep learning accelerators such as GPUs and NPUs. By
leveraging these accelerators, on-device incremental training can achieve better com-
pute efficiency. Training DNNs on-device with a combination of these accelerators
is still an open research question. Finally, we could explore other efficient training
methods and DNN architectures. For example, we could combine MolL. with orthog-
onal techniques like quantize training that use lower precision floating numbers to
train a DNN. Moreover, we could also use neural architecture search [63] to find DNN
architectures that converge faster than the others. In the future, we could also explore
coordination methods for decentralized distributed training among multiple nearby

edge devices.

Bibliography

1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

Android NDK. Neural Networks API | Android NDK. URL: https://developer .android.
com/ndk/guides/neuralnetworks (visited on 11,/24/2021).

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4: Optimal Speed
and Accuracy of Object Detection”. In: CoRR abs/2004.10934 (2020). arXiv: 2004 . 10934.
URL: https://arxiv.org/abs/2004.10934.

Ebubekir BUBER and Banu DIRI. “Performance Analysis and CPU vs GPU Comparison for
Deep Learning”. In: 2018 6th International Conference on Control Engineering Information
Technology (CEIT). 2018, pp. 1-6. DOI: 10.1109/CEIT.2018.8751930.

Computer Vision Machine Learning Team. An On-device Deep Neural Network for Face De-
tection. Nov. 2017. URL: https://machinelearning.apple.com/research/face-detection.

Matthieu Courbariaux and Yoshua Bengio. “BinaryNet: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1”. In: CoRR abs/1602.02830 (2016). arXiv:
1602.02830. URL: http://arxiv.org/abs/1602.02830.

Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: CoRR abs/1810.04805 (2018). arXiv: 1810.04805. URL: http://arxiv.
org/abs/1810.04805.

Chi Nhan Duong et al. “MobiFace: A Lightweight Deep Learning Face Recognition on Mobile
Devices”. In: CoRR abs/1811.11080 (2018). arXiv: 1811.11080. URL: http://arxiv.org/
abs/1811.11080.

Hironobu Fujiyoshi, Tsubasa Hirakawa, and Takayoshi Yamashita. “Deep learning-based image
recognition for autonomous driving”. In: JATSS Research 43.4 (2019), pp. 244-252. 1SSN: 0386-
1112. pDOI: https://doi.org/10.1016/j.1iatssr.2019.11.008. URL: https://www .
sciencedirect.com/science/article/pii/S0386111219301566.

GadgetVersus. Apple A18 Bionic Specs. URL: https://gadgetversus . com/ processor /
apple-al3-bionic-specs/.

Jonas Geiping et al. “Inverting Gradients - How easy is it to break privacy in federated learn-
ing?” In: CoRR abs/2003.14053 (2020). arXiv: 2003.14053. URL: https://arxiv.org/abs/
2003.14053.

Gerry. 225 Bird Species. Sept. 2020. URL: https://web.archive.org/web/20200920135615/
https://www.kaggle.com/gpiosenka/100-bird-species.

33

https://developer.android.com/ndk/guides/neuralnetworks
https://developer.android.com/ndk/guides/neuralnetworks
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/10.1109/CEIT.2018.8751930
https://machinelearning.apple.com/research/face-detection
https://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1811.11080
http://arxiv.org/abs/1811.11080
http://arxiv.org/abs/1811.11080
https://doi.org/https://doi.org/10.1016/j.iatssr.2019.11.008
https://www.sciencedirect.com/science/article/pii/S0386111219301566
https://www.sciencedirect.com/science/article/pii/S0386111219301566
https://gadgetversus.com/processor/apple-a13-bionic-specs/
https://gadgetversus.com/processor/apple-a13-bionic-specs/
https://arxiv.org/abs/2003.14053
https://arxiv.org/abs/2003.14053
https://arxiv.org/abs/2003.14053
https://web.archive.org/web/20200920135615/https://www.kaggle.com/gpiosenka/100-bird-species
https://web.archive.org/web/20200920135615/https://www.kaggle.com/gpiosenka/100-bird-species

34 BIBLIOGRAPHY

[12] Ross B. Girshick et al. “Rich feature hierarchies for accurate object detection and semantic
segmentation”. In: CoRR abs/1311.2524 (2013). arXiv: 1311.2524. URL: http://arxiv.org/
abs/1311.2524.

[13] GitHub - albanie/convnet-burden: Memory consumption and FLOP count estimates for con-
vnets. URL: https://github.com/albanie/convnet-burden (visited on 12/22/2021).

[14] GitHub - pytorch/vision: Datasets, Transforms and Models specific to Computer Vision. https:
//github.com/pytorch/vision.

[15] Yu Gong et al. “EdgeRec: Recommender System on Edge in Mobile Taobao”. In: CIKM ’20:
The 29th ACM International Conference on Information and Knowledge Management, Virtual
Event, Ireland, October 19-23, 2020. Ed. by Mathieu d’Aquin et al. ACM, 2020, pp. 2477-2484.
DOI: 10.1145/3340531.3412700. URL: https://doi.org/10.1145/3340531.3412700.

[16] Song Han, Huizi Mao, and William J. Dally. “Deep Compression: Compressing Deep Neural
Network with Pruning, Trained Quantization and Huffman Coding”. In: 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2016. URL: http:
//arxiv.org/abs/1510.00149.

[17] Awni Y. Hannun et al. “Deep Speech: Scaling up end-to-end speech recognition”. In: CoRR
abs/1412.5567 (2014). arXiv: 1412.5567. URL: http://arxiv.org/abs/1412.5567.

ndrew Hard et al. “Federated Learning for Mobile Keyboard Prediction”. In: Co abs .
18] And Hard 1. “Fed d L ing for Mobile Keyboard Prediction”. In: CoRR abs/1811.03604
(2018). arXiv: 1811.03604. URL: http://arxiv.org/abs/1811.03604.

[19] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2016.

[20] Shawn Hershey et al. “CNN Architectures for Large-Scale Audio Classification”. In: CoRR
abs/1609.09430 (2016). arXiv: 1609.09430. URL: http://arxiv.org/abs/1609.09430.

[21] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Lecture 6a - Overview of mini-batch
gradient descent. URL: https://www.cs.toronto.edu/ tijmen/csc321/slides/lecture_
slides_lec6.pdf. Page 15.

[22] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications”. In: CoRR abs/1704.04861 (2017). arXiv: 1704 .04861. URL: http://
arxiv.org/abs/1704.04861.

[23] Forrest N. Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
<1MB model size”. In: CoRR abs/1602.07360 (2016). arXiv: 1602 .07360. URL: http: //
arxiv.org/abs/1602.07360.

[24] Xiaotang Jiang et al. “MNN: A Universal and Efficient Inference Engine”. In: MLSys. 2020.

[25] Norman P. Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Processing Unit”. In:
CoRR abs/1704.04760 (2017). arXiv: 1704.04760. URL: http://arxiv.org/abs/1704.04760.

https://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
https://github.com/albanie/convnet-burden
https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://doi.org/10.1145/3340531.3412700
https://doi.org/10.1145/3340531.3412700
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
https://arxiv.org/abs/1811.03604
http://arxiv.org/abs/1811.03604
https://arxiv.org/abs/1609.09430
http://arxiv.org/abs/1609.09430
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1704.04760

BIBLIOGRAPHY 35

[26] Angelos Katharopoulos and Francois Fleuret. “Not All Samples Are Created Equal: Deep
Learning with Importance Sampling”. In: Proceedings of the 35th International Conference on
Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine
Learning Research. PMLR, Oct. 2018, pp. 2525-2534. URL: https://proceedings . mlr .
press/v80/katharopoulosi8a.html.

[27] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. URL:
http://arxiv.org/abs/1412.6980.

[28] Hao Li et al. “Training Quantized Nets: A Deeper Understanding”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017.
URL: https://proceedings.neurips.cc/paper/2017/file/1c303b0eed3133200c£715285011bde4d-
Paper.pdf.

[29] Zhizhong Li and Derek Hoiem. “Learning without Forgetting”. In: CoRR abs/1606.09282
(2016). arXiv: 1606.09282. URL: http://arxiv.org/abs/1606.09282.

[30] Ji Lin, Chuang Gan, and Song Han. “TSM: Temporal Shift Module for Efficient Video Under-
standing”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). Oct. 2019.

[31] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In: International

journal of computer vision 60.2 (2004), pp. 91-110.

[32] Michael McCloskey and Neal J. Cohen. “Catastrophic Interference in Connectionist Networks:
The Sequential Learning Problem”. In: ed. by Gordon H. Bower. Vol. 24. Psychology of Learn-
ing and Motivation. Academic Press, 1989, pp. 109-165. DOI: https://doi.org/10.1016/
S0079-7421(08)60536-8. URL: https://www.sciencedirect.com/science/article/pii/
S0079742108605368.

[33] H.Brendan McMahan et al. “Federated Learning of Deep Networks using Model Averaging”. In:
CoRR abs/1602.05629 (2016). arXiv: 1602.05629. URL: http://arxiv.org/abs/1602.05629.

[34] Austin Myers et al. “Im2Calories: Towards an Automated Mobile Vision Food Diary”. In:
2015 IEEFE International Conference on Computer Vision (ICCV). 2015, pp. 1233-1241. DOI:
10.1109/ICCV.2015. 146.

[35] NanoReview. Apple A18 Bionic: specs and benchmarks. URL: https://nanoreview.net/en/

soc/apple-al3-bionic.

[36] Jinhwan Park et al. “Fully Neural Network Based Speech Recognition on Mobile and Embedded
Devices”. In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al.
Vol. 31. Curran Associates, Inc., 2018. URL: https://proceedings . neurips . cc/paper/
2018/file/42299f06ee419aa5d9d07798b56779e2-Paper . pdf.

[37] Karol J. Piczak. “ESC: Dataset for Environmental Sound Classification”. In: Proceedings of the
28rd ACM International Conference on Multimedia. MM ’15. Brisbane, Australia: Association
for Computing Machinery, 2015, pp. 1015-1018. 1SBN: 9781450334594. DOI: 10.1145/2733373.
2806390. URL: https://doi.org/10.1145/2733373.2806390.

https://proceedings.mlr.press/v80/katharopoulos18a.html
https://proceedings.mlr.press/v80/katharopoulos18a.html
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2017/file/1c303b0eed3133200cf715285011b4e4-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/1c303b0eed3133200cf715285011b4e4-Paper.pdf
https://arxiv.org/abs/1606.09282
http://arxiv.org/abs/1606.09282
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://doi.org/10.1109/ICCV.2015.146
https://nanoreview.net/en/soc/apple-a13-bionic
https://nanoreview.net/en/soc/apple-a13-bionic
https://proceedings.neurips.cc/paper/2018/file/42299f06ee419aa5d9d07798b56779e2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/42299f06ee419aa5d9d07798b56779e2-Paper.pdf
https://doi.org/10.1145/2733373.2806390
https://doi.org/10.1145/2733373.2806390
https://doi.org/10.1145/2733373.2806390

36

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

53]

[54]

BIBLIOGRAPHY

PyTorch Mobile. URL: https://pytorch.org/mobile/home/ (visited on 10/28/2021).

Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: CoRR
abs/1409.0575 (2014). arXiv: 1409.0575. URL: http://arxiv.org/abs/1409.0575.

Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: Interna-
tional Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211-252. DOI: 10.1007/s11263-
015-0816-7.

Samsung Galaxy S21 Ultra 5G | Samsung CA. https://www.samsung.com/ca/smartphones/
galaxy-s21-ultra-5g/. Jan. 2022.

Mark Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bottlenecks”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A Unified Embedding for
Face Recognition and Clustering”. In: CoRR abs/1503.03832 (2015). arXiv: 1503.03832. URL:
http://arxiv.org/abs/1503.03832.

Select TensorFlow operators | TensorFlow Lite. TensorFlow. URL: https://www.tensorflow.
org/lite/guide/ops_select (visited on 10/30/2021).

Sound classification with YAMNet | TensorFlow Hub. URL: https://www.tensorflow.org/
hub/tutorials/yamnet (visited on 10/25/2021).

Christian Szegedy et al. “Going Deeper with Convolutions”. In: CoRR abs/1409.4842 (2014).
arXiv: 1409.4842. URL: http://arxiv.org/abs/1409.4842.

Christian Szegedy et al. “Rethinking the Inception Architecture for Computer Vision”. In:
CoRR abs/1512.00567 (2015). arXiv: 1512.00567. URL: http://arxiv.org/abs/1512.00567

TechPowerUp. NVIDIA A100 PCle Specs. https://www . techpowerup . com/gpu- specs/
al00-pcie.c3623. Dec. 2021.

TechPowerUp GPU Database. NVIDIA A100 PCle Specs. URL: https://www.techpowerup.
com/gpu-specs/al00-pcie.c3623.

Tencent. GitHub - Tencent/nenn: nenn is a high-performance neural network inference frame-
work optimized for the mobile platform. URL: https://github.com/Tencent/ncnn (visited
on 11/24/2021).

TensorFlow Lite | ML for Mobile and Edge Devices. URL: https://www.tensorflow.org/
lite.

Wikipedia. Jacobian matriz and determinant — Wikipedia, The Free Encyclopedia. http :
//en.wikipedia.org/w/index.php?title=Jacobian’20matrix’20and’%20determinant&
01di1d=1049645408. [Online; accessed 29-October-2021]. 2021.

Wikipedia contributors. Al accelerator — Wikipedia, The Free Encyclopedia. https://en.
wikipedia.org/w/index.php?title=Al_accelerator&oldid=1064529755. [Online; ac-
cessed 13-January-2022]|. 2022.

Wikipedia contributors. FLOPS — Wikipedia, The Free Encyclopedia. https://en.wikipedia.
org/w/index.php?title=FLOPS&01did=1056204741. [Online; accessed 24-November-2021].
2021.

https://pytorch.org/mobile/home/
https://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://www.samsung.com/ca/smartphones/galaxy-s21-ultra-5g/
https://www.samsung.com/ca/smartphones/galaxy-s21-ultra-5g/
https://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
https://www.tensorflow.org/lite/guide/ops_select
https://www.tensorflow.org/lite/guide/ops_select
https://www.tensorflow.org/hub/tutorials/yamnet
https://www.tensorflow.org/hub/tutorials/yamnet
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://www.techpowerup.com/gpu-specs/a100-pcie.c3623
https://www.techpowerup.com/gpu-specs/a100-pcie.c3623
https://www.techpowerup.com/gpu-specs/a100-pcie.c3623
https://www.techpowerup.com/gpu-specs/a100-pcie.c3623
https://github.com/Tencent/ncnn
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
http://en.wikipedia.org/w/index.php?title=Jacobian%20matrix%20and%20determinant&oldid=1049645408
http://en.wikipedia.org/w/index.php?title=Jacobian%20matrix%20and%20determinant&oldid=1049645408
http://en.wikipedia.org/w/index.php?title=Jacobian%20matrix%20and%20determinant&oldid=1049645408
https://en.wikipedia.org/w/index.php?title=AI_accelerator&oldid=1064529755
https://en.wikipedia.org/w/index.php?title=AI_accelerator&oldid=1064529755
https://en.wikipedia.org/w/index.php?title=FLOPS&oldid=1056204741
https://en.wikipedia.org/w/index.php?title=FLOPS&oldid=1056204741

BIBLIOGRAPHY 37

[55]

[56]

[57]

[58]

[59]

[60]

[61]

(62]

[63]

Wikipedia contributors. GDDR6 SDRAM — Wikipedia, The Free Encyclopedia. https://en.
wikipedia.org/w/index .php?title=GDDR6_SDRAM&01did=1053266282. [Online; accessed
20-November-2021]. 2021.

Wikipedia contributors. LPDDR — Wikipedia, The Free Encyclopedia. https://en.wikipedia.
org/w/index.php?title=LPDDR&01did=1055855606. [Online; accessed 20-November-2021].
2021.

Thomas Wolf et al. “HuggingFace’s Transformers: State-of-the-art Natural Language Process-
ing”. In: CoRR abs/1910.03771 (2019). arXiv: 1910.03771. URL: http://arxiv.org/abs/
1910.03771.

Yue Wu et al. “Large Scale Incremental Learning”. In: CoRR abs/1905.13260 (2019). arXiv:
1905.13260. URL: http://arxiv.org/abs/1905.13260.

Qian Xiang et al. “Fruit Image Classification Based on MobileNetV2 with Transfer Learning
Technique”. In: Proceedings of the 3rd International Conference on Computer Science and
Application Engineering. CSAE 2019. Sanya, China: Association for Computing Machinery,
2019. 1sBN: 9781450362948. DOI: 10.1145/3331453.3361658. URL: https://doi.org/10.
1145/3331453.3361658.

Xiaomi. Mobile AI Compute Engine Documentation — MACE documentation. URL: https:
//mace.readthedocs.io/en/latest/ (visited on 11/24/2021).

Jiacheng Yang et al. “Towards Making the Most of BERT in Neural Machine Translation”. In:
CoRR abs/1908.05672 (2019). arXiv: 1908.05672. URL: http://arxiv.org/abs/1908.05672.

Hongxu Yin et al. “See through Gradients: Image Batch Recovery via GradInversion”. In: CoRR
abs/2104.07586 (2021). arXiv: 2104.07586. URL: https://arxiv.org/abs/2104.07586.

Barret Zoph and Quoc V. Le. “Neural Architecture Search with Reinforcement Learning”. In:
CoRR abs/1611.01578 (2016). arXiv: 1611.01578. URL: http://arxiv.org/abs/1611.01578.

https://en.wikipedia.org/w/index.php?title=GDDR6_SDRAM&oldid=1053266282
https://en.wikipedia.org/w/index.php?title=GDDR6_SDRAM&oldid=1053266282
https://en.wikipedia.org/w/index.php?title=LPDDR&oldid=1055855606
https://en.wikipedia.org/w/index.php?title=LPDDR&oldid=1055855606
https://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1905.13260
http://arxiv.org/abs/1905.13260
https://doi.org/10.1145/3331453.3361658
https://doi.org/10.1145/3331453.3361658
https://doi.org/10.1145/3331453.3361658
https://mace.readthedocs.io/en/latest/
https://mace.readthedocs.io/en/latest/
https://arxiv.org/abs/1908.05672
http://arxiv.org/abs/1908.05672
https://arxiv.org/abs/2104.07586
https://arxiv.org/abs/2104.07586
https://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578

	Introduction
	Overview
	Background
	Basics of Deep Learning
	Image Classification with Convolutional Neural Networks
	Audio Tagging with Convolutional Neural Networks

	Related Works
	Efficient On-Device Inference
	Incremental Learning
	Transfer Learning
	Federated Learning

	Challenges of On-device Training
	Hardware Limitations of Edge Devices
	Catastrophic Forgetting Phenomenon
	Lack of DL Framework Support

	Enabling On-device Incremental Training
	Global Dataset Mixing
	Layer Freezing
	Feature Map Caching

	Evaluation
	Experimental Settings
	Incremental Classification with MobileNetV2
	Audio Tagging with YAMNet

	Overall Training Time and Accuracy
	Ablation Studies
	Global Dataset Mixing
	Layer Freezing

	Conclusion
	Summary
	Limitations and Future Works

	Bibliography

