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ABSTRACT
Variation has been shown to exist across the cells within

a modern DRAM chip. Prior work has studied and exploited
several forms of variation, such as manufacturing-process-
or temperature-induced variation. We empirically demon-
strate a new form of variation that exists within a real DRAM
chip, induced by the design and placement of different compo-
nents in the DRAM chip: different regions in DRAM, based
on their relative distances from the peripheral structures,
require different minimum access latencies for reliable oper-
ation. In particular, we show that in most real DRAM chips,
cells closer to the peripheral structures can be accessed much
faster than cells that are farther. We call this phenomenon
design-induced variation in DRAM. Our goals are to i) un-
derstand design-induced variation that exists in real, state-
of-the-art DRAM chips, ii) exploit it to develop low-cost
mechanisms that can dynamically find and use the lowest la-
tency at which to operate a DRAM chip reliably, and, thus, iii)
improve overall system performance while ensuring reliable
system operation.

To this end, we first experimentally demonstrate and ana-
lyze designed-induced variation inmodern DRAM devices by
testing and characterizing 96 DIMMs (768 DRAM chips). Our
characterization identifies DRAM regions that are vulnerable
to errors, if operated at lower latency, and finds consistency
in their locations across a given DRAM chip generation, due
to design-induced variation. Based on our extensive experi-
mental analysis, we develop two mechanisms that reliably
reduce DRAM latency. First, DIVA Profiling uses runtime pro-
filing to dynamically identify the lowest DRAM latency that
does not introduce failures. DIVA Profiling exploits design-
induced variation and periodically profiles only the vulner-
able regions to determine the lowest DRAM latency at low
cost. It is the first mechanism to dynamically determine the
lowest latency that can be used to operate DRAM reliably.
DIVA Profiling reduces the latency of read/write requests by
35.1%/57.8%, respectively, at 55℃. Our second mechanism,
DIVA Shuffling, shuffles data such that values stored in vul-
nerable regions are mapped to multiple error-correcting code
(ECC) codewords. As a result, DIVA Shuffling can correct
26% more multi-bit errors than conventional ECC. Combined
together, our two mechanisms reduce read/write latency by

40.0%/60.5%, which translates to an overall system perfor-
mance improvement of 14.7%/13.7%/13.8% (in 2-/4-/8-core
systems) across a variety of workloads, while ensuring reli-
able operation.

1 INTRODUCTION
In modern systems, DRAM-based main memory is sig-

nificantly slower than the processor. Consequently, pro-
cessors spend a long time waiting to access data from
main memory [5, 66], making the long main memory ac-
cess latency one of the most critical bottlenecks in achiev-
ing high performance [48, 64, 67]. Unfortunately, the la-
tency of DRAM has remained almost constant in the past
decade [9, 13, 14, 32, 46, 49, 72]. The main reason for this is
that DRAM is optimized for cost-per-bit (i.e., storage den-
sity), rather than access latency. Manufacturers leverage tech-
nology scaling to pack more DRAM cells in the same area,
thereby enabling high DRAM density, as opposed to improv-
ing latency.

As the DRAM cell size scales to smaller technology nodes,
the variation among DRAM cells increases [33]. This varia-
tion can take several forms, such as manufacturing-process-
or temperature-induced variation, and can widen the gap
between the access latencies of the fastest and the slowest
cells [12, 14, 40, 48]. DRAM vendors do not currently exploit
this variation: instead, they use a fixed standard latency. In
order to increase yield and reduce cost, instead of discard-
ing chips with slow cells to improve the standard latency,
vendors use a pessimistic standard latency that guarantees
correct operation for the slowest cell in any acceptable chip.

In this work, we experimentally demonstrate, analyze and
take advantage of a unique, previously-unexplored form of
variation in cell latencies in real DRAM chips. We observe
that there is variation in DRAM cells’ access latencies based
on their physical location in the DRAM chip. Some cells can
be accessed faster than others because they happen to be
closer to peripheral structures, e.g., sense amplifiers or word-
line drivers [34, 49, 96]. This phenomenon is unique: in con-
trast to other commonly-known and experimentally demon-
strated forms of variation, such as manufacturing-process-
or temperature-induced variation in DRAM cells [12, 14, 48],
it is induced by the design and placement of different com-
ponents, hence physical organization, in a real DRAM chip.
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Hence, we refer to this phenomenon as design-induced vari-
ation.1
Design-induced variation occurs because different cells

in DRAM have different distances between the cell and the
peripheral logic used to access the cell, as shown in Figure 1.
The wires connecting the cells to peripheral logic exhibit
large resistance and large capacitance [48, 49]. Consequently,
cells experience different RC delays based on their relative
distances from the peripheral logic. Cells located closer to the
peripheral logic experience smaller delay and can be accessed
faster than the cells located farther from the peripheral logic.
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Figure 1: Design-Induced Variation in a DRAM Chip

Design-induced variation in latency is present in both
vertical and horizontal directions in a 2D DRAM cell array
(called a mat): i) Each vertical column of cells is connected to
a sense amplifier and ii) each horizontal row of cells of a mat is
connected to a wordline driver. Variations in the vertical and
horizontal dimensions, together, divide the cell array into
heterogeneous latency regions, where cells in some regions
require larger access latencies for reliable operation. This
variation in latency has direct impact on the reliability of
the cells. Reducing the latency uniformly across all regions in
DRAM would improve performance, but can introduce fail-
ures in the inherently slower regions that require long access
latencies for correct operation. We refer to these inherently
slower regions of DRAM as design-induced vulnerable re-
gions.

Our goals are to i) experimentally demonstrate, charac-
terize and understand design-induced variation in modern
DRAM chips, and ii) develop new, low-cost mechanisms that
leverage design-induced variation to dynamically find and
use the lowest latency at which to operate DRAM reliably,
and thus improve overall system performancewhile ensuring
reliable system operation.
We first identify the design-induced vulnerable regions of

real DRAM chips. Doing so is not an easy task due to two
major challenges. First, identifying design-induced vulnera-
ble regions requires a detailed knowledge of DRAM internals.
Modern DRAM cells are organized in a hierarchical manner,
where cells are subdivided into multiple mats and these mats
are organized as a matrix (Figure 1). Due to this hierarchical
organization, the vulnerability of cells does not necessarily
1Note that other works [49, 87, 96] observe that the access latency of a cell
depends on its distance from the peripheral structures, but none of these
works characterize or exploit this phenomenon in real DRAM chips.

increase linearly with increasing row and column addresses,
but depends on i) the location of the cell in the mat and ii)
the location of the mat in the chip.
Second, identifying design-induced vulnerable regions is

difficult due to the current DRAM interface that does not ex-
pose how data corresponding to an address is mapped inside
of DRAM. Even though certain regions in DRAM might be
more vulnerable due to the design and placement of cells,
internal scrambling of addresses [36] and remapping of rows
and columns [52] scatters and distributes that region across
the address space. In this work, we provide a detailed analy-
sis on how to identify such vulnerable regions despite the
limitations posed by the modern DRAM interface.

To understand design-induced variation in modern DRAM
chips, we build an FPGA-based DRAM testing infrastruc-
ture, similar to that used by prior works [12–14, 17, 24, 35–
37, 40, 41, 46, 48, 52]. Our extensive experimental study of
96 real DIMMs (768 DRAM chips) using this infrastructure
shows that i)modern DRAM chips exhibit design-induced la-
tency variation in both row and column directions, ii) design-
induced vulnerability gradually increases in the row direc-
tion within a mat and this pattern repeats in every mat, and
iii) some columns are more vulnerable than others due to
the internal hierarchical design of the DRAM chip.
We develop two new mechanisms that exploit design-

induced variation to enable low DRAM latency at high
reliability and low cost. First, we propose to reduce the
DRAM latency at runtime, by dynamically identifying the
lowest DRAM latency that ensures reliable operation. To
this end, we develop an online DRAM testing mechanism,
called DIVA Profiling. The key idea is to periodically test only
the regions vulnerable to design-induced variation in order
to find the minimum possible DRAM latency (for reliable
operation), as these regions would exhibit failures earlier
than others when the access latency is reduced and, there-
fore, would indicate the latency boundary where further
reduction in latency would hurt reliability. DIVA Profiling
achieves this with much lower overhead than conventional
DRAM profiling mechanisms that must test all of the DRAM
cells [35, 53, 68, 95]. For example, for a 4GB DDR3-1600
DIMM, DIVA Profiling takes 1.22ms, while conventional pro-
filing takes 625ms.
Second, to avoid uncorrectable failures (due to lower la-

tency) in systems with ECC, we propose DIVA Shuffling, a
mechanism to reduce multi-bit failures while operating at a
lower latency. The key idea is to leverage the understanding
of the error characteristics of regions vulnerable to design-
induced variation in order to remap or shuffle data such that
the failing bits get spread over multiple ECC codewords and
thereby become correctable by ECC.

We make the following contributions:
• To our knowledge, this is the first work to experimentally
demonstrate, characterize and analyze the phenomenon
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of design-induced variation that exists in real, state-of-the-
art DRAM chips. Due to this phenomenon, when DRAM
latency is reduced, we find that certain regions of DRAM
are more vulnerable to failures than others, based on their
relative distances from the peripheral logic.
• We identify the regions in DRAM that are most vulner-
able to design-induced variation based on the internal
hierarchical organization of DRAM bitlines and wordline
drivers. We experimentally demonstrate the existence of
design-induced vulnerable regions in DRAM by testing
and characterizing 96 real DIMMs (768 DRAM chips).
• We develop two new mechanisms, called DIVA Profiling
and DIVA Shuffling, which exploit design-induced varia-
tion to improve both latency and reliability of DRAM at
low cost. DIVA Profiling is the first mechanism to dynam-
ically determine the lowest latency at which to operate
DRAM reliably: it dynamically reduces the latencies of
read/write operations by 35.1%/57.8% at 55℃, while ensur-
ing reliable operation. DIVA Shuffling is the first mech-
anism that takes advantage of design-induced variation
to improve reliability by making ECC more effective: on
average, it corrects 26% of total errors that are not cor-
rectable by conventional ECC, while operating at lower
latency. We show that the combination of our two tech-
niques, DIVA-DRAM, leads to a raw DRAM latency re-
duction of 40.0%/60.5% (read/write) and an overall system
performance improvement of 14.7%/13.7%/13.8% (2-/4-/8-
core) over a variety of workloads in our evaluated systems,
while ensuring reliable system operation. We also show
that DIVA-DRAM outperforms Adaptive-Latency DRAM
(AL-DRAM) [48], a state-of-the-art technique that low-
ers DRAM latency by exploiting temperature and process
variation (but not designed-induced variation).2

2 MODERN DRAM ARCHITECTURE
We first provide background on DRAM organization and

operation that is useful to understand the cause, characteris-
tics and implications of design-induced variation.

2.1 DRAM Organization
DRAM is organized in a hierarchical manner where each

DIMM consists of multiple chips, banks, and mats, as shown
in Figure 2. A DRAM chip (shown in Figure 2a) consists of i)
multiple banks and ii) peripheral logic that is used to transfer
data to the memory channel through the IO interface. Each

2A second important benefit of DIVA-DRAM over AL-DRAM is that DIVA-
DRAM is not vulnerable to changes in DRAM latency characteristics over
time due to issues such as aging and wearout, since DIVA-DRAM determines
latency dynamically based on runtime profiling of latency characteristics.
As AL-DRAM does not determine latency dynamically and instead relies
on static latency parameters, it is vulnerable to dynamic changes in latency
characteristics, which leads to either potential reliability problems or large
latency margins to prevent potential failures. See Section 6.1 for a more
detailed discussion of this.

bank (shown in Figure 2b) is subdivided into multiple mats.
In a bank, there are two global components that are used
to access the mats: i) a row decoder that selects a row of
cells across multiple mats and ii) global sense amplifiers that
transfer a fraction of data from the row through the global
bitlines, based on the column address. Figure 2c shows the
organization of a mat that consists of three components: i) a
2-D cell array in which the cells in each row are connected
horizontally by a wordline, and the cells in each column are
connected vertically by a bitline, ii) a column of wordline
drivers that drive each wordline to appropriate voltage levels
in order to activate a row during an access and iii) a row
of local sense amplifiers that sense and latch data from the
activated row.
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Figure 2: Hierarchical Organization of a DRAM System

2.2 DRAM Operation
On a memory request (e.g., to read a cache line), there

are two major steps involved in accessing the requested
data. First, to access a row, the memory controller issues an
ACTIVATION command along with the row address to select a
row in a bank. On receiving this command, DRAM transfers
all the data in the row to the corresponding local sense am-
plifiers. Second, in order to access a specific cache line from
the activated row, the memory controller issues a READ com-
mand with the column address of the request. DRAM then
transfers the selected data from the local sense amplifiers to
the memory controller, over the memory channel.
While this is a high-level description of the two major

DRAM operations, these operations, in reality, consist of
two levels of accesses through: i) global structures across
mats within a bank (global sense amplifiers, global wordlines,
and global bitlines) and ii) local structures within a mat
(local sense amplifiers, local wordlines, and local bitlines).
A row-column access goes through multiple steps in the
global-local hierarchy, as annotated in Figure 2: ① When
the row decoder in a bank receives a row address, it first
activates the corresponding global wordline in the bank. ②
The global wordline, in turn, activates the corresponding
wordline driver in each mat that it is connected to. ③ The
wordline driver in each mat activates the corresponding local
wordline connecting the row to the local sense amplifiers. ④
These local amplifiers sense and latch the entire row through
the local bitlines in eachmat across the bank.⑤WhenDRAM
receives the column address, a fraction of data from each mat
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is transferred from the local sense amplifiers to the global
sense amplifiers, through the global bitlines. ⑥ Data from the
global sense amplifiers is then sent to the memory channel
through the IO interfaces of the DRAM chip.
Both DRAM row and column accesses are managed by

issuing row and column access commands to DRAM. The
minimum time between these commands is determined by
internal DRAM operation considerations, such as how long
it takes to sense data from cells in a selected wordline, how
long it takes to transfer data from the local to the global
sense amplifiers [42, 48, 49, 59]. There are four major timing
parameters for managing row and column accesses. tRAS
(tRP) is the minimum time needed to select (deselect) a row
in a bank for activation. tRCD is the minimum time needed
to access a column of a row after activating the row. tWR is
the minimum time needed to update the data in a column of
a row after activating the row. More detailed information on
these timing parameters and DRAM operation can be found
in [14, 42, 48, 49].

3 DESIGN-INDUCED VARIATION
In this work, we show that DRAM access latency varies

based on the location of the cells in theDRAMhierarchy. Intu-
itively, transferring data from the cells near the IO interfaces
(and sensing structures) incurs less time than transferring
data from the cells farther away from the IO interfaces (and
sensing structures). We refer to this variability in cell latency
caused by the physical organization and design of DRAM
as design-induced variation. Since DRAM is organized as a
multi-level hierarchy (in the form of chips, banks and mats),
design-induced variation exists at multiple levels. Design-
induced variation has several specific characteristics that
clearly distinguish it from other known types of variation
observed in DRAM, e.g., process variation and temperature
dependency [12, 48]:
• Predetermined at design time. Design-induced varia-

tion depends on the internal DRAM design, predetermined
at design time. This is unlike other types of variation,
(e.g., process variation and temperature induced varia-
tion [12, 48]), which depend on the manufacturing process
and operating conditions after design.
• Static distribution. The distribution of design-induced
variation is static, determined by the location of cells. For
example, a cell closer to the sense amplifier is always faster
than a cell farther away from the sense amplifier, assum-
ing there are no other sources of variation (e.g., process
variation). On the other hand, prior works show that vari-
ability due to process variation follows a random distribu-
tion [12, 48], independent of the location of cells.
• Constant.Design-induced variation depends on the phys-
ical organization, which remains constant over time.
Therefore, it is different from other types of variation
that change over time (e.g., variable retention time [35, 39,

52, 62, 69, 74, 76, 102], wearout due to aging [29, 51, 57,
60, 78, 88, 89, 92, 97]).
• Similarity in DRAMs with the same design. DRAMs

that share the same internal design exhibit similar design-
induced variation (Section 5.3). This is unlike process vari-
ation that manifests itself significantly differently in dif-
ferent DRAM chips with the same design.
The goals of this work are to i) experimentally demon-

strate, characterize, and understand the design-induced vari-
ation in real DRAM chips, especially within and across mats,
and ii) leverage this variation and our understanding of it
to reduce DRAM latency at low cost in a reliable way. Un-
fortunately, detecting the design-induced vulnerable regions
is not trivial and depends on two factors: i) how bitline and
wordline drivers are organized internally, ii) how data from
a cell is accessed through the DRAM interface. In order to
define and understand the design-induced variation in mod-
ern DRAM, we investigate three major research questions
related to the impact of DRAM organization, interface, and
operating conditions on design-induced variation in the fol-
lowing sections.

3.1 Impact of DRAM Organization
The first question we answer is: how does the DRAM or-

ganization affect the design-induced vulnerable regions? To
answer this, we present i) the expected characteristics of
design-induced variation and ii) systematic methodologies
to identify these characteristics in DRAM chips.

Effect of RowOrganization.As discussed in Section 2.1,
a mat consists of a 2D array of DRAM cells along with periph-
eral logic needed to access this data. In the vertical direction,
DRAM cells (typically, 512 cells [42, 96]), connected through
a bitline, share a local sense amplifier. As a result, access
latency gradually increases as the distance of a row from the
local sense amplifier increases (due to the longer propaga-
tion delay through the bitline). This variation can be exposed
by reading data from DRAM faster by using smaller values
for DRAM timing parameters. Cells in the rows closer to
the local sense amplifiers can be accessed faster in a reliable
manner. Hence, they exhibit no failures due to shorter timing
parameters. On the contrary, cells located farther away from
the sense amplifiers take longer to access in a reliable man-
ner, and might start failing when smaller values are used
for the timing parameters. As a result, accessing rows in
ascending order starting from the row closest to the sense
amplifiers should exhibit a gradual increase in failures due
to design-induced variation, as shown in Figure 3a. In this
figure, the darker color indicates slower cells, which are more
vulnerable to failures when we reduce the access latency.
In the open-bitline scheme [30], alternate bitlines within

a mat are connected to two different rows of sense ampli-
fiers (at the top and at the bottom of the mat), as shown
in Figure 3b. In this scheme, even cells and odd cells in a
row located at the edge of the mat exhibit very different
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Figure 3: Design-Induced Variation Due to Row Organiza-
tion

distances from their corresponding sense amplifiers, leading
to different access latencies. On the other hand, cells in the
middle of a mat have a similar distance from both the top and
bottom sense amplifiers, exhibiting similar latencies. Due to
this organization, we observe that there are more failures in
rows located on both ends of a mat, but there is a gradual
decrease in failures in rows in the middle of the mat.
Based on these observations about row organization, we

define two expected characteristics of vulnerable regions
across the rows when we reduce DRAM latency uniformly.
First, the number of failures would gradually increase
with increased distance from the sense amplifiers. Sec-
ond, this gradual increase in failures would periodi-
cally repeat in every mat (every 512 rows). We exper-
imentally demonstrate these characteristics in Section 5.1.

Effect of Column Organization. As we discussed in
Section 2.2, the wordline drivers in DRAM are organized
in a hierarchical manner: a strong global wordline driver is
connected to all mats over which a row is distributed and
a local wordline driver activates a row within a mat. This
hierarchical wordline organization leads to latency variation
at two levels. First, a local wordline in a mat located closer
to the global wordline driver starts activating the row earlier
than that in a mat located farther away from the global
wordline driver (design-induced variation due to the global
wordline). Second, within a mat, a cell closer to the local
wordline driver gets activated faster than a cell farther away
from the local wordline driver (design-induced variation due
to the local wordline). Therefore, columns that have the same
distance from the local wordline driver, but are located in
two different mats, have different latency characteristics (see
Figure 4, where a darker color indicates slower cells, which
are more vulnerable to failures if/when we reduce the access
latency). However, exact latency characteristics of different
columns in different mats depend on the strength of the
global versus local wordline drivers and the location of the
respective mats and columns.
We define two expected characteristics of vulnerable re-

gions across columns when we reduce DRAM latency uni-
formly. First, although some columns are clearly more
vulnerable than others, the number of failures likely
would not gradually increase with ascending column
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Figure 4: Design-Induced Variation in ColumnOrganization

numbers. Second, the failure characteristics observed
with ascending column numbers would be similar for
all rows. We experimentally demonstrate these characteris-
tics in Section 5.2.

3.2 Impact of the Row/Column Interface
Our second question is: how does the row/column interface

affect the ability to identify the design-induced vulnerable re-
gions in DRAM? Unfortunately, identifying design-induced
vulnerable regions becomes challenging due to a limited
understanding of how data corresponding to an address is
mapped inside DRAM. While it is possible to identify vul-
nerable regions based on location, exposing and exploiting
such information through the row/columnDRAMaddressing
interface is challenging due to two reasons.

Row Interface (Row Address Mapping). DRAM ven-
dors internally scramble the row addresses in DRAM. This
causes the address known to the system to be different from
the actual physical address [36, 52, 94]. As a result, consec-
utive row addresses issued by the memory controller can
be mapped to entirely different regions of DRAM. Unfor-
tunately, the internal mapping of the row addresses is not
exposed to the system and varies across products from dif-
ferent generations and manufacturers. In Section 3.1, we
showed that if the access latency is reduced, accessing rows
in a mat in ascending row number order would exhibit a grad-
ual increase in failures. Unfortunately, due to row remapping,
accessing rows in ascending order of addresses known to the
memory controller will likely exhibit irregular and scattered
failure characteristics.

Column Interface (ColumnAddressMapping). In the
current interface, the bits accessed by a column command are
not mapped to consecutive columns in a mat. This makes it
challenging to identify the vulnerable regions in a wordline.
When a column address is issued, 64 bits of data from a
row are transferred over the global bitlines (typically, 64-bit
wide [96]). This data is transferred in eight 8-bit bursts over
the IO channel, as shown in Figure 5. However, the data
transferred with each column address comes from cells that
are in different mats, and have different distances from their
global and local wordline drivers. This makes it impossible
to determine the physical column organization by simply
sweeping the column address in ascending order.
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In this work, we provide alternate ways to identify design-
induced vulnerable regions using the current row/column
interface in DRAM.We describe the key ideas of our methods.
• Inferring vulnerable rows from per-row failure count. In
order to identify the gradual increase in design-induced
variability with increasing row addresses in mats (in terms
of internal DRAM physical address), we try to reverse en-
gineer the row mapping in DRAM. We hypothesize the
mapping for one mat and then verify that mapping in
other DRAM mats in different chips that share the same
design. The key idea is to correlate the number of failures
to the physical location of the row. For example, the most
vulnerable row would be the one with the most failures
and hence should be located at the edge of the mat. Sec-
tion 5.3 provides experimental analysis and validation of
our method.
• Inferring vulnerable columns from per-bit failure count in
the IO channel. A column access transfers 64 bits of data
from a DRAM chip over the IO channel. These 64 bits come
from 64 bitlines that are distributed over different mats
across the entire row. Our key idea to identify the vulner-
able bitlines in the column direction is to examine each
bit in a 64-bit burst. We expect that due to design-induced
variation, some bits in a 64-bit burst that are mapped to rel-
atively slow bitlines are more vulnerable than other bits. In
Section 5.4, we experimentally identify the location of bits
in bursts that consistently exhibit more failures, validating
the existence of design-induced variation in columns.

3.3 Impact of Operating Conditions
The third question we answer is: Does design-induced vari-

ation in latency show similar characteristics at different op-
erating conditions? DRAM cells get affected by temperature
and the refresh interval [35, 48, 52, 69]. Increasing the tem-
perature within the normal system operating range (45℃ to
85℃) or increasing the refresh interval increases the leakage
in cells, making them more vulnerable to failure. However,
as cells get similarly affected by changes in operating con-
ditions, we observe that the trends due to design-induced
variation remain similar at different temperatures and re-
fresh intervals, even though the absolute number of failures
may change. We provide detailed experimental analysis of

design-induced variation at different operating conditions,
in Section 5.5.

4 DRAM TESTING METHODOLOGY
In this section, we describe our FPGA-based DRAM testing

infrastructure and the testing methodology we use for our
experimental studies in Section 5.

FPGA-Based DRAM Testing Infrastructure.We build
an infrastructure similar to that used in previous works [12–
14, 17, 24, 35–37, 40, 41, 46, 48, 52]. Our infrastructure pro-
vides the ability to: i) generate test patterns with flexible
DRAM timing parameters, ii) provide an interface from a
host machine to the FPGA test infrastructure, and iii) main-
tain a stable DRAM operating temperature during exper-
iments. We use a Xilinx ML605 board [100] that includes
an FPGA-based memory controller connected to a DDR3
SODIMM socket. We designed the memory controller [101]
with the flexibility to change DRAM parameters. We connect
this FPGA board to the host machine through the PCIe inter-
face [99]. We manage the FPGA board from the host machine
and preserve the test results in the host machine’s storage.
In order to maintain a stable operating temperature for the
DIMMs, during our experiments, we place the FPGA board
in a heat chamber that consists of a temperature controller,
a temperature sensor, and a heater which enables us to test
at different temperatures.

ProfilingMethodology. Themajor purpose of our exper-
iments is to characterize design-induced variation in DRAM
latency. We would like to i) determine the characteristics
of failures when we reduce timing parameters beyond the
error-free operation region, and ii) observe any correlation
between the error characteristics and the internal design of
the tested DRAMs. To this end, we analyze the error char-
acteristics of DRAM by lowering DRAM timing parameters
below the values specified for error-free operation.
An experiment consists of three steps: i) writing back-

ground data, ii) changing timing parameters, and iii) verifying
cell content. In Step 1, we write a certain data pattern to the
entire DIMM with standard DRAM timing parameters, en-
suring that correct (i.e., the intended) data is written into all
cells. In Step 2, we change the timing parameters. In Step
3, we verify the content of the DRAM cells after the timing
parameters are changed. To pass verification, a DRAM cell
must maintain its data value until the next refresh operation.
To complete the verification step, we let DRAM cells remain
idle and leak charge for the refresh interval and read and
verify the data. If the data read in Step 3 does not match the
data written in Step 1, we log the addresses corresponding
to the failures and the failed bits in the failed addresses.

Data Patterns. In order to exercise worst-case latency
behavior, we use a row stripe pattern, wherein a test pattern
is written in odd rows and an inverted test pattern is written
in even rows [41, 94]. This pattern drives the bitlines in oppo-
site directions when accessing adjacent rows. The patterns
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we have used in our tests are 0000, 0101, 0011, and 1001.
We perform the test twice per pattern, once with the test
data pattern and once with the inverted version of the test
data pattern, in order to test every cell in charged (e.g., data
1) and non-charged states (e.g., data 0). We report the sum
of failures from these two cases for each test. We perform
10 iterations of the same test to make sure the errors are
consistent.
We evaluate four DRAM timing parameters: tRCD, tRAS,

tRP, and tWR. For each timing parameter, our evaluations
start from the standard values (13.75/35.0/13.75/15.0ns for
tRCD/tRAS/tRP/tWR, respectively) [59] and reduce the timing
parameters to the lowest values that our DRAM infrastruc-
ture allows (5ns for tRCD/tRAS/tWR, and tRCD + 10ns for
tRAS). We use 96 DIMMs, comprising 768 DRAM chips, from
three DRAM vendors for our experiments. Appendix D lists
evaluated DIMMs and their major characteristics.We provide
detailed results for each DIMM online [1].

5 CHARACTERIZATION OF
DESIGN-INDUCED VARIATION IN
DRAM

In this section, we present the results of our profiling stud-
ies that demonstrate the presence of design-induced varia-
tion in both the vertical (bitline) and horizontal (wordline)
directions. We i) show the existence of design-induced varia-
tion in Sections 5.1 and 5.2, ii) analyze the impact of the row
and column interface in Sections 5.3 and 5.4, and iii) charac-
terize the impact of operating conditions on design-induced
variation in Section 5.5. We then provide a summary of our
analysis on design-induced variation across 96 DIMMs (768
DRAM chips) in Section 5.6. In Appendix B, we present the
results of our supporting circuit-level SPICE simulation stud-
ies that validate our hypotheses on design-induced variation
in a mat.

5.1 Design-Induced Variation in Bitlines
As we explain in Section 3.1, we expect different error

characteristics for different cells connected to a bitline, de-
pending on the relative distances of the cells from the local
sense amplifiers. To demonstrate the existence of design-
induced variation in a bitline, we design a test pattern that
sweeps the row address.

Per-Row Error Count with Row Address Sweeping.
Figure 6 plots the error count for four values of a DRAM
timing parameter, tRP (whose standard value is 13.75ns),
with a refresh interval of 256 ms (greater than the normal
64 ms refresh interval to emphasize the effects of access
latency [48]) and an ambient temperature of 85℃. We tested
all rows (and 16 columns) in a DIMM and plot the number
of erroneous accesses for each set of row address modulo

512 rows.3 We aggregate the error count across errors every
set of row address modulo 512 rows because each bitline is
connected to 512 cells. Hence, our expectation is that the
design-induced variation pattern will repeat every 512 cells.4
We make two key observations. First, reducing a timing
parameter enough below its standard value induces errors,
and reducing it further induces more errors. At a tRP of
12.5ns, there are no errors, due to the latency margin that
exists in DRAM cells, as shown in previous works [14, 48].
At a tRP of 10.0ns (3.75ns reduction from the standard value),
the number of errors is small, as shown in Figure 6b while at a
tRP of 5.0ns, we observe a large number of errors, as shown
in Figure 6d. Second, we observe significant error count
variation across 512 row chunks only at 7.5ns (with error
counts ranging from 0 to more than 3500 in Figure 6c), while
most errors are randomly distributed at 10.0ns (Figure 6b) and
most rows show very high error counts at 5.0ns (Figure 6d).
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(d) tRP 5.0ns

Figure 6: ErroneousRequest CountWhen SweepingRowAd-
dresses with a Reduced tRP Timing Parameter

Periodicity in Per-Row Error Count. To understand
these trends better, we break down the error counts further
for a tRP of 7.5ns. Aswe expect the variation pattern to repeat
every 512 rows, we use the value of row address modulo 512
(which we refer to as a row chunk) to tally all of the number
of errors observed in the DIMM, as shown in Figure 6c. We
then sort the row chunks based on the number of errors,
shown in Figure 7a. To see whether periodicity exists, we
then reorder the erroneous request counts of each individual
3Even though there are redundant cells (rows), DRAM does not allow direct
access to redundant cells. Therefore, we can only access a 512×512 cell mat
(2n data chunk). Figure 6 plots the number of erroneous requests in every
512-cell chunk.
4Note that Figure 6 shows the sum of all error counts for all rows with the
same row number modulo 512. In other words, each value on the x-axis of
Figure 6c represents a modulo value i, where the corresponding y-axis value
shows the aggregated number of errors for the set of rows – Row i, Row
512+i, Row 1024+i, etc. We provide each individual row’s error count in
Figure 7b to substantiate this further.
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row within every set of 512 rows by using the sorted order
in Figure 7a, which we show in Figure 7b. We reorder the
per-row data in this manner as, without the sorting, it is
difficult to observe the periodicity that exists in the error
count.

As expected, there is periodicity in error counts across 512
row chunks. Therefore, we conclude that error count shows
periodicity with row address, confirming our expectation that
there is predictable design-induced variation in the latency of
cells across a bitline. We will understand the reason why this
periodicity does not show up with increasing row addresses
in Section 5.3.
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(b) Erroneous Requests of Individual Rows,
Sorted Using the Row Ordering from Fig-
ure 7a

Figure 7: Periodicity in Erroneous Request Count (tRP 7.5ns)

5.2 Design-Induced Variation in Wordlines
As we explained in Section 3.1, we expect design-induced

variation across cells in a wordline, depending on the dis-
tance from the wordline driver. To confirm the existence of
design-induced variation across a wordline, we use a simi-
lar evaluation methodology as the one used in Section 5.1,
except that i) we sweep the column address instead of the
row address, ii) aggregate errors in the same column across
multiple rows (128 columns per row). In order to minimize
the impact of variation across a bitline and focus on variation
across a wordline, we test all columns in only 16 rows.

Per-Column Error Count with Column Address
Sweeping. Figure 8 provides results with two tRP values
(10ns and 7.5ns). Similar to the evaluation with sweeping
row addresses, we see that the number of errors is small
and the distribution is random when tRP is reduced by a
small amount, as shown in Figure 8a. However, the num-
ber of errors is large when tRP is reduced significantly, as
shown in Figure 8b. We observe variations in error counts
across different column addresses at a tRP of 7.5ns. Besides
other variations, there is a large jump near the 48th column
and a dip in error count near the 96th column, as shown in
Figure 8b.

To understand these, we separately plot each row’s error
count, which displays different patterns. We provide two

0

1

2

0 16 32 48 64 80 96 112

Column AddressE
rr

o
n

e
o

u
s 

R
e

q
u

e
st

 C
o

u
n

t

(a) tRP 10ns & Aggregated

0

50

100

150

200

250

300

350

0 16 32 48 64 80 96 112

Column AddressE
rr

o
n

e
o

u
s 

R
e

q
u

e
st

 C
o

u
n

t

(b) tRP 7.5ns & Aggregated

0

10

20

30

40

50

0 16 32 48 64 80 96 112

Column AddressE
rr

o
n

e
o

u
s 

R
e

q
u

e
st

 C
o

u
n

t

(c) tRP 7.5ns & Case 1

0

10

20

30

40

50

0 15 30 45 60 75 90 105 120

Column AddressE
rr

o
n

e
o

u
s 

R
e

q
u

e
st

 C
o

u
n

t

(d) tRP 7.5ns & Case 2

Figure 8: ErroneousRequest CountWhen SweepingColumn
Addresses with a Reduced tRP Timing Parameter

such types of patterns (obtained from multiple rows) in Fig-
ures 8c and 8d. In one such type, shown in Figure 8c, the error
count drastically increases at around the 80th column and
drops at around the 96th column (There are other types of
patterns with similar shapes but with the jumps/drops hap-
pening at different locations). In the type of pattern shown in
Figure 8d, the error count drastically increases at the 96th col-
umn and stays high. We attempt to correlate such behavior
with the internal organization of DRAM.

Figure 9 shows an illustration of how the precharge control
signal flows across mats. The timing parameter tRP dictates
how long the memory controller should wait after it issues
a precharge command before it issues the next command.
When a precharge command is issued, the precharge signal
propagates to the local sense amplifiers in each mat, leading
to propagation delay (higher for sense amplifiers that are
farther away). To mitigate this variation in the delay of the
precharge control signal, DRAM uses two signals, i) a main
precharge signal – propagating from left to right, and ii) a
sub precharge signal – that directly reaches the right and
propagates from right to left.
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The main and sub precharge signals arrive at different
times at the different mats due to parasitic capacitance on
the propagation path. The main precharge signal is delayed
by α per mat going from left to right, while the sub precharge
signal is delayed by β when it reaches the rightmost mat
where α > β , since the sub precharge signal does not have
any load going from left to right. However, after that, the sub
precharge signal exhibits a delay ofα per mat when propagat-
ing through mats from right to left. The sense amplifiers in
a mat respond to the faster one of the two precharge signals.
For instance, in Figure 9, mat 3 receives the precharge signal
the last. Hence, accesses to it would exhibit more errors than
accesses to other mats if tRP is reduced. Such control signal
delays result in the kind of jumps in errors at particular col-
umn addresses we see in real DRAM chips (e.g., Figures 8b,
8c, 8d). We conclude that error count varies across columns,
based on the column’s distance from the wordline and con-
trol signal drivers. While such control signal delays explain
why such jumps occur, knowledge of the exact location of
mats and how they are connected to the control signals is
necessary to understand and explain why jumps occur at
particular column addresses.

5.3 Effect of the Row Interface
As shown in Figure 6c, the error count across a bitline

does not linearly increase with increasing DRAM-external
row address (i.e., the address issued by the memory controller
over the memory channel). However, we observe periodicity
when rows are sorted by error count, as shown in Figure 7.
This behavior could occur because the DRAM-external row
address is not directly mapped to the internal row address in
a DRAMmat [52]. Without information on this mapping, it is
difficult to tie the error count periodicity to specific external
row addresses. In this subsection, we estimate themost-likely
mapping between the DRAM-external row address and the
DRAM-internal row address (estimated row mapping) based
on the observed error count. We then analyze the similarity of
the estimated row address mapping across multiple DIMMs
manufactured by the same DRAM company (in the same
time frame).

Methodology for Estimating RowAddress Mapping.
We explain our estimation methodology using a simple ex-
ample shown in Figure 10, which has a 3-bit row address
(eight rows per mat). Figure 10a shows the DRAM-internal
row address in both decimal and binary, increasing in the
order of distance between the row and the sense amplifier.

Figure 10b shows DRAM-external row addresses that are
ranked based on the error counts. As observed, the order is
not the same as the DRAM-internal address order in Fig-
ure 10a. To determine the estimated external-to-internal row
mapping based on the observed error counts for the external
addresses, we explore all possible permutations that rear-
range the three bits in the row address. For each of the eight
rows in the mat, we have the error count. Our goal is to find
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Figure 10: DRAM-Internal vs. DRAM-External RowAddress-
ing andEstimatedMappingBased onObserved ErrorCounts
for the External Addresses

an ordering of the three bits, which we call the internal row
address, for which the error count monotonically increases
with the number represented by the three bits. For example,
after rearranging, the row with an internal row address of
“001” should have a higher error count than the row with an
internal row address of “000”. We find that by mapping the
MSB of the internal row address (IntMSB) to the middle bit
of the external row address (ExtMID), and by mapping the
middle bit of the internal row address (IntMID) to the MSB
of the external row address (ExtMSB), as shown in Figure 10c,
the row error count increases monotonically with the in-
ternal row address. The estimated mapping (in the logical
address) is indicated by dark boxes when the expected bit
is “1” and light boxes when the expected bit is “0”. There
are cases when this mapping does not match with the actual
external address (indicated in red). Figure 10c shows that, in
this example, external to internal mapping can be estimated
with high confidence. For example, we can say with 100%
confidence that the external address bit ExtMID maps to the
internal address bit IntMSB since the observed error counts
for the ExtMID bit match the expected error counts from the
IntMSB bit.
Estimated Row Address Mapping in Real DIMMs.

We perform such an external to internal address mapping
comparison and mapping exercise on eight DIMMs manufac-
tured by the same company in a similar time frame. Figure 11
shows the average confidence level over all rows in a DIMM,
for the estimated row mapping. We use error bars to show
the standard deviation of the confidence over eight DIMMs.
We make three observations. First, all DIMMs show the same
estimated row mapping (with fairly high confidence) for at
least the five most significant bits. This result shows that
DIMMs manufactured by the same company at the same
time have similar design-induced variation. Second, the con-
fidence level is almost always less than 100%. This is because
process variation and row repair mechanisms introduce per-
turbations in addition to design-induced variation, which
can change the ranking of rows (determined based on er-
ror counts as we explained earlier). Third, the confidence
level drops gradually from IntMSB to IntLSB. This is also
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due to the impact of process variation and row repair mech-
anisms. The noise from process variation and row repair can
change row ranking and grouping by error count. Address
bits closer to IntMSB tend to divide rows into groups at a
larger granularity than address bits closer to IntLSB. There-
fore, the higher order bits show higher confidence. Based
on these observations, we conclude that DRAMs that have
the same design display similar error characteristics due to
design-induced latency variation.
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Figure 11: Confidence in Estimated Row Mapping

In summary, we observe predictable row address mapping
(similar to Figure 11) when testing DIMMs from the same
vendor that were manufactured around the same time frame
(i.e., they likely have the same internal circuit design).

5.4 Effect of the Column Interface
Another way to observe the error characteristics in the

wordline organization is by using the mapping between the
global sense amplifier and the IO channel. As we explained,
global sense amplifiers in a DRAM chip concurrently read 64-
bit data from different locations of a row, leading to variation
in errors. Figure 12 plots errors in 64-bit data-out (as shown
in Figure 5) in the IO channel (For example, first eight bits
(bits 0 – 7) are the first burst of data transfer). We draw three
conclusions. First, there is large variation in the amount of
errors in the IO channel. For example, more than 26K errors
happen in the third bit while no errors are observed in the
first bit of the IO channel. Second, the error characteristics
of eight DRAM chips show similar trends. Third, while we
observed regular error distribution at different bit positions
from DIMMs that show design-induced variation, we also
observed that the error patterns from different DIMMs (e.g.,
DIMMs from different vendors) were different. Section 6.2
uses these observations to develop a new error correction
mechanism, called DIVA Shuffling.

0
5000

10000
15000
20000
25000
30000
35000

0 8 16 24 32 40 48 56

chip 1 chip 2 chip 3 chip 4

chip 5 chip 6 chip 7 chip 8

Data Bit 

E
rr

o
r 

C
o

u
n

t

Figure 12: Error Count in Data-Out Bit Positions

5.5 Effect of Operating Conditions
Figure 13 shows the error count sensitivity to the refresh

interval and the operating temperature by using the same
method as row sweeping (aggregating the error count across
every set of row address modulo 512 rows, as done in Sec-
tion 5.1). We make three observations. First, neither the re-
fresh interval nor temperature changes the overall trends of
design-induced variation (i.e., the variability characteristics
in different row addresses remain the same, though the abso-
lute number of errors changes). Second, reducing the refresh
interval or the ambient temperature within the normal sys-
tem operating conditions (i.e., 45℃ to 85℃) leads to fewer
errors. Third, the variability in cells is much more sensitive
to the ambient temperature than the refresh interval. When
changing the refresh interval, the total error count does not
change drastically: it exhibits only a 15% decrease with a 4X
reduction in refresh interval. On the other hand, changing
the ambient temperature has a large impact on the total er-
ror count: error count reduces by 90% with a 40℃ change in
temperature. This is due to the fact that frequent refreshes
make only the cells faster [23, 49, 84], whereas reducing
temperature makes not only the cells but also the peripheral
circuits faster. Based on these observations, we conclude that
temperature or refresh interval do not change the trends in
design-induced variation, but they impact the total number
of failures in vulnerable regions at different rates.
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(b) Varying Temperature

Figure 13: Design-Induced Variation vs. Operating Condi-
tions

5.6 Summary Results of 96 DIMMs
We profile 96 DIMMs with 768 chips from three vendors

to characterize the design-induced variation in DRAM chips.
We observe similar trends and characteristics in DIMMs from
the same generation, though the absolute number of failures
are different. In Figure 14, we show the error count difference
between the most vulnerable region vs. the least vulnerable
region in each of the tested DIMMs. We define the difference
as vulnerability ratio and calculate it using the error count
ratio between the error count of the top 10% most vulnerable
rows and the error count of the top 10% least vulnerable
rows.5

5Note that the results show the variation of error distribution, which does not
represent either the performance or the reliability of DIMMs from different
vendors.
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Figure 14: Vulnerability Ratio: the error count ratio between
the top 10%most vulnerable and the top 10% least vulnerable
rows

We make two observations from this figure. First, most of
the DIMMs exhibit large design-induced variation in terms of
vulnerability ratio (e.g., as high as 5800 times, notice the log
scale). Second, we did not observe design-induced variation
in 24 DIMMs. However, we believe that this is in part due
to a limitation of our infrastructure, where we can reduce
timing parameters only at a coarser granularity (i.e., at a step
size of 2.5 ns) due to the limited FPGA frequency, similar
to the DRAM test infrastructures used in prior works [12–
14, 17, 24, 35–37, 40, 41, 46, 48, 52]. As a result, it is sometimes
possible that reducing a step of a timing parameter causes
the tested DIMM to transition from a no-error or very-low-
error state to a state where latency is low enough to make
all cells fail, missing the timing where design-induced varia-
tion is clearly visible. In real machines where state-of-the-art
DRAM uses a much lower clock period (e.g., DDR3-2133:
0.94ns), design-induced variation might be prevalent. Third,
DRAMs from the same vendor and from similar production
time frames show similar characteristics to each other, includ-
ing whether or not they are susceptible to design-induced
variation related errors. For example, DRAMs from Vendor B
have drastically high error counts across most regions when
tRCD is reduced below a certain value. We include summary
results for each DIMM that we tested in Appendix D. We
provide detailed results for each DIMM online [1].
In summary, we have experimentally demonstrated that

i) design-induced variation is prevalent across a large num-
ber of DIMMs and ii) our observations hold true in most of
the DIMMs. We validate these observations on the existence
of design-induced variation in DRAM using circuit-level
SPICE simulations in Appendix B. We conclude that mod-
ern DRAMs are amenable to reducing latency by exploiting
design-induced variation.

6 MECHANISMS TO EXPLOIT
DESIGN-INDUCED VARIATION

In this section, we present two mechanisms that lever-
age design-induced variation to reduce DRAM latency while
maintaining reliability: i) Design-Induced Variation Aware
online DRAM Profiling (DIVA Profiling) to determine by how
much DRAM latency can be safely reduced while still achiev-
ing failure-free operation, and ii) Design-Induced Variation
Aware data Shuffling (DIVA Shuffling) to avoid uncorrectable

failures (due to lower latency) in systems with ECC. We in-
tentionally aim to design intuitive and simple mechanisms,
such that they are practical and easy to integrate into real
systems.

6.1 DIVA Profiling
Previous works observe that the standard DRAM timing

parameter values are determined based on the worst-case
impact of process variation and worst-case operating condi-
tions, and leverage this observation to reduce overall DRAM
latency under common-case operating conditions [12, 48].
We leverage design-induced variation in DRAM to develop
a dynamic and low-cost DRAM latency/error profiling tech-
nique. We call this technique Design-Induced Variation Aware
Online DRAM Profiling (DIVA Profiling). The key idea is to sep-
arate reduced-latency-induced errors into two categories, one
caused by design-induced variation and the other caused by
process variation, and then employ different error mitigation
techniques for these two error categories.
DIVA Profiling avoids two shortcomings faced by prior

work on exploiting latency variation to reduce overall DRAM
latency [12, 48]. These prior works, which do not exploit
design-induced latency variation, are unable to perform ef-
fective online profiling to dynamically determine DRAM
latency, since online profiling can incur high performance
overhead [18, 69, 75, 85]. As a result, these prior works rely
on static profiling, which leads to two key shortcomings.
First, prior works do not present any concrete way to iden-
tify the lowest possible values of timing parameters that
guarantee reliability. Second, these works do not account
for dynamic changes in minimum DRAM latency that hap-
pen over time due to circuit aging and wearout. Therefore,
implementable mechanisms based on these works have to
assume conservative margins to ensure reliable operation in
the presence of aging and wearout. This causes the realistic
latency reductions with such mechanisms to be lower than
what we optimistically show for these mechanisms [48] in
our evaluations (Section 6.3). By employing low-cost online
profiling, DIVA Profiling can attain much more aggressive
latency reductions while maintaining reliable operation.6
Design-Induced Variation vs. Process Variation. The

error characteristics from process variation and design-
induced variation are very different. Figure 15 shows the
error patterns from these two types of variation (darker cells
are more error prone). First, the errors caused by process
variation are usually randomly distributed over the entire
DRAM chip [12, 48] (Figure 15a). Because these errors are
random, existing ECC mechanisms (e.g., SECDED) [55, 57]
can detect and recover these random errors. On the other
hand, the errors caused by design-induced variation are more
systematic and are concentrated in specific regions in the

6Note that our evaluation of AL-DRAM does not factor in dynamic latency
increases due to aging and wearout, giving AL-DRAM an unfair advantage
in our results, overestimating its latency benefit.
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DRAM chip (Figure 15b). For instance, when timing param-
eters are aggressively reduced, cells that are farther away
from both the row driver and the local sense amplifiers are
prone to more errors. As these high-error cells are concen-
trated on a specific region of the mat, they typically result
in multi-bit errors that cannot be corrected by simple ECC
(e.g., SECDED). To avoid these undesirable multi-bit errors,
we propose to periodically profile only the high-error (i.e.,
vulnerable) regions and track whether any of these regions
fail under a specific set of timing parameters, which incurs
much less overhead than profiling the entire DRAM, and
then tune the timing parameters appropriately based on the
failure information.
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Figure 15: Latency Variation in a Mat (Darker: Slower)

DIVA Profiling Mechanism. DIVA Profiling combines
SECDED ECC, which stores ECC codewords in a separate
chip on the DIMM (similar to commodity DRAM), with
online profiling in a synergistic manner to reduce DRAM
latency while maintaining high reliability. Due to design-
induced variation, there is a specific region within each sub-
array of the DRAM that requires the highest access latency
in the subarray. The DIVA-profiling-based memory system
uses this slowest region, which we call the latency test region,
to perform online latency profiling. To address the random
effect of process variation across different subarrays in the
entire DRAM chip, our mechanism employs per-subarray
latency test regions.7
Note that actual useful data (e.g., application or system

data) is not stored in these per-subarray latency test regions.
A memory controller with DIVA Profiling support periodi-
cally accesses these latency test regions and determines the
smallest value of DRAM timing parameters required for re-
liable operation in all of the latency test regions (without
causing multi-bit errors). The system then adds a small mar-
gin to the timing parameters obtained from this profiling
(e.g., one clock cycle increase) to determine the timing pa-
rameters for the other regions (data region), which store the
actual useful data required by the system and the programs.

System Changes to Enable DIVA Profiling. We re-
quire three changes to the system. First, we need to account
for the repair/remapping process employed by DRAM ven-
dors to increase yield. As we describe in Section 3.2, when
faulty cells are identified during post-manufacturing test,
7We further discuss the effect of process variation in Appendix C.

the rows or columns corresponding to these faulty cells are
remapped to other rows or columns by blowing fuses after
manufacturing [8]. If a row from the latency test region is
remapped to a different row, this will affect the profiling
phase of our mechanism. In order to avoid such interactions
with the repair/remapping process (and potential inaccura-
cies in identification of the lowest latency at which to operate
a DRAM chip reliably), we propose an approach where rows
from the latency test regions are not remapped by DRAM
vendors. Faulty cells in the latency test region are instead
repaired using column remapping, another repair mechanism
that is already implemented in commercial DRAM [25]. Our
mechanism finds a uniform latency for an entire DIMM, at
which all rows in all latency test regions of the DIMMoperate
reliably, by selecting the smallest latency that guarantees re-
liable operation of all such test rows. Therefore, the profiled
latency can be used to reliably operate all non-test rows (both
normal rows and redundant rows). This approach is straight-
forward to implement, since DRAM vendors are likely to
know the most vulnerable regions in the DRAM chip (based
on their design knowledge). Since rows in the latency test
regions do not store any useful data, this approach maintains
system reliability.
Second, systems with DIVA Profiling require the ability

to change DRAM timing parameters online. Since DIVA Pro-
filing uses only one set of timing parameters for the entire
DIMM, the only required change is updating the timing pa-
rameters in the memory controller with the smallest latency
values that still ensure reliable operation.

Third, DIVA Profiling requires a way of exposing the
design-induced variation to the memory controller. The
most intuitive approach is to expose either the internal or-
ganization or the location of the slowest region as part of
the DRAM specification or the SPD (Serial Presence Detect)
data in DIMMs (e.g., as done in [14, 42, 49]). Address scram-
bling techniques in the memory controller need not impact
DIVA Profiling since memory controller i) knows how the
addresses are scrambled, and ii) can generate requests for
profiling without applying scrambling.

DIVA Profiling Overhead. There are several overheads
to consider when implementing DIVA Profiling. First, in
terms of area overhead within the DRAM array, DIVA Pro-
filing reduces the memory capacity slightly by reserving
a small region of the DRAM for latency testing. In a con-
ventional DRAM, which typically contains 512 rows per
subarray, the area overhead is 0.2% (one row per subarray).
Second, in terms of latency overhead, DIVA Profiling requires
additional memory accesses, which could potentially delay
demand memory requests. However, we expect the latency
overhead of profiling to be low, since DIVA Profiling reserves
only the slowest rows as the test region (one row per subar-
ray), and only these rows need to be profiled. DIVA Profiling
is much faster than conventional online profiling mecha-
nisms that must test all of the DRAM cells [35, 53, 68, 95]:
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DIVA Profiling takes 1.22ms per data pattern8 to profile a 4GB
DDR3-1600 DIMM, whereas conventional profiling takes
625ms (see Appendix A for the detailed calculation). We can
employ intelligent and optimized profiling mechanisms that
can further reduce the impact of the overhead. For example,
one simple and low overhead mechanism can conduct on-
line profiling as part of the DRAM refresh operation (e.g.,
similar to methods that parallelize refresh operations and
memory accesses [15]), which would have minimal effect
on memory system performance. Third, in terms of storage
overhead within the memory controller, systems with DIVA
Profiling require a very small amount of additional storage
(e.g., as low as 16 bits for a 4GB DIMM) to implement the
profiling mechanism: one bit per DIMM to track if any rows
fail for the current timing parameters being tested, and one
row address register per DIMM, which points to the slowest
region in the DIMM.
In summary, our mechanism profiles only the slowest

region that is most affected by design-induced variation,
thereby incurring low profiling overhead, while achieving
low DRAM latency and high reliability.

Energy Consumption. DIVA Profiling consumes similar
energy for a single DRAM operation (e.g., activation, read,
write, and precharge) compared to conventional DRAM. The
profiling overhead is low since only the test region needs
to be profiled. Furthermore, the DRAM latency reductions
enabled by DIVA Profiling reduces system execution time,
as we will see in Section 6.3, and can thereby reduce system
energy consumption.

Other Sources of Latency Variation in DRAM. DIVA
Profiling has been designed with careful consideration of
other sources of DRAM latency variations, e.g., voltage (due
to supply grid) & temperature variation and VRT (Variable
Retention Time [35, 39, 52, 62, 69, 74, 76, 102]). As explained,
we divide DRAM failures into two categories: i) localized, sys-
tematic failures (caused by design-induced variation); and ii)
random failures (caused by process variation and VRT). We
then exploit different error mitigation techniques to handle
these two different categories of failures: i) online profiling
for localized systematic failures, and ii) ECC for random
failures. Since the physical size of a mat is very small (e.g.,
1415.6 µm2 in 30 nm technology), the effects of voltage and
temperature variation are similar across a mat. The negative
effects of process variation and VRT can be handled by ECC.
Furthermore, we tackle the impact of sense amplifier offset
(i.e., the phenomenon that a sense amplifier shows different
sensitivities for detecting “0” and “1” due to process varia-
tion [34]) by profiling all columns of the rows in all latency
test regions. Hence, the variation from sense amplifier offset

8A DRAM manufacturer can select and provide the worst-case data pat-
tern(s) DIVA Profiling should use for each DRAM module. This information
can be conveyed via the Serial Presence Detect (SPD) circuitry present in
each DRAM module (as done in [14, 42, 49]).

is accounted for in determining the smallest possible values
of timing parameters that ensure reliable operation.
There can be several opportunities for applying different

timing parameters to exploit process variation (e.g., variation
across subarrays, variation across banks, or variation across
chips). DIVA Profiling, for example, can be used to determine
different timing parameters for different subarrays, banks, or
chips within a DIMM. While exploiting the latency variation
induced by process variation in such a manner is promising,
we leave this for future work.9 In DIVA-DRAM, we focus
solely on exploiting design-induced variation, which remains
consistent across DRAM chips. To this end, DIVA Profiling
uses the same timing parameters across all chips in a DIMM.

6.2 DIVA Shuffling
Our second approach focuses on leveraging design-

induced variation tomitigate uncorrectable errors inmemory
systems with ECC (especially when DRAM is operated at a
lower latency than the standard latency). As we observed
in Section 5.4, when data is read out of a memory channel,
data in specific locations tends to fail more frequently. This
happens because data is delivered from locations that are
distributed across a wordline. Due to design-induced varia-
tion in wordline and control signals, it takes longer to access
cells in specific locations compared to cells in other locations,
which could lead to multi-bit errors in memory systems with
ECC. Figure 16a shows the effect of design-induced varia-
tion in systems with ECC. Data in the darker grey regions
(high-error bits) tends to be more error-prone than data in the
lighter grey regions. These high-error bits are concentrated
in a similar location across different chips, and, as a result,
are part of the same data-transfer burst. Since SECDED ECC
can correct only one erroneous bit in a single data burst [55],
it is probable to observe uncorrectable errors for such data
bursts.10

8bitchip 0

chip 7

bit 0 bit 63

ECC 
chip

Data burst (64bit data, 8bit parity)

many errors in the same data bursts

(a) Conventional Mapping

bit 0 bit 63

Data burst (64bit data, 8bit parity)

fewer errors for all data bursts

(b) Proposed Mapping

Figure 16: Design-Induced Variation Aware Data Shuffling

9A recent work [13, 14] characterizes and exploits this type of process
variation, providing promising results.
10Note that uncorrectable errors are reasonably common in the field, as
reported by prior work [57]. While our DIVA Shuffling mechanism can be
used to correct such errors as well, we leave the exploration of this to future
work.
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We tackle this problem and mitigate potential uncor-
rectable errors by leveraging awareness of design-induced
variation. Our key idea is to distribute the high-error bits across
different ECC codewords. We call this mechanism design-
induced-variation-aware data shuffling (DIVA Shuffling).11

There are two potential ways in which such a shuffling
mechanism can be implemented. The first way is using
DRAM chips that have different data-out mappings, by
changing the DRAM chips internally during their manu-
facturing. Since the data mapping is changed internally in
the DRAM chips to shuffle the high-error bits across different
ECC codewords, the address decoding mechanism for reads
and writes can remain identical across DRAM chips. The sec-
ond way is to shuffle the address mapping of DRAM chips
within a DIMM. We achieve this by connecting the address
bus bits in a different order for different DRAM chips in a
DIMM, thereby enabling different column addresses to be
provided by different DRAM chips. Using these two mecha-
nisms, we can achieve data shuffling in the data output from
DRAM (as Figure 16b shows), which leads to fewer errors in
all data bursts.
Figure 17 shows the fraction of correctable errors from

a total of 72 DIMMs using SECDED ECC with and without
DIVA Shuffling. We recorded the error locations and then
filtered out correctable errors assuming SECDED ECC. The
Y-axis represents the total percentage of errors with lower
DRAM timing parameters, and the X-axis represents 33 (ran-
domly selected) DIMMs. The operating conditions (i.e., the
reduced latencies) were chosen to make sure that there are
actually errors, so that ECC is useful.
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Figure 17: Correctable Errors with/without DIVA Shuffling

Our DIVA Shuffling mechanism corrects 26% of the errors
that are not correctable by using only conventional ECC. In
some DIMMs, DIVA Shuffling corrects 100% of the errors,
while some other DIMMs still experience errors even with
DIVA Shuffling. We believe that the major cause for this is
the malfunction of DRAM core operation, leading to exces-
sively high error rates. Overall, we conclude that using DIVA
Shuffling along with ECC can significantly reduce the error
rate than using conventional ECC alone.

11While it is possible that different placement algorithms for DIVA Shuffling
could affect the latency and failure probability, the search space of such
algorithms is very large. We choose an intuitive algorithm based on our
observations of where errors and high-latency regions lie within DRAM,
and find that this algorithm results in high performance with significant
improvements in reliability.

6.3 DRAM Latency & Performance
Analysis

DRAM Latency Profiling. We profile 96 DIMMs, compris-
ing 768 DRAM chips, for potential latency reduction. We use
the same test methodology, described in Section 4, which is
also similar to the methodology of previous works [12, 48].
We measure the latency reduction of four timing parameters
(tRCD, tRAS, tRP, and tWR).

Figure 18 shows the average latency reduction for DRAM
read and write operations with three mechanisms — AL-
DRAM [48], DIVA Profiling, and the combination of DIVA
Profiling and DIVA Shuffling — normalized to the sum of
the corresponding baseline timing parameters. We compare
these mechanisms at two operating temperatures, 55℃ and
85℃. We ignore the fact that AL-DRAM does not account
for latency changes due to aging and wearout, and assume
aggressive latency reductions for it, giving AL-DRAM an
unfair advantage. AL-DRAM [48] can reduce the latency for
read/write operations by 33.0% (18 cycles) and 55.2% (18 cy-
cles) at 55℃, and 21.3% (12 cycles) and 34.3% (19 cycles) at
85℃, respectively. DIVA Profiling reduces the correspond-
ing latencies by 35.1% (22 cycles) and 57.8% (20 cycles) at
55℃, and 34.8% (22 cycles) and 57.5% (20 cycles) at 85℃, re-
spectively. Using DIVA Shuffling on top of DIVA Profiling
enables more latency reduction (by 1.8% on average). Thus,
even though we give an unfair advantage to AL-DRAM in
our evaluation, our mechanisms achieve better latency re-
duction compared to AL-DRAM, mainly because ECC (and
also ECC with DIVA Shuffling) can correct single-bit errors
in an ECC codeword. Specifically, increasing the temperature
from 55℃ to 85℃ with the same set of timing parameters
mostly generates single-bit and randomly distributed errors
that can be corrected by ECC. Since AL-DRAM does not em-
ploy ECC, its latency benefits degrade at high temperatures,
whereas our mechanism’s latency benefits remain high at all
temperatures.
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Figure 18: Read and Write Latency Reduction

Performance Evaluation.We simulate the performance of
our DIVA Profiling mechanism using a modified version of
Ramulator [43], a fast, cycle-accurate DRAM simulator that
is publicly available [2]. We use Ramulator combined with
a cycle-level x86 multi-core simulator. Table 1 shows the
system configuration we model. We use PinPoints [54, 70]
to collect workload traces. We use 32 benchmarks from
Stream [56, 63], SPECCPU2006 [90], TPC [93] andGUPS [26],
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each of which is used for a single-core workload. We con-
struct 32 two-, four-, and eight-core workloads, for a total
of 96 multi-core workloads (randomly selected from the 32
benchmarks). We measure single-core performance using
instructions per cycle (IPC) and multi-core performance us-
ing the weighted speedup [19, 86] metric. We simulate 100
million instructions at 85℃ for each benchmark.

Component Parameters

Processor 8 cores, 3.2GHz, 3-wide issue,
8 MSHRs/core, 128-entry inst. window

Last-level cache 64B cache-line, 16-way associative,
512KB private cache-slice per core

Mem. Controller 64/64-entry read/write queues, FR-FCFS [77,
104]

Memory system DDR3-1600 [31], 2 channels, 2 ranks-per-
channel

Table 1: Configuration of Simulated Systems

Figure 19 shows the performance improvement with
DIVA Profiling and DIVA Shuffling. We draw two ma-
jor conclusions. First, DIVA Profiling provides signifi-
cant performance improvements over the baseline DRAM
(9.2%/14.7%/13.7%/13.8% performance improvement in single-
/two-/four-/eight-core systems, respectively). This improve-
ment is mainly due to the reduction in DRAM latency. Sec-
ond, using DIVA Profiling and DIVA Shuffling together pro-
vides even better performance improvements (by 0.5% on
average) due to the additional latency reductions enabled by
DIVA Shuffling.12 Our techniques achieve these performance
improvements by dynamically monitoring and optimizing
DRAM latency in a reliable manner (using DIVA Profiling),
while also improving DRAM reliability (using DIVA Shuf-
fling). Third, DIVA-DRAM shows less performance sensitiv-
ity to temperature when compared to AL-DRAM (as shown
in Figure 18). In general, increasing temperature leads to
more randomly-distributed single-bit errors, which limits the
performance benefits from AL-DRAM at high temperatures
(as shown for 85℃ in Figure 19). DIVA-DRAM incorporates
ECC, and, hence, is able to correct these single-bit errors,
enabling latency reductions (and performance improvement)
similar to what we observe at lower temperatures.
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Figure 19: Performance Improvement at 85℃

12Note that the main reason we design DIVA Shuffling is to improve relia-
bility (while using reduced latency parameters), not performance.

Figure 19 also shows that our techniques outperform AL-
DRAM for all four configurations by 2.5%/3.4%/3.2%/2.6%,
even though we assume aggressive raw DRAM latency re-
ductions for AL-DRAM (Section 6.3). We also ignore the fact
that AL-DRAM is unable to account for dynamic latency
changes due to aging and wear-out, and is thus an unre-
alistic mechanism (Section 6.1). Considering that aging or
post-packaging failures affect a significant number of DRAM
parts [29, 51, 57, 78, 88, 89] and AL-DRAM cannot handle
such failures, we conclude that our mechanisms would pro-
vide even higher performance (and reliability) improvements
over AL-DRAM in reality than we have shown.

7 RELATEDWORK
To our knowledge, this is the first work to i) experimen-

tally demonstrate and characterize design-induced latency
variation across cells in real DRAM chips, ii) develop mech-
anisms that take advantage of this existing design-induced
variation to reliably reduce DRAM latency as well as to mit-
igate errors, and iii) devise a practical mechanism to dy-
namically determine the lowest latency at which to operate
DRAM reliably.

Low Latency DRAM Organizations. There are multi-
ple proposals that aim to reduce DRAM latency by changing
DRAM internals. Our proposals can be combined with these
techniques to further reduce DRAM latency. Son et al. [87]
enable low-latency access to banks near IO pads and shorten
bitlines to some subarrays, which reduces DRAM latency
at the expense of additional chip area [42, 49]. Our work,
on the other hand, performs a comprehensive experimental
analysis of design-induced variation across wordlines and
bitlines at the mat level, and proposes new mechanisms to
take advantage of such mat-level latency variation. Lee et
al. [49] propose TL-DRAM, a new subarray organization
that enables lower access latency to cells near local sense
amplifiers. To achieve this, TL-DRAM adds isolation transis-
tors to separate a bitline into near and far segments, thereby
adding a small but non-negligible area overhead to DRAM.
RL-DRAM reduces DRAM latency by using smaller subar-
rays [58], but this comes at a significant increase in chip
area. In contrast to all these works, DIVA-DRAM reduces
latency and mitigates DRAM errors with no changes to the
DRAM mat design. Furthermore, while prior works [49, 87]
are based on simulation results using a circuit-level DRAM
model, we profile real DIMMs and experimentally analyze
design-induced variation. Our new method of finding the
slowest regions in DRAM, DIVA Profiling, is applicable to
all these prior works.

Exploiting Process and Temperature Variations to
Reduce DRAM Latency. Lee et al.’s AL-DRAM [48] and
Chandrasekar et al. [12] lower DRAM latency by leveraging
latency variation in DRAM due to the manufacturing process
and temperature dependency. In contrast to our work, these
two works are different in two major ways. First, they are
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not aware of and do not exploit design-induced latency vari-
ation in DRAM, which is due to the design and placement
of components in a DRAM chip and is independent of the
manufacturing process and temperature. Unlike process vari-
ation, design-induced variation, as we have experimentally
shown (in Section 5), i) is dependent on the internal design
of DRAM, ii) does not change over time, and iii) is similar
across DRAM chips that have the same design. Second, these
two works do not provide an online method for dynamically
identifying the lowest latency at which to operate DRAM
reliably. Instead, they assume such latencies are provided by
the DRAM interface, which i) not only is difficult to achieve
due to increased cost on the DRAM manufacturer’s end and
the difficulty in changing the DRAM standard, ii) but also
cannot adapt to increases in actual DRAM latency over time
due to aging and wearout (and therefore would lead to large
margin in the provided latencies). Finally, neither of these
two works develop an online profiling or error correction
mechanism, which our work develops. We have already pro-
vided both extensive qualitative (Section 6.1) and quantitative
(Section 6.3) comparisons to AL-DRAM and shown that our
mechanism significantly outperforms AL-DRAM, without
requiring a priori knowledge of the lowest latency at which
to operate DRAM reliably (which AL-DRAM does require),
even when our simulations assume that AL-DRAM provides
very aggressive latency reductions (ignoring the fact that
AL-DRAM does not account for aging and wearout).

Experimental Study of DRAM Failures. Many
works [12–14, 17, 35–37, 39–41, 46, 48, 52, 69, 74] provide
experimental studies and models for DRAM errors due
to different type of failures such as: i) retention time
failures [35–37, 39, 52, 69, 74], ii) wordline coupling
failures [40, 41, 65], iii) failures due to lower timing parame-
ters [12–14, 46, 48], and iv) failures due to reduced-voltage
operation [13, 17]. Specifically, Chang et al. [14] observe
the non-uniform distribution of DRAM errors due to
reduced latency, but do not provide the fundamental
reasoning behind this non-uniformity. This work also
proposes reducing DRAM latency for some cells, but does
not provide a mechanism for finding the lowest DRAM
latency and instead assumes that the latency of each cell
is provided by the DRAM device. Our experiments and
analyses focus on understanding failures due to reducing
latency in design-induced vulnerable regions in DRAM,
which has not been studied by any of these works. Previous
failure modes, e.g., Row Hammer [40, 41, 65] or retention
failures [39, 52, 69], do not exhibit design-induced variation,
i.e., they are not dependent on cell distance from peripheral
DRAM structures, as shown in prior work [39, 41].

Study of DRAM Failures in Large Scale Systems.
Many previous works [29, 51, 57, 78, 79, 88, 89] study
DRAM errors in large scale systems (e.g., a server cluster
or many data centers) and analyze the system-level impact

on DRAM failures, e.g., power fluctuation, operating tem-
perature, wearout, etc. Our analyses are orthogonal to these
studies and focus on the impact of internal DRAM organiza-
tion on latency and error characteristics.

DRAM Error Mitigation Techniques. To increase sys-
tem reliability and efficiency, many error correction codes [6,
38, 55, 98] have been proposed specifically in the context of
DRAM error mitigation [35]. VS-ECC [6] proposes variable
strength error correction codes for better performance and
energy efficiency. HI-ECC [98] increases power efficiency for
high-capacity eDRAM-based caches by integrating a strong
error correction code.

Our proposals complement existing ECC mechanisms and
achieve better performance and reliability. First, having ECC
alone (regardless of ECC strength) is not enough to guaran-
tee correct operation with maximum latency reduction, since
it is not possible to determine the smallest value for each
timing parameter without profiling. DIVA Profiling can do so,
enabling maximum latency reduction while leveraging ECC
support to correct failures. Second, DIVA Shuffling enables
greater reliability in the presence of an ECC mechanism by
distributing possible errors over different ECC codewords.
Third, our work opens up new research opportunities to ex-
ploit design-induced variation in combination with different
ECC schemes. For example, variable-strength ECC [6] can
exploit awareness of design-induced variation by adjusting
ECC strength based on error probability indications/predic-
tions from design-induced variation.

DRAM Latency Reduction with In-Memory Com-
munication andComputation. Transferring data over the
memory channel leads to long latency and delays other data
transfers. To reduce this latency, prior works offload bulk
data movement [16, 50, 81] or computation operations (e.g.,
[3, 4, 10, 20–22, 27, 28, 44, 45, 61, 71, 73, 80, 82, 83, 91]) to
DRAM. These works do not fundamentally reduce the access
latency to the DRAM array, whereas our proposal DIVA-
DRAM does. Hence, DIVA-DRAM is complementary to such
in-memory communication and computation mechanisms.

DRAM Latency Reduction Based on Memory Ac-
cess Patterns. Prior works [23, 84] show that DRAM leak-
age affects two DRAM timing parameters (tRCD/tRAS), and
recently-accessed rows have more charge. This allows such
rows to be reliably accessed with a lower latency than the
DRAM standard. Our approach of reducing latency by taking
advantage of design-induced variation is complementary to
these works.

8 CONCLUSION
This paper provides the first study that experimentally

characterizes and exploits the phenomenon of design-induced
variation in real DRAM chips. Based on a detailed experimen-
tal analysis of 768 modern DRAM chips from three major
manufacturers, we find that there is widespread variation in
the access latency required for reliable operation of DRAM
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cells, depending on how close or far the cells are to the
peripheral structures that are used to access them. We intro-
duce DIVA-DRAM, which consists of two novel techniques
that take advantage of design-induced variation to i) reduce
DRAM latency reliably at low cost and ii) improve reliability
bymaking ECCmore effective.DIVA Profiling reduces DRAM
latency by finding the lowest latency at which to operate
DRAM reliably, by dynamically profiling certain cells that
are most vulnerable to failures caused by reduced-latency op-
eration, due to the design of the DRAM chip. DIVA Shuffling
improves DRAM reliability by intelligently shuffling data
such that errors induced due to reduced-latency operation
become correctable by ECC. Our comprehensive experimen-
tal evaluations demonstrate that DIVA-DRAM can greatly
reduce DRAM read/write latency, leading to significant sys-
tem performance improvements on a variety of workloads
and system configurations, compared to both modern DRAM
and the state-of-the-art Adaptive-Latency DRAM [48]. We
conclude that exploiting the design-induced latency varia-
tion inherent in DRAM using our new techniques provides
a promising, reliable, and low-cost way of significantly re-
ducing DRAM latency. We hope that our comprehensive ex-
perimental characterization and analysis of design-induced
variation in modern DRAM chips enables the development of
other mechanisms to improve DRAM latency and reliability.
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APPENDIX
A LATENCY OVERHEAD OF DIVA

PROFILING
In Section 6.1, we calculate the time it takes to per-

form both DIVA Profiling and conventional DRAM profiling
(where each DRAM row is tested) [35, 53, 68, 95].

DRAM profiling consists of two steps: i) writing data to
the cells that are being tested, and ii) reading and verifying
cell contents. Therefore, the profiling time t is calculated as:

t =
NumberO f DRAMColumnsTested

DIMMBandwidth
× PatternCount × 2

(1)
where we determine the fastest rate at which a column com-
mand can be performed, and then multiply it by the number
of patterns that are being tested, and by two because we
perform a read and a write (i.e., two column commands) to
each DRAM column.
When testing a 4GB DDR3-1600 DIMM (whose DIMM

bandwidth is 1600 Mbps/pin × 64 pins = 102.4 Gbps) with
one test pattern, conventional DRAM profiling mechanisms
take 625 ms to test all 4GB of DRAM cells. However, since
DIVA Profiling needs to test only 8MB of cells (i.e., just one
row per each 512-row subarray), it takes only 1.22 ms to
complete its test.

B DRAM SIMULATION TO VALIDATE
OUR HYPOTHESES ON
DESIGN-INDUCED VARIATION

We hypothesize that accessing a cell that is physically
farther from the structures that are required to perform the
access (e.g., the sense amplifiers, the wordline drivers) takes
a longer time than accessing a cell that is closer to them.
Our observations in Section 5 support this hypothesis empir-
ically, but they do not provide absolute proof because they
are based on observations on DRAM chips whose internal
circuitry is not publicly provided and thus is unknown to
us. To verify our hypothesis, we simulate the effects of the
distance between a cell and the structures required to per-
form the access in a DRAM mat by using a detailed SPICE
circuit model. Our SPICE simulation model and parameters
are publicly available [1].

Detailed Mat Model. We first build a DRAM mat model
with a detailed wire model, as shown in Figure 20. Our mat
model consists of a 512 x 512 array of DRAM cells, which is
commonly used in modern DRAM chips [96]. Each 512-cell
column is connected to a sense amplifier over a bitline, which
is plotted as the vertical gray block in Figure 20. Each bitline
has its own parasitic resistance and capacitance. We expect
that due to the bitline’s parasitic resistance and capacitance,
accessing a cell farther from a sense amplifier (e.g., cell ❷)
takes a longer time than accessing a cell that is closer to the
same sense amplifier (e.g., cell ❶). Each 512-cell row is con-
nected to a local wordline driver over a wordline (512 local
wordline drivers in total), which is plotted as the horizontal

gray block in Figure 20. Each wordline has its own parasitic
resistance and capacitance. We expect that due to the word-
line’s parasitic resistance and capacitance, accessing a cell
farther from a wordline driver (e.g., cell ❸) takes a longer
time than accessing a cell that is closer to the same wordline
driver (e.g., cell ❷).
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Figure 20: Detailed Mat Model [34, 96], Including Parasitic
Resistance and Capacitance, Used in Our Circuit Simulation

Simulation Methodology. To simulate the access la-
tency for cells in different locations, we use technology pa-
rameters from a 55 nm DRAM model [96] and from a 45 nm
logic process model [7, 103] to construct a detailed circuit-
level SPICE simulation model. We assume that the cell ca-
pacitance is 24 fF, and the bitline capacitance is 144 fF [96].
The cell and sense amplifier operating voltage is 1.2V, while
the wordline operating voltage is 3.0V. In our evaluation,
we issue the ACTIVATION command at 0 ns and PRECHARGE
at 30 ns, which replicates the behavior of using a reduced
tRAS timing parameter (the standard tRAS is 35 ns [31]). We
plot the circuit-level SPICE simulation results in Figure 21.
Figure 21a shows the variation on voltage levels of the bit-
lines for two different cells: i) a cell that is near the sense
amplifier (cell ❶ in Figure 20), and ii) a cell that is far from
the sense amplifier (cell ❷ in Figure 20). Similarly, Figure 21b
shows the variation on voltage levels of the bitline for two
different cells: i) a cell that is near the wordline driver (cell ❷
in Figure 20), and ii) a cell that is far from the wordline driver
(cell ❸ in Figure 20). We explain the figures and our results
in detail below, but the key conclusion is that the voltage
level of the cell that is closer to the sense amplifier (cell ❶)
becomes higher (and lower) more quickly than that of the
cell that is farther from the sense amplifier (cell ❷), as shown
in Figure 21a. The same observation is true for the cell that
is closer to the wordline driver (cell ❷) vs. the cell that is
farther from the wordline driver (cell ❸). Since the voltage
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level of a cell that is closer to the sense amplifier or the word-
line driver becomes higher (or lower) more quickly, that cell
can be accessed faster. We explain this phenomenon in more
detail below.
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(b) Design-Induced Variation in Wordline

Figure 21: Simulation Results Showing Access Latency Dif-
ference Between Cells Nearby and Far from Peripheral
Structures

DRAMRow and ColumnAccess. There are three steps
performed to access data in a DRAM cell. The first step
is selecting a wordline. Inside DRAM, there are i) a global
wordline (that stretches over the entire subarray) and ii)
multiple local wordlines (each of which stretches over a
single mat). Enabling a global wordline driver raises the
voltage of the global wordline. Then, the global wordline
enables multiple local wordlines. Each wordline turns on
512 access transistors, connecting one cell capacitor in each
column to its corresponding bitline. We call this step charge
sharing in Figure 21. Figures 21a and 21b show that charge
sharing becomes enabled by raising a wordline between 0 ns
and 5 ns. In this example, the bitline voltage level (which
is initially precharged to 0.6V, VDD/2) increases due to the
sharing of charge from the connected cell (which we assume
is initially fully charged to 1.2V, VDD).
Second, after charge sharing, the sense amplifiers are en-

abled, starting to detect the voltage perturbation caused by
the charge sharing operation and amplifying the bitline volt-
age level toward 1.2V (VDD). We call this step sense amplifica-
tion in Figure 21. Figure 21 shows sense amplification taking
place between 5 ns to 30 ns. During sense amplification, a
sense amplifier can reliably transfer the detected data to the

IO circuitry when the voltage level reaches 0.9V (half way
between VDD/2 and VDD). In other words, the data becomes
ready to access at the bitline voltage level of 0.9V.

Third, after finishing sense amplification, in order to pre-
pare the subarray for an access to another row, the bitline
voltage should be reduced to 0.6V (the initial voltage level of
the bitline, VDD/2), to allow access to cells in a different row.
We call this step precharge in Figure 21. Figures 21a and 21b
show the precharge of a bitline taking place between 30 ns
to 40 ns.
For these three steps, we can understand the latency of

each step by examining the bitline voltage level. The access
latencies of these operations are determined based on how
quickly the bitline voltage level changes. For example, the
latency of activation depends on how fast the bitline level can
reach VDD. Similarly, the latency of the precharge operation
depends on how fast the bitline level can return to VDD/2. In
the next two paragraphs, we observe the latency of accessing
cells in different locations in a mat (cells ❶, ❷, and ❸), as
shown in Figures 20 and 21.

Accessing Cells on the Same Bitline.We evaluate and
compare two cases for accessing cells on the same bitline:
i) a cell that is near a sense amplifier (labeled cell ❶), and
ii) a cell that is far from the sense amplifier (labeled cell ❷).
Note that we use the same labels to describe the same cells in
Figures 20 and 21. Figure 21a shows the voltage levels of the
bitline whenmeasured near the accessed cells (cells❶ and❷).
We make three major observations. First, the cell that is near
the sense amplifier (cell ❶) finishes sense amplification earlier
than the cell that is far from the sense amplifier (cell ❷), as
pointed to by label A in Figure 21a. This is mainly due to the
additional parasitic resistance and capacitance required for
accessing cell ❷, which causes its voltage level to rise more
slowly. Second, the restored voltage level of a cell (i.e., the
highest voltage level of a bitline in Figure 21a) that is near
the sense amplifier (cell ❶) is higher than the level of the
cell that is far from the sense amplifier (cell ❷), as pointed
to by label B in Figure 21a. Therefore, when reducing the
restoration time (tRAS), the cell that is far from the sense
amplifier (cell ❷) holds less charge than the cell that is near
the sense amplifier (cell ❶). Due to the smaller amount of
charge in the far cell, accessing the far cell takes a longer
time than accessing the near cell. Third, precharging the
bitline when accessing the near cell takes less time than
when accessing the far cell, as shown by the voltage level
of cell ❶ dropping much faster than that of cell ❷ during
the precharge operation (pointed to by label C in Figure 21a).
Therefore, reducing the precharge timing parameter (tRP)
might be fine for the near cell (as the bitline can still return
to full VDD/2 within the reduced tRP). However, for the far
cell, reducing the precharge timing parameter can result in
the bitline not fully returning to VDD/2 after we access the
far cell. If the next access is to a cell whose charge state
(i.e., charged/discharged) is different from the cell we just
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accessed, it will take longer for the next access to be ready,
as the bitline voltage needs to change by a greater amount.
From these detailed circuit-level evaluations, we conclude
that accessing a cell that is far from the sense amplifier takes
a longer time than accessing a cell that is near the sense
amplifier.

AccessingCells on the SameLocalWordline.We eval-
uate and compare two cases for accessing cells on the same
wordline in Figures 20 and 21: i) a cell that is near a local
wordline driver (labeled cell ❷), and ii) a cell that is far from
the local wordline driver (labeled cell ❸). Figure 21b shows
the voltage levels of the corresponding bitlines of the two
cells when measured near the accessed cells. The key ob-
servation from the figure is that accessing a cell that is far
from the local wordline driver takes a longer time than ac-
cessing a cell that is near the local wordline driver. This is
mainly because the wordline has a large resistance and ca-
pacitance and, thus it takes longer for the activation signal to
reach the far cell. As a result, the voltage level of the nearby
cell becomes higher than that of the far cell, after an activa-
tion operation, as pointed to by label D in Figure 21b. Also,
precharging is faster for the nearby cell because its voltage
level gets closer toVDD/2 (0.6 V) much faster than that of the
far cell, as pointed to by label E in Figure 21b. Similarly, other
control signals (e.g., sense amplifier enable, equalizer enable)
also experience wire propagation delay that is higher when
accessing the far cell. As a result, the operations that take
place when accessing a cell farther away from the wordline
driver require a longer time to complete.
In summary, in our detailed circuit-level simulations, we

observe that accessing a cell that is farther from the struc-
tures that are required to perform the access (e.g., the sense
amplifiers and the wordline drivers) takes a longer time than
accessing a cell that is closer to such structures. Based on
these evaluations, we conclude that cells in a DRAM mat

have different latency characteristics based on their location,
which leads to a major source of design-induced variation.

C DESIGN-INDUCED VARIATION VS.
PROCESS VARIATION

We observe two types of errors: i) errors caused by process
variation that is usually randomly distributed over the entire
DRAM chip [11, 35], and ii) errors caused by design-induced
variation that are concentrated in specific regions (as we
showed in Section 6.1). There are cases where the effect of
design-induced variation on latency is greater than that of
process variation, and there are cases where the effect of
process variation is greater. Our mechanism, DIVA-DRAM,
enables reliable operation in both cases. The total DRAM
latency variation is the sum of design-induced variation and
process variation. We provide a separate mechanism to reli-
ably handle each type of variation: i) online DIVA Profiling
to minimize latency by exploiting design-induced variation,
and ii) ECC, strengthened with DIVA Shuffling, to provide
high reliability in the presence of process variation. Because
we provide ECC with improved reliability to account for the
presence of process variation, we are able to safely harness
the performance improvements offered by our exploitation
of design-induced variation, even when the effect of process
variation is higher.

We note that even in situations where process varia-
tion changes from DIMM to DIMM, one can still exploit
design-induced variation for better performance and relia-
bility by embedding the DIMM-specific information (i.e., the
addresses of the slowest regions that can be used for the la-
tency test regions in DIVA Profiling, the external-to-internal
address mapping information) within the DRAM module
(e.g., inside the serial-presence-detect EEPROM in a DRAM
module, as described in [42]), and providing this information
to the memory controller.
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D LIST OF TESTED DIMMS
We report a short summary of the properties and design-induced vulnerability of each of the 96 DIMMs (from three major

DRAM vendors) presented in this paper, separated by vendor, in Tables 2, 3, and 4. The evaluated DIMMs are manufactured in
the period from 2010 to 2013. While newer DIMMs enable higher capacity and bandwidth, the DRAM cell array architecture of
these newer DIMMs has not changed significantly from the architecture of the DIMMs we evaluate [34]. Therefore, we believe
that our observations on DRAM latency variation hold true for more recently manufactured DRAM chips.

Vendor Module
Date∗ Timing† Organization Chip Vulnerability Ratio⋆

(yy-ww) Freq (MT/s) tRC (ns) Size (GB) Chips Size (Gb)‡ Pins Die Version§ tRP tRCD

A1 10-18 1333 49.125 2 8 2 ×8 A 9.9 2.3
A2 10-20 1066 50.625 2 8 2 ×8 A 23.4 440
A3 10-22 1066 50.625 2 8 2 ×8 A 29 16.5
A4 10-23 1066 50.625 2 8 2 ×8 A 3.4 4.1
A5 10-26 1333 49.125 2 8 2 ×8 B 5.6 11.2
A6 10-26 1333 49.125 2 8 2 ×8 B 5.7 20.3
A7 10-43 1333 49.125 1 8 1 ×8 T 5837 764
A8 10-51 1333 49.125 2 8 2 ×8 B 5.6 290
A9 11-12 1333 46.25 2 8 2 ×8 B – –
A10 11-19 1333 46.25 2 8 2 ×8 B 2.4 2.0
A11 11-19 1333 46.25 2 8 2 ×8 B – –
A12 11-31 1333 49.125 2 8 2 ×8 B 4.3 –
A13 11-42 1333 49.125 2 8 2 ×8 B 4.9 93.7
A14 12-08 1333 49.125 2 8 2 ×8 C 96.7 28.6
A15 12-12 1333 49.125 2 8 2 ×8 C 3.9 45.2
A16 12-12 1333 49.125 2 8 2 ×8 C 103 373
A17 12-20 1600 48.125 2 8 2 ×8 C 31.4 178
A18 12-20 1600 48.125 2 8 2 ×8 C – –
A19 12-24 1600 48.125 2 8 2 ×8 C 37.1 21.3
A20 12-26 1600 48.125 2 8 2 ×8 C 26.7 26.9
A21 12-32 1600 48.125 2 8 2 ×8 C 61.3 160
A22 12-37 1600 48.125 2 8 2 ×8 C 9.9 44.3
A23 12-37 1600 48.125 2 8 2 ×8 C 161 37.1
A24 12-41 1600 48.125 2 8 2 ×8 C 54.4 196
A25 12-41 1600 48.125 2 8 2 ×8 C 24.1 1034
A26 12-41 1600 48.125 2 8 2 ×8 C 208 55.8
A27 12-41 1600 48.125 2 8 2 ×8 C 88.3 20.8
A28 12-41 1600 48.125 2 8 2 ×8 C 51.6 122
A29 12-41 1600 48.125 2 8 2 ×8 C 31.8 100

A

Total of
30 DIMMs

A30 13-11 1600 48.125 2 8 2 ×8 C 478 1590

∗We report the manufacturing date in a year-week (yy-ww) format. For example, 15-01 means that the DIMM was
manufactured during the first week of 2015.
†We report two representative timing factors: Freq (the data transfer frequency per pin) and tRC (the row access cycle time).
‡ The maximum DRAM chip size supported by our testing platform is 2Gb.
§We report the DRAM die versions that are marked on the chip package. Since the die version changes when the DRAM design
changes, we expect and typically observe that DIMMs with the same die version have similar design-induced variation.

⋆We report the vulnerability ratio, which we define in Section 5.6 as the ratio of the number of errors that occur in the top
10% most vulnerable rows and the top 10% least vulnerable rows, to show design-induced variation in timing parameters.
A larger value indicates a greater amount of design-induced variation in the DIMM.
“−” indicates that we did not observe design-induced variation for the timing parameter in the DIMM.

DIMMs with the same die version usually have a similar vulnerability ratio. However, there are some cases where we observe
large variation in the vulnerability ratio between two DIMMs with the same die version. We believe this observation is a result
of process variation, which is dominant in some cases.

Table 2: Sample Population of 30 DDR3 DIMMs from Vendor A (Sorted by Manufacturing Date)
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Vendor Module
Date∗ Timing† Organization Chip Vulnerability Ratio⋆

(yy-ww) Freq (MT/s) tRC (ns) Size (GB) Chips Size (Gb)‡ Pins Die Version§ tRP tRCD

B1 10-09 1066 50.625 0.5 4 1 ×16 B – –
B2 10-22 1066 50.625 0.5 4 1 ×16 B – –
B3 10-23 1066 50.625 1 8 1 ×8 F – –
B4 10-23 1066 50.625 1 8 1 ×8 F – –
B5 10-23 1066 50.625 1 8 1 ×8 F – –
B6 11-26 1066 49.125 1 4 2 ×16 D – –
B7 11-35 1066 49.125 1 4 2 ×16 D 2.1 –
B8 11-35 1066 49.125 1 4 2 ×16 D 479 –
B9 11-35 1066 49.125 1 4 2 ×16 D 1.9 –
B10 11-35 1066 49.125 1 4 2 ×16 D 4.3 –
B11 12-02 1066 49.125 1 4 2 ×16 D 161 –
B12 12-02 1066 49.125 1 4 2 ×16 D 2.3 –
B13 12-29 1600 50.625 1 4 2 ×16 D 16.0 –
B14 12-29 1600 50.625 1 4 2 ×16 D 8.6 –
B15 12-26 1600 49.125 2 8 2 ×8 M – –
B16 12-26 1600 49.125 2 8 2 ×8 M – –
B17 12-41 1600 48.125 2 8 2 ×8 K – –
B18 12-41 1600 48.125 2 8 2 ×8 K – –
B19 12-41 1600 48.125 2 8 2 ×8 K – –
B20 12-41 1600 48.125 2 8 2 ×8 K – –
B21 12-41 1600 48.125 2 8 2 ×8 K 4.3 11.4
B22 12-41 1600 48.125 2 8 2 ×8 K 472 –
B23 12-41 1600 48.125 2 8 2 ×8 K 279 –
B24 12-41 1600 48.125 2 8 2 ×8 K 3276 –
B25 13-02 1600 48.125 2 8 2 ×8 – – –
B26 13-02 1600 48.125 2 8 2 ×8 – – –
B27 13-33 1600 48.125 2 8 2 ×8 K – –
B28 13-33 1600 48.125 2 8 2 ×8 K 78.3 8.2
B29 13-33 1600 48.125 2 8 2 ×8 K 23.4 5.8

B

Total of
30 DIMMs

B30 14-09 1600 48.125 2 8 2 ×8 K – –

∗We report the manufacturing date in a year-week (yy-ww) format. For example, 15-01 means that the DIMM was
manufactured during the first week of 2015.
†We report two representative timing factors: Freq (the data transfer frequency per pin) and tRC (the row access cycle time).
‡ The maximum DRAM chip size supported by our testing platform is 2Gb.
§We report the DRAM die versions that are marked on the chip package. Since the die version changes when the DRAM design
changes, we expect and typically observe that DIMMs with the same die version have similar design-induced variation.

⋆We report the vulnerability ratio, which we define in Section 5.6 as the ratio of the number of errors that occur in the top
10% most vulnerable rows and the top 10% least vulnerable rows, to show design-induced variation in timing parameters.
A larger value indicates a greater amount of design-induced variation in the DIMM.
“−” indicates that we did not observe design-induced variation for the timing parameter in the DIMM.

DIMMs with the same die version usually have a similar vulnerability ratio. However, there are some cases where we observe
large variation in the vulnerability ratio between two DIMMs with the same die version. We believe this observation is a result
of process variation, which is dominant in some cases.

Table 3: Sample Population of 30 DDR3 DIMMs from Vendor B (Sorted by Manufacturing Date)
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Vendor Module
Date∗ Timing† Organization Chip Vulnerability Ratio⋆

(yy-ww) Freq (MT/s) tRC (ns) Size (GB) Chips Size (Gb)‡ Pins Die Version§ tRP tRCD

C1 08-49 1066 50.625 1 8 1 ×8 D – –
C2 09-49 1066 50.625 1 8 1 ×8 E – –
C3 10-19 1066 50.625 1 8 1 ×8 F – –
C4 11-16 1066 50.625 1 8 1 ×8 F – –
C5 11-19 1066 50.625 1 8 1 ×8 F – –
C6 11-25 1333 49.125 2 8 2 ×8 C – –
C7 11-37 1333 49.125 2 8 2 ×8 D – 2.6
C8 11-46 1333 49.125 2 8 2 ×8 D – 32.9
C9 11-46 1333 49.125 2 8 2 ×8 D – 42.3
C10 11-49 1333 49.125 2 8 2 ×8 C – –
C11 12-10 1866 47.125 2 8 2 ×8 D – 104
C12 12-10 1866 47.125 2 8 2 ×8 D – 117
C13 12-10 1866 47.125 2 8 2 ×8 D – 291
C14 12-10 1866 47.125 2 8 2 ×8 D – –
C15 12-10 1866 47.125 2 8 2 ×8 D – 97.0
C16 12-10 1866 47.125 2 8 2 ×8 D – 493
C17 12-10 1866 47.125 2 8 2 ×8 D – 61.8
C18 12-25 1600 48.125 2 8 2 ×8 E 2.2 3.3
C19 12-28 1600 48.125 2 8 2 ×8 E 473 3.1
C20 12-28 1600 48.125 2 8 2 ×8 E 5.4 2.7
C21 12-28 1600 48.125 2 8 2 ×8 E 3.5 3.0
C22 12-28 1600 48.125 2 8 2 ×8 E 545 3.0
C23 12-28 1600 48.125 2 8 2 ×8 E 2.7 3.0
C24 12-28 1600 48.125 2 8 2 ×8 E 27.2 2.9
C25 12-28 1600 48.125 2 8 2 ×8 E – 3.3
C26 12-28 1600 48.125 2 8 2 ×8 E 54.2 19.1
C27 12-28 1600 48.125 2 8 2 ×8 E – 3.1
C28 12-31 1600 48.125 2 8 2 ×8 E 29.0 5.4
C29 12-31 1600 48.125 2 8 2 ×8 E 120 6.7
C30 12-31 1600 48.125 2 8 2 ×8 E 196 3.2
C31 12-31 1600 48.125 2 8 2 ×8 E 599 8.5
C32 12-31 1600 48.125 2 8 2 ×8 E 51.6 –
C33 13-19 1600 48.125 2 8 2 ×8 E – 2.5
C34 13-19 1600 48.125 2 8 2 ×8 E – 1.6
C35 13-19 1600 48.125 2 8 2 ×8 E – 2.6

C

Total of
36 DIMMs

C36 13-19 1600 48.125 2 8 2 ×8 E – 1.9

∗We report the manufacturing date in a year-week (yy-ww) format. For example, 15-01 means that the DIMM was
manufactured during the first week of 2015.
†We report two representative timing factors: Freq (the data transfer frequency per pin) and tRC (the row access cycle time).
‡ The maximum DRAM chip size supported by our testing platform is 2Gb.
§We report the DRAM die versions that are marked on the chip package. Since the die version changes when the DRAM design
changes, we expect and typically observe that DIMMs with the same die version have similar design-induced variation.

⋆We report the vulnerability ratio, which we define in Section 5.6 as the ratio of the number of errors that occur in the top
10% most vulnerable rows and the top 10% least vulnerable rows, to show design-induced variation in timing parameters.
A larger value indicates a greater amount of design-induced variation in the DIMM.
“−” indicates that we did not observe design-induced variation for the timing parameter in the DIMM.

DIMMs with the same die version usually have a similar vulnerability ratio. However, there are some cases where we observe
large variation in the vulnerability ratio between two DIMMs with the same die version. We believe this observation is a result
of process variation, which is dominant in some cases.

Table 4: Sample Population of 36 DDR3 DIMMs from Vendor C (Sorted by Manufacturing Date)
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