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Back-propagation (BP)’s Strong Sequential Dependency Model Parallel Training

Linear RelU M_ Strong sequential dependency limits scalability on parallel systems.
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Reformulate BP as a Scan Operation
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Up-sweep Down-sweep Up-sweep Down-sweep
G;= V3, l| Define op.: A0 B =BA, input: All e Alle Alle
S T ! 7 !
Jirg= (a;;f_l) Exclusive scan:| I |-> L. A+B B ||a+B L. BA ABI/
L

Jacobians are Memory & Compute Hungry

A full Jacobian: prohibitively expensive.

Deterministic Known ahead of
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Generated by Op Grad(basis vectors) one by one. Jacobian Calculation Speedup 8.3x103x  1.2x105x  1.5x10° x

Evaluation

Model: RNN Task: Bitstream Classification Backward Pass Speedup over the Baseline Hardware Sensitivity
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Hardware: RTX 2070 & RTX 2080Ti 1
Implementation: Custom CUDA Kernels
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BPPSA reconstructs the original BP exactly. bounded by p; and scales with p. - Latency(2080Ti) < Latency(2070).




