Scaling Back-Propagation by Parallel Scan Algorlthm

Shang Wang!2 | Yifan Bai! | Gennady Pekhimenko2 & Computer Science '\7‘ INSTITUTE

@ UNIVERSITY OF TORONTO

Back-propagation (BP)’s Strong Sequential Dependency Model Parallel Training

Linear RelU M_ Strong sequential dependency limits scalability on parallel systems.
ﬁf(x) Vl Pipeline Parallel Training:
i :

7 af() N * Linear per-device space
] R | 6-\ S complexity.
) _ R H ~ ‘o | — " — Nl © “Bubble of idleness”
f () — — — vs. convergence affect.
Strong Sequential Dependency | [— — —
long layers 4o Fo i -

canAnnnm

Binary, associative op.: +, input:

Worker (p): an instance
of execution; e.g., a core

Exclusive scan:

2 4
6 ‘7{‘8_ L»; L»; \—»1‘1 \—»1‘5
v v

Ishaihioe | |

o

in @ multi-core CPU. On a single worker: scan linearly: n steps. 10
=T
Number of Elements (n) | |with more workers: sublinear steps? 3 0

Reformulate BP as a Scan Operation

B

Key Insight: matrix multiplication in BP is also binary & associative! Of[L [3]]® 10
Up-sweep Down-sweep Up-sweep Down-sweep
G;= V3, l| Define op.: A0 B =BA, input: All e Alle Alle
S T ! 7 !
Jirg= (a;;f_l) Exclusive scan:| I |-> L. A+B B ||a+B L. BA ABI/
L

Jacobians are Memory & Compute Hungry

A full Jacobian: prohibitively expensive.

Deterministic Known ahead of
e.g., 1t convolution in VGG-11 on CIFAR-10 images: patternl. training Itlme.
y
x [113072 :D/Convzd_Grad(:l, 0,0,0,0,0,07) Potentially better Spo GEMM performance.
Ny ©y~Convzd_Grad(l0,1,0,0,0,0,0]) Generated directly into CSR:
fOH —C—Conv2d_Grad([0,0,1,0,0,0,0]) T o
655361] 768 MB | _j«—Conv2d_Grad(|0,0,0,1,0,0,0]) > Slow Conv2d, W indices
— “~—Conv2d_Grad([0,0,0,0,1,0,0]) —FFFd indptr
— N~Conv2d_Grad([0,0,0,0,0, 1, 0]) Conv2d RelU MaxPool2D
\Convad_Grad([0,0,0,0,0,0, 1),

Generated by Op Grad(basis vectors) one by one. Jacobian Calculation Speedup 8.3x103x 1.2x105x 1.5x10° x

Evaluation

Model: RNN Task: Bitstream Classification Backward Pass Speedup over the Baseline Hardware Sensitivity

100 108x m 2070 ®2080Ti
S 40
© 35
/f §3O
! 10 T 25
ofERR o R o RERR o § o HERRERE 0 24 ?i‘é
Baseline: PyTorch Autograd & cuDNN I I I I G 10

Hardware: RTX 2070 & RTX 2080Ti 1
Implementation: Custom CUDA Kernels

Speedup

100 300 3k 10k 30k
Sequence Length T (reflecting N)

10 30 100 300 1k 3k 10k 30k
Sequence Length T

End-to-end training when 6
Batch Size (B) = 16, Sequence Length (T) = 1000 530
—Baseline —BPPSA 3 © 25
2.4 5
\ = % 20
) 2.2 2 s
S 7 2 £10
c 1.8 2 >
= 2.17x Speedup 2 s 1
IC_E 1.6 . ZU 0 TSR THET ;
1.4 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2
| Fraction of GPU per Sample (1/8B
1.2 Fraction of GPU per Sample 1/B reflectmg p) raction o per Sample (1/B)
0 1000 2000 3000 4000 5000
Wall-clock Time {s) BPPSA scales with n until being # of SMs(2080Ti) > # of SMs(2070)

BPPSA reconstructs the original BP exactly. bounded by p; and scales with p. - Latency(2080Ti) < Latency(2070).

