
DNN-Train: Benchmarking and Analyzing DNN Training
Hongyu Zhu

University of Toronto
serailhydra@cs.toronto.edu

Bojian Zheng
University of Toronto
bojian@cs.toronto.edu

Amar Phanishayee
Microsoft Research
amar@microsoft.com

Bianca Schroeder
University of Toronto
bianca@cs.toronto.edu

Gennady Pekhimenko
University of Toronto

pekhimenko@cs.toronto.edu

ABSTRACT
We aim to build a new benchmark pool for deep neural network
training and to analyze how efficient existing frameworks are in
performing this training. We will provide our methodology and
develop proper profiling tools to perform this analysis.

1 INTRODUCTION AND MOTIVATION
The recent success of deep learning algorithms has attracted a lot
of attention from the system and the architecture communities. For
example, the opening session topics of ISCA 2016 and ISCA 2017
are both about machine/deep learning; ISCA 2016 has three sessions
and nine accepted papers related to deep neural networks (DNN)
optimizations; ISCA 2017 and MICRO 2016 also have two sessions
and six accepted papers in this area. While this attention leads to
interesting recent work on how to perform DNN computation more
efficiently, the primary focus is usually on (i) inference – i.e. how
to efficiently execute already trained models, and (ii) image classi-
fication applications as the primary benchmark to evaluate DNN
computation efficiency.

While inference is arguably an important problem, we observe
that as machine learning is applied to an ever growing number of
domains, e.g., speech recognition, machine translation, automobile
industry, advertising, efficiently training new models is becoming
equally important. Moreover, these new applications employ types
of layers that differ from those used for image classification (e.g.,
machine translation models usually use recurrent neural network
(RNNs) layers rather than convolutional layers). These new layer
types have very different compute and memory bandwidth charac-
teristics, and frameworks that optimize for convolutions might not
perform as well on RNNs.

Our primary goal is to bridge this gap by (i) selecting a rep-
resentative set of DNN models that cover different machine learn-
ing applications: image classification, machine translation, speech
recognition, adversarial networks, reinforcement learning, and by
(ii) performing an extensive performance analysis on training these
different applications on many different deep learning frameworks
(such as TensorFlow, MXNet, CNTK) and on different hardware
configurations (single-GPU, multi-GPU, and multi-machine).

How is Training Different from Inference? The algorithmic
differences between training and inference lead to differences in re-
quirements for the underlying system and architecture. For example,
due to the presence of the backward pass and weight updates, the
training procedure needs to save/stash a huge amount of intermedi-
ate results, e.g., outputs of the inner layers (often called feature maps)
in GPU memory. This puts a significant pressure on the memory
subsystem of modern DNN accelerators (usually GPUs) – in some
cases the model might need tens of gigabytes of main memory [17].
Another difference is that training usually needs to process large
amount of data to avoid overfitting, making throughput a major
performance metric of concern. On the other hand, inference is rel-
atively light-weight with respect to computation, but much more

latency sensitive. The memory footprint of inference is usually sig-
nificantly smaller (in the order of tens of megabytes), and the major
memory consumer are the model weights rather than activations.

The Need for Diversity. Although deep learning has achieved
state-of-the-art results in various application domains, image classi-
fication so far is still the dominant benchmark used in most evalua-
tions, and convolutional neural networks (CNNs) remain the most
widely-used models for system/hardware researchers. As a result,
many important non-CNN models are ignored. Among the sys-
tem/architecture papers that employed machine learning bench-
marks from other application domains, only a handful evaluated
other types of neural networks such as recurrent neural networks [1,
11, 13]. Papers that cover unsupervised learning or deep reinforce-
ment learning are extremely rare. Since the computation character-
istics of image classification models are very different from these
networks, a wider benchmark suite for DNN training is needed.

Finding the Right Metrics and Bottlenecks. Machine learn-
ing (ML) researchers usually perform the training passes multiple
times to identify the best hyper-parameter configurations, the best
network topology, and for fine-tuning the subset of model weights.
The desired flexibility is usually provided by the high-level frame-
works such as TensorFlow [1] or MXNet [5]. These DNN frameworks
make DNN programming much more convenient. Unfortunately,
their complexity makes the performance analysis and tuning of the
resulting applications much more challenging, as the performance
bottlenecks could come from different sources. In our work we aim
to develop the proper methodology to detect those bottlenecks, char-
acterize them, and either automatically optimize the code or suggest
potential improvements to ML developers.

Typical CNNs are usually very computationally intensive, there-
fore computation is normally one of the primary bottlenecks. Modern
GPUs provide significant compute power to alleviate this bottleneck,
but they have to be programmed properly (usually using one of
the CUDA libraries) to deliver high performance. As we will show
in Section 3, even state-of-the-art frameworks do not always effi-
ciently utilize modern GPUs for DNN training. For example, the
performance of training machine translation models with RNNs
is significantly limited by the maximum mini-batch size allowed
(number of inputs processed in parallel in one iteration), which is
bounded by the physical memory capacity of a single GPU (usually
8–16GBs).

Training DNNs in a distributed environment with multiple GPUs
and multiple machines, requires fast communication between many
CPUs and GPUs. The communication overhead (network and inter-
connect bandwidth) significantly affects the training performance and
limits DNN training scalability as we will further show in Section 3.

Identifying whether the training performance is bounded by com-
putation, memory or communication is not easy. Existing profiling
tools (e.g., vTune, nvprof, etc.) have no domain-specific knowledge
about the algorithm logic, and can only capture low-level informa-
tion within their own scopes. Therefore to do a holistic analysis,
the profiling results generated by these tools have to be correctly

1



collected, merged, analyzed, and interpreted using domain-specific
knowledge of DNN training. In the case of memory footprint analy-
sis, no open-source tools are currently available and we built them
ourselves for three major frameworks: TensorFlow, MXNet and
CNTK. We also develop a tool chain for an end-to-end analysis
of DNN training. We believe that our benchmarks, new methodol-
ogy for their analysis, related tools, and our observations/insights
using those tools will be interesting for system and architecture
researchers, and ML practitioners.

2 METHODOLOGY
Applications. To create a representative benchmark pool with suf-
ficient diversity, we surveyed several application areas where deep
learning has been regarded promising. We discussed our choices
with machine learning researchers and industry developers to en-
sure that we do not miss major deep learning domains. The chosen
areas are: image classification, object detection, machine translation,
speech recognition, generative adversarial nets, and deep reinforce-
ment learning. Table 1 shows our collection. The models we choose
are able to produce state-of-the-art results in each of their corre-
sponding domains, ensuring that they reflect the most popular DNNs
used for training.

Application Model(s) Dataset
image classification ResNet[9], GoogleNet[19] imagenet1k[18]
object detection Faster-RCNN[16] Pascal VOC[8]
machine translation Seq2Seq[22], Transformer[21] iwslt15
speech recognition Deep Speech 2[2] LibriSpeech[15]
unsupervised learning WGAN[3] Cifar10
reinforcement learning A3C[14] Atari 2600

Table 1: Applications from DNN-Train benchmark pool.

Frameworks. Choosing frameworks and comparing them can be
tricky. There aremany open-sourceDNN frameworks (e.g. Tensorflow[1],
Theano[4], MXNet[5], CNTK[23], Caffe[12], Chainer[20], Torch[7],
Keras[6], etc). Each of them applies some special optimization tech-
niques of their own. Fortunately, some high-level system designs
are generally applied to most frameworks. Almost all frameworks
allow users to use GPUs for acceleration. The CPUs are then mostly
responsible for scheduling, data copying, kernel launching, etc. High-
level APIs are provided in either a declarative or imperative way (or
both). For onemodel trained using different frameworks, the invoked
GPU kernels are functionally the same although the framework code
bases are usually quite different. All these common features pro-
vide us a basis to compare different frameworks. In this work we
choose TensorFlow[1], MXNet[5], CNTK[23] as the frameworks for
all major evaluations, since all three platforms have a large number
of users and are actively evolving.

Performance Analysis Pipeline and Tools. To analyze our
benchmarks we create a pipeline with several major steps. (1) Match
implementation from different networks that includes matching
their topologies, key algorithm properties/parameters, and all key
hyperparameters. (2) Measure the GPU occupation rate as it is usu-
ally the primary compute engine used in training. (3) Analyze CPU
runtime: CUDA vs. non-CUDA (e.g., synchronization, memory trans-
fers etc.) (4) Analyze GPU runtime: usually ALU utilization is the
major metric to look at. (5) (If needed) analyze memory footprint –
how much memory is used by weights, activations, workspace etc.

Hardware/Software Configurations.We run the single-GPU
experiments with NVidia GeForce GTX 1080Ti and NVidia TITAN
Xp GPU. To carry out multi-GPU and multi-machine experiments,
we use a cluster of 4 machines, each of them equipped with one or
more NVidia Quadro P4000 GPUs. All experiments are executed on
Ubuntu 16.04 OS with Tensorflow v1.3, MXNet v0.11.0, CNTK v2.0,
CUDA v8 and cuDNN v6.

4 8 16 32 64 128
0

100

200

300

400

500

600

T
hr

ou
gh

pt
 (

sa
m

pl
es

/s
)

Mini-batch size

NMT (TF)
Sockeye (MXNet)
ResNet-50 (MXNet)
ResNet-50 (TF)

(a) Performance for different
DNN models.

0

200

400

8 16 32

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

Mini-batch size per machine/gpu

1M1G 2M1G (ethernet)
2M1G (infiniband) 1M2G
1M4G

(b) ResNet-50 on MXNet with
multiple GPUs(G)/machines(M).

Figure 1: DNN training for different mini-batch sizes.

0

5

10

15

20

25

0 5000 10000 15000

B
L

E
U

 S
co

re

Training time elapsed (s)

Sockeye (MXNet)
NMT (TF)Sockeye (MXNet)

NMT (TF)

(a) Quality over time.

0

5

10

15

20

25

10
0

10
00

19
00

28
00

37
00

46
00

55
00

64
00

73
00

82
00

91
00

10
00

0
10

90
0

11
80

0
12

70
0

13
60

0
14

50
0

15
40

0
16

30
0

B
L

E
U

 S
co

re

Training iterations

Sockeye (MXNet)
NMT (TF)

NMT (TF)

Sockeye (MXNet)

(b) Quality per epoch.

Figure 2: Machine translation training.

3 KEY RESULTS AND OBSERVATIONS
Observation 1: the importance of application diversity.We observe that
different applications from our pool have very different performance
characteristics. Machine translation models that use RNN layers
do not map efficiently on modern GPUs. ResNet-50 model used
for image classification has GPU occupation over 90% for all three
frameworks; in contrast LSTM-based models have less than 40%
occupation rate. This happens because current GPU implementations
of LSTM cells used in RNN layers generate many small kernels.
Increasing the mini-batch size (as we show in Figure 1a) helps reduce
this overhead, but only until we saturate memory capacity (mini-
batch size of 256 does not fit into 12GB of GPU memory).

Observation 2: the importance of framework diversity. Based on
results in Figure 1a, we observe thatMXNet performs better on image
classification (ResNet-50 model) than TensorFlow, but TensorFlow is
much better on machine translation tasks. Figure 2a shows how this
performance difference affects the training quality (BLEU Score) over
time for a maximum possible mini-batch size of 128. Semantically
both models (NMT[22] and Sockeye[10]) are very close using our
methodology (same topology, hyper-parameters, and algorithms).
Figure 2b shows that if we look at the training process per epoch
(training iterations) then the training quality of both models is very
similar.

Observation 3: LSTM saturation. Another observation from Fig-
ure 1a is that LSTM-based models do not saturate the compute
resources of the GPU even at the maximum possible batch size. The
reasons include both very low GPU occupation rate (howmuch GPU
cores are busy) – less than 40% and also extremely low GPU utiliza-
tion (the efficiency of using GPU compute resources) – 20%–30%.

Observation 4: Memory capacity matters. Figure 1a shows that
larger batches could improve training performance even further and
the bottleneck could be memory capacity. The memory profiling
tools we built show us what data structures are responsible for
high memory consumption and it can vary cross different models.
This will provide ML practitioners with some intuition on how
adjustments made to model parameters would affect the memory
usage of their models.

Observation 5: Network bandwidth matters. Inter-machine commu-
nication is a bottleneck for scale-out training. Figure 1b shows how
GPU training scales with the number of GPUs and machines.1 We ob-
serve that going from one machine (1M1G) to two machine (2M1G
(ethernet)) configuration the performance degrades significantly.
This is because DNN training requires constant synchronization
1*M stands for the number of machines, and *G for the number of GPUs.

2



between GPUs in distributed training. Hence faster networking is
required to improve the situation (2M1G configuration has 100Gb/s
InfiniBandMellanox networking). DNN training on a single machine
(1M1G, 1M2G, 1M4G) scales reasonably well.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[2] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric
Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang
Chen, et al. Deep speech 2: End-to-end speech recognition in english andmandarin.
In International Conference on Machine Learning, pages 173–182, 2016.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv
preprint arXiv:1701.07875, 2017.

[4] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio.
Theano: A cpu and gpu math compiler in python. In Proc. 9th Python in Science
Conf, pages 1–7, 2010.

[5] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[6] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.
[7] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a modular machine

learning software library. Technical report, Idiap, 2002.
[8] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and An-

drew Zisserman. The pascal visual object classes (voc) challenge. International
journal of computer vision, 88(2):303–338, 2010.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[10] Felix Hieber, Tobias Domhan, Michael Denkowski, David Vilar, Artem Sokolov,
Ann Clifton, and Matt Post. Sockeye: A toolkit for neural machine translation.
arXiv preprint arXiv:1712.05690, 2017.

[11] Yu Ji, YouHui Zhang, ShuangChen Li, Ping Chi, CiHang Jiang, Peng Qu, Yuan Xie,
and WenGuang Chen. Neutrams: Neural network transformation and co-design
under neuromorphic hardware constraints. In Microarchitecture (MICRO), 2016
49th Annual IEEE/ACM International Symposium on, pages 1–13. IEEE, 2016.

[12] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architec-
ture for fast feature embedding. In Proceedings of the 22nd ACM international
conference on Multimedia, pages 675–678. ACM, 2014.

[13] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing unit. arXiv preprint
arXiv:1704.04760, 2017.

[14] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In International Conference on Machine
Learning, pages 1928–1937, 2016.

[15] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Lib-
rispeech: an asr corpus based on public domain audio books. In Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Conference on, pages 5206–
5210. IEEE, 2015.

[16] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[17] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W
Keckler. vdnn: Virtualized deep neural networks for scalable, memory-efficient
neural network design. In Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on, pages 1–13. IEEE, 2016.

[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[19] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 2818–2826,
2016.

[20] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-
generation open source framework for deep learning. In Proceedings of workshop
on machine learning systems (LearningSys) in the twenty-ninth annual conference
on neural information processing systems (NIPS), volume 5, 2015.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[22] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[23] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Zhiheng Huang, Brian
Guenter, Oleksii Kuchaiev, Yu Zhang, Frank Seide, Huaming Wang, et al. An

introduction to computational networks and the computational network toolkit.
Microsoft Technical Report MSR-TR-2014–112, 2014.

3

https://github.com/fchollet/keras

	Abstract
	1 Introduction and Motivation
	2 Methodology
	3 Key Results and Observations
	References

