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Figure 1: Left: A single-layer LSTM RNN that scans through
an input sequence. Right: A zoom-in view of an LSTM cell.
Both diagrams have been greatly simplified.

1 INTRODUCTION
Long-Short-Term-Memory Recurrent Neural Network (LSTM RNN
[7], Figure 1) is a state-of-the-art model for analyzing sequential
data. Current implementations of LSTM RNN in machine learning
(ML) frameworks usually either lack performance or flexibility (i.e.
the ability to modify existing computation of LSTM RNN). For
example, default implementations (which we will further refer to as
Default) in Tensorflow [1] and MXNet [3] invoke many tiny GPU
kernels, leading to excessive overhead in launching GPU threads
(a.k.a. cudaLaunch, Figure 2a). Although cuDNN [5], NVIDIA’s
deep learning library, can accelerate performance by around 2×,
it is closed-source and inflexible, hampering further research and
performance improvements in frameworks, such as PyTorch [17],
that use cuDNN as their backend [6]. In this work, we introduce a
new RNN implementation called EcoRNN that is significantly faster
than the open-source implementation in MXNet and is competitive
with the closed-source cuDNN. We show that applying data layout
optimization, with other techniques that are shown in Appleyard
et al.’s work, can give us a maximum performance boost of 3×
over MXNet default and 1.5× over cuDNN implementations. We
integrate EcoRNN into MXNet Python library and open-source it to
benefit ML practitioners. We also find that ML compilers [19, 4, 18]
can be helpful in making the frontend programming interface more
flexible by automatically configuring the data layout to be optimal,
which is not possible in cases other than LSTM RNN since it has
the property of "optimizing once and for all".

2 KEY OBSERVATIONS
We make the following observations during our optimization of
LSTM RNN compututation on the GPUs.

Observation 1. The runtime bottleneck of LSTM RNN is
fully-connected (FC) layers. We obtain the runtime breakdown
of cuDNN GPU kernels using nvprof [15], and the result is shown
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Figure 2: (a) Runtime profile comparison between Default
and cuDNN. Default has 5×more cudaLaunch overhead com-
pared with cuDNN. (b) Runtime breakdown by GPU kernels
in cuDNN. All kernel names have been abbreviated.

in Figure 2b (due to the fact that Default slices the computation
of "f " block in Figure 1 into small pieces, its result is difficult to
interpret). Figure 2b shows that more than 85% of the time spent on
compute has been allocated to matrix multiplies (sgemm is the name
for single-precision matrix multiply kernels in cuBLAS library [12]).
The annotations beside the stacked bar in Figure 2b group GPU
kernels together according to their counterpart in Figure 1, which
explains why FC layers in LSTM RNN should be the top candidate
for optimization.

Observation 2. Data layout optimization can speed up FC
layers. Data layout optimization is a technique that originates from
compiler research [9]. The idea behind data layout optimization
is that changing data layout (usually from row-major to column-
major or vice versa) can result in better locality in the data access
pattern, which will further lead to higher cache hit rate, faster
memory accesses, and, eventually, better runtime performance.
We discover that two computations, Y = XWT and YT = WXT

(Figure 3a), that are mathematically the same can have different
cache hit rates. Figure 3b shows an example of such comparison
where X : [64 × 512] andW : [2048 × 512] (this mimics the FC
layers of an LSTM RNN that has batch size and hidden dimension
equal to 64 and 512 respectively). We observe that YT =WXT is
almost twice as fast as Y = XWT under this parameter setting, and
the reason is that the former has better cache hit rate (50% vs. 10%
of latter). Therefore, it can feed data faster into compute units, and
thus spend more time in compute rather than waiting for data to
arrive from main memory.

3 PRELIMINARY RESULTS
All the experiments are done on a singlemachinewith Intel®Core™i5-
3570 [8] CPU and Titan Xp [16] GPU. We have been using CUDA
8.0 [14] toolkit and cuDNN 6.0 [13] for our experiments. To provide
fair comparison against Default and cuDNN, we integrate our im-
plementation of EcoRNN into MXNet ver. 0.12.1. We test all three
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Figure 3: (a) Y = XWT (top) vs. YT = WXT (bottom). Both
are doing the same amount of computation. (b) Runtime
(left) and hardware utilization (right) comparison between
Y = XWT and YT =WXT .

Figure 4: Training throughput comparison on PTB (left) and
Wikitext-2 (right) dataset.

backends end-to-end (i.e. all overheads have been included) with
the MXNet language modeling benchmark on the PennTreeBank
(PTB) [10] and Wikitext-2 [11] dataset. Figure 4 shows the results
of training throughput comparison. We observe that EcoRNN is al-
ways significantly better than Default and in most cases better than
cuDNN. Even in a few cases where cuDNN slightly outperforms
EcoRNN, the performance difference is below 20%.

4 OPTIMIZING ONCE AND FOR ALL
The trade-off between performance and flexibility is ubiquitous in
high-performance-computing. With the advent of machine learn-
ing compilers [19, 4, 18], it is made possible to perform dynamic
code optimization under a easily programmable frontend interface,
therefore achieving both high performance and flexibility simulta-
neously. We notice that the optimization of LSTM RNN exhibits the
property of "once and for all" – optimizations that are performed for
one single cell can be generalized immediately to all other cells of
different layers and time steps. Therefore, data layout optimization,
which is a NP-complete problem in generic settings, can be reduced
to a binary problem in the case of LSTM RNN. We aim to inves-
tigate the use of ML compilers in RNN training, which can help
us dynamically select between the transposed and legacy layout
depending on the hyperparameter settings at runtime. Figure 5
demonstrates how it works – at the frontend, machine learning
programmers specify the hyperparameters that they are hoping to
use, our microbenchmark then quickly does runtime comparison
between different implementation backends (i.e. Default, cuDNN,
and EcoRNN ) in milliseconds, the best of which will be used in
actual training that lasts for hours.
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