EcoRNN: Efficient Computing of LSTM RNN on GPUs Bojian Zheng (M.Sc. Student), Gennady Pekhimenko (Advisor) **EcoSystem** Research Group, Department of Computer Science, University of Toronto **Problem Statement** Fully Connected Timeline **GPU Kernels** 60 cudaLaunch (su) 40 Others $n_{t-1} \longrightarrow FC \longmapsto$ $\circ \circ \circ \circ \circ \circ \circ \circ \circ$ Recurren or Runtime 50 GRU (Bidirectional) Normalization \mathbf{FC} 1D or 2D Invariant Convolution Default

Nonlinear Block

h Cell Hidden State

Background: Long-Short-Term-Memory Recurrent Neural Network

EcoRNN is an open-source implementation that has runtime performance comparable with or even better than CuDNN, but consumes less memory and supports <u>auto-tuning</u>.

Preliminary Results: Performance

The 51st Annual IEEE/ACM International Symposium on Microarchitecture[®], 2018, Fukuoka, Japan

X Default has cudaLaunch overhead. **X** CuDNN is closed-source, limits innovation.

 Baidu persistent RNN
 Weight Parameter Reuse High Performance when Batch Size is Small
X Inflexible (hard to be ported to new GPUs and cell types)
ML Compilers (e.g., <i>TVM</i> , <i>XLA</i>)
Gist (Jain et al., ISCA'18)