2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

NVOverlay: Enabling Efficient and Scalable
High-Frequency Snapshotting to NVM

Chul-Hwan Choo

Samsung Electronics

Ziqi Wang
Carnegie Mellon University
ziqiw @cs.cmu.edu

Gennady Pekhimenko
University of Toronto
pekhimenko @cs.toronto.edu

Abstract—The ability to capture frequent (per millisecond)
persistent snapshots to NVM would enable a number of com-
pelling use cases. Unfortunately, existing NVM snapshotting
techniques suffer from a combination of persistence barrier stalls,
write amplification to NVM, and/or lack of scalability beyond a
single socket. In this paper, we present NVOverlay, which is a
scalable and efficient technique for capturing frequent persistent
snapshots to NVM such that they can be randomly accessed later.
NVOverlay uses Coherent Snapshot Tracking to efficiently track
changes to memory (since the previous snapshot) across multi-
socket parallel systems, and it uses Multi-snapshot NVM Mapping
to store these snapshots to NVM while avoiding excessive write
amplification. Our experiments demonstrate that NVOverlay
successfully hides the overhead of capturing these snapshots while
reducing write amplification by 29%-47% compared with state-
of-the-art logging-based snapshotting techniques.

Index Terms—Non-Volatile Memory (NVM); Snapshotting;
Shadow Paging

1. INTRODUCTION

While Byte-Addressable Non-Volatile Memory (NVM) tech-
nology' has led to many exciting ideas on how to leverage
persistence [2, 3, 5, 8, 11, 23, 31-33, 35, 40, 41, 46, 47, 55,
57, 62, 68, 69, 76, 78, 84-87, 90-92], our focus in this paper
is specifically on the benefits and challenges of using NVM to
support frequent persistent snapshotting. In particular, our goal
is to capture persistent snapshots of the full physical address
space of a process to NVM at a rate of hundreds of times per
second (i.e. on the order of milliseconds).

Usage models enabled by frequent persistent snapshots.
The ability to efficiently capture frequent snapshots to NVM
would enable a form of persistent, multiversioned memory
system, which in turn enables the following four usage models:
(1) time-traveling or record-and-replay debugging [52, 77] of
distributed cloud applications, where snapshots are captured
upon user-specified events (aka “watch points”) that often
happen in a bursty fashion (as computations of interest flow
across the distributed system); (2) implementing persistent and

“This work is supported in part by grants from NSF, Samsung, and Intel.
!In this paper, we focus on NVM devices in DIMM form factors, such as
Intel® Optane™ persistent memory.

978-1-6654-3333-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ISCA52012.2021.00046

chulhwan.choo @samsung.com

Vivek Seshadri
Microsoft Research India
visesha@microsoft.com

498

Michael A. Kozuch
Intel Labs
michael.a.kozuch@intel.com

Todd C. Mowry
Carnegie Mellon University
tem@cs.cmu.edu

Dimitrios Skarlatos
Carnegie Mellon University
dskarlat@cs.cmu.edu

Versioned Domain

|__Epoch=E(3) |

Versioned Domain Versioned Domain

Coherence resp:
epoch = E'@

Fig. 1: NVOverlay Features — (D — Multi-snapshot NVM Mapping
(MNM); @ - Coherent Snapshot Tracking (CST) and background
persistence; 3 — Distributed epochs; @ — Coherence-driven epoch
synchronization; 3 — Distributed LLC support.

durable data structures [15]; (3) fine-grained system backup
and replication [88]; and (4) low-latency crash recovery.

Key challenges: Tracking changes to memory and avoid-
ing NVM write amplification. There are two fundamental
challenges in supporting high-frequency persistent snapshotting
so that it is both efficient and scalable. The first challenge arises
from the fact that when it is time to create a snapshot, we
want to quickly gather the minimal amount of data that must
be stored in the snapshot. Hence the first challenge is keeping
track of exactly what changes have occurred within the physical
address space since the previous snapshot. Keeping track of
these “deltas” is difficult both because we want to capture them
without slowing down normal execution, and because we want
to capture them coherently across entire parallel applications
running on scalable shared-address space systems (spanning
multiple sockets). Once we have successfully identified the
information in memory that should be part of a snapshot,
the second fundamental challenge is making that snapshot
persistent by efficiently writing it to NVM so that it can be
randomly-accessed later (as one of multiple snapshots) while
avoiding NVM write amplification.

Previous work. There have been a number of software [7,
19, 21, 30, 37, 44] and hardware [14, 20, 22, 27-29, 36, 53, 59—
61, 65, 73, 82, 89] proposals for capturing persistent snapshots
to NVM. Unfortunately these previous designs suffer from
a combination of non-trivial performance overheads (due to
persistence barrier stalls or NVM write amplification), lack

of scalability to multi-socket systems, and/or lack of support
for randomly accessing multiple previous snapshots (which is
important for the distributed debugging usage model).

Software-based approaches generally suffer performance
degradation due to persistence barriers [30, 37]. In addition, the
software logging approaches cause NVM write amplification
by first writing the snapshot data to a persistent log before later
copying it to its eventual location on the NVM (where it can
be randomly-accessed by address). This write amplification
effectively halves the NVM bandwidth, as well as reducing
the number of Program/Erase (P/E) cycles.

Hardware proposals improve performance by overlapping
normal execution with making a snapshot persistent via special
hardware that controls the write back of dirty data in the caches
to NVM [14, 20, 22, 27-29, 36, 53, 59-61, 65, 73, 82, 89].
While these proposals effectively eliminate persistence barrier
stalls, they have two major drawbacks. First, they typically
suffer NVM write amplification due to logging (as discussed
above). Second, they typically do not scale to multi-socket
systems, making assumptions such as inclusive monolithic
cache hierarchies within a single socket, and/or introducing non-
scalable structures such as centralized mapping structures [65]
or control logic [59].

Key insights in our approach: NVOverlay. To overcome
both of the key challenges in supporting frequent persistent
snapshots, our NVOverlay design builds upon two key insights.
First, to address the challenge of tracking the changes to
memory since the most recent snapshot in a way that is
both efficient and scalable, we combine a novel extension
of multiversioned page overlays [71, 79] with a set of relaxed
distributed epochs (maintained using a form of Lamport
clock [16, 38]) to create our new Coherent Snapshot Track-
ing (CST) mechanism. Second, to address the challenge of
avoiding write amplification while persisting a set of multiple
snapshots to NVM, we avoid logging altogether, and instead
use a form of persistent shadow-mapping at the NVM interface
in our Multi-snapshot NVM Mapping (MNM) mechanism.
Details of both of these mechanisms are discussed later in
Sections IV and V, respectively, and are illustrated in Figure 1.

Our paper makes the following contributions:

e We propose and evaluate NVOverlay, which supports
efficient and scalable high-frequency snapshotting to NVM,
thereby enabling a number of usage models (including
distributed debugging);

NVOverlay uses Coherent Snapshot Tracking (CST) to
efficiently track changes to memory since the last snapshot,
scaling to multi-socket systems;

NVOverlay uses Multi-snapshot NVM Mapping (MNM)
to support persistence of multiple snapshots to NVM while
avoiding write amplification;

Our performance evaluation of NVOverlay demonstrates
that it can successfully hide most of the overhead of
creating frequent persistent snapshots, while reducing
NVM write amplification by 29%-47%.

499

II. MOTIVATION AND RELATED WORK
A. Failure Atomicity with Persistence Barriers

To achieve failure atomicity with NVM, today’s application
programmers have been using various software solutions (since
proposed hardware solutions are not yet available). In particular,
these software-based approaches typically include transactional
libraries [7, 10, 19, 21, 22, 24, 44, 45, 54, 61], ad-hoc data
structures [2, 8, 11, 23, 40, 41, 57, 62, 69, 76, 78, 86, 91],
memory allocators [5, 55, 68], and/or storage services [3, 31,
35, 84, 85]. All of these software approaches rely on persistence
barriers [30, 37] to enforce write ordering, which is critical
for atomicity. For example, with undo logging, the log entry
is forced to be flushed to NVM before data is updated. In
Romulus [10] (which uses software shadow mapping), the next
transaction can only start after the working set of the prior one
becomes persistent.

A persistence barrier typically consists of a series of cache
line flush instructions (e.g., clwb/c1flush) followed by a
memory fence (e.g., sfence). Frequent usage of persistence
barriers negatively impacts performance, however, because (1)
the pipeline stalls while the flushes are processed and (2) the
execution of multiple barriers may be serialized unnecessarily.

B. Overlapping Persistence with Execution

To eliminate software persistent barriers, previous work
has proposed adding special-purpose hardware to enforce
persistence in the background. For example, hardware log-
ging [14, 20, 27-29, 36, 59, 73, 81, 89] generates log entries
and coordinates data write-backs in the background, thereby
overlapping persistence with execution. These persistence logs
can be managed by the load/store unit [73], the coherence
controller [36], the cache controller [14, 27, 28, 59, 81, 89],
or the memory controller [20, 29].

While these hardware-based logging approaches have min-
imal runtime overhead compared with software approaches,
their main disadvantage is NVM write amplification. Because
these logging approaches write both the log data and the
dirty data back to the NVM, they typically incur a write
amplification factor of at least two (or three in the case of
undo+redo logging [54, 61]). Excessive write backs from the
cache hierarchy to NVM can degrade system performance by
wasting bus bandwidth, and they can also reduce the lifespan
of NVM devices (given their limited number of writes before
wear out [17]).

C. Reducing Write Amplification via Shadowing

To avoid the NVM write amplification of hardware logging,
an alternative approach is hardware shadow paging [60, 65,
82], which remaps dirty data to an alternate “‘shadow address”
to avoid overwriting the current consistent image. Because
shadow paging only writes to data once, it has no inherent
data write amplification. The remapping can be performed by
the TLB [60] or the memory controller [65, 82]. Hardware
shadow paging can also perform persistence operations in the
background, to help minimize runtime overheads.

Features Minirpum No ' No Software Unboupded Suppons. Distr.ibu'ted
D | Mt ot e PNtz Nowdne ersong
p
SW Undo Logging X v v Per Write v v X
SW Redo Logging X X X Constant v v X
SW Shadow Paging Maybe X X Constant v v X
PiCL [59] (HW Logging) X v v None v X X
SSP [60] (HW Shadow) v X X None X v X
NVOverlay v v v None v v v
TABLE I: Qualitative Comparison of NVOverlay with Other Designs
- e - eliminates both unnecessary barrier stalls on the frontend, and
Ver log write amplification on the backend.
VD, #0 NVOverlay assumes an epoch-based snapshot model, where

ice #0

e Lics! | LLC Slice #1

Generic T T

Network M'emory
DRAM NVDIMM Controllers

Fig. 2: System Architecture — Components above the system memory
bus (the red bar) constitute the CST frontend; Components below the
memory bus constitute the MNM backend.

While we believe that hardware shadow paging is generally
on the right track, existing designs face several challenges: e.g.,
restrictions on working set sizes, support for only a limited
number of snapshots, and non-overlappable mapping table
updates. NVOverlay is a novel approach to a fine-grained
shadowing model that avoids these drawbacks, as we will
discuss in detail in Section II-E.

D. Scalability

Prior persistent snapshotting proposals have suffered from
a number of scalability challenges. First, because modern
multicore processors feature non-inclusive, distributed LLC
slices [4, 26, 34, 56, 80], proposals with a centralized LLC tag
walker [59] or control logic [89] simply will not work. Second,
most previous proposals assumed a globally synchronized
epoch [59, 65, 82]; achieving this consensus is difficult to
scale due to increasing communication costs. Finally, previous
designs tend to generate bursts of traffic (especially when
snapshots occur frequently), due to coordinated, simultaneous
write backs from all components. As systems scale, these bursts
of traffic become increasingly likely to hurt performance by
saturating the bandwidth of memory buses and NVM devices.

E. Our Approach: NVOverlay

At a high level, NVOverlay adopts a combination of
barrier-less Coherent Snapshot Tracking (CST) frontend with
overlapped persistence and find-grained, shadow-mapped Multi-
snapshot NVM Mapping (MNM) backend. This combination

500

the execution is divided into disjoint intervals, called “epochs”,
which is the basic unit of snapshotting. NVOverlay maintains
working data and snapshot data separate. Working data is
maintained in the ordinary manner in either NVM or DRAM.
Dirty data generated in different epochs will be persisted to the
NVM as separate copies, which can be accessed independently.

Both the frontend and the backend are designed with
scalability as one of the major design goals. To eliminate
centralized epochs and control logic, we relax the consistency
requirements of snapshots by allowing them to be taken in
a state not necessarily conforming to any real-time state
that has occurred in the system, but yet still consistent in
terms of causality, which is defined by the coherence protocol
(see Section III-C). To achieve this, we partition the cache
hierarchy above the LLC into Versioned Domains (VDs), and
let each of them maintain its own epoch. All epoch counters in
the system form a Lamport clock [38], which are also updated
in a similar way: a local epoch counter j is updated to a remote
epoch counter i if and only if the local epoch observes a dirty
cache line generated by the remote epoch and i > j.

Dirty data generated by VDs are tracked collectively by
the version-tagged hierarchy, where every logical cache line is
tagged by an extra version field indicating the epoch in which
the line is last written. NVOverlay mandates the invariant that
dirty lines of version E become immutable after epoch E ceases
to be active. This way, multiple instances of the same address
co-exist in the hierarchy, each constituting part of different
snapshots. The Version Coherence Protocol, a simple addition
to the existing coherence protocol, tracks in-cache versions and
orchestrates the eviction to ensure correct ordering. Meanwhile,
the backend, on receiving a dirty line of version E, inserts it
into a per-epoch mapping table which enables random, cache
line granularity accesses. These tables are also continuously
merged into a persistent global Master Table that maps the
current consistent memory image. Data movement is not needed
during the merge, as only table entries are copied.

A qualitative comparison between NVOverlay and other
similar designs are presented in Table I.

[]Epoch 100 [| Epoch 101 [] Epoch 102 [l Epoch 103

H H i ;
2 t3 t4t5 t6 t7 8
Fig. 3: Relaxed Epoch Model — The red line shows the system state
captured at epoch 102 (t4, t7, t8 for VDO, VD1 and VD2, respectively).

III. NVOVERLAY INSIGHTS
A. Page Overlays

Page Overlays [71, 79] was originally proposed as a fine-
grained address mapping scheme that allows a virtual address
to be mapped to multiple backing store addresses at cache line
granularity. Each cache line in the hierarchy is tagged with a
Overlay ID (OID). A single address tagged with different
OIDs could be mapped to different physical locations by
the Overlay Memory Controller (OMC), which serves as the
memory controller sitting between the cache hierarchy and the
main memory.

Readers are not required to possess prior knowledge of Page
Overlays in order to understand NVOverlay. Our work is mostly
self-contained, while remaining compatible with the original
design. Readers interested in the original Page Overlays design
and a comparison with NVOverlay are encouraged to read the
paper [71] for more info.

B. Architecture

Fig. 2 depicts the system architecture. We assume a multicore
system with a distributed last-level cache (LLC). The LLC
does not need to be inclusive, as is the case for some large
systems [80]. The inclusive L2 cache can be shared by a small
number of cores [50]. All cache tags in the hierarchy are
extended with a 16 bit OID field, which stores the epoch ID
in which the line is last updated. In the figure, core 0, core
1, and the shared L2 form a Versioned Domain, VD0, while
the remaining two cores and the L2 form VDI. Although only
four cores and two LLC slices are shown, the actual system
can be much larger, or even distributed.

For design simplicity, L1 and L2 caches in a VD run
the same epoch. Cache controllers maintain their own cur-
epoch registers for tracking the VD’s current epoch, which
are synchronized within a VD. Since VDs are relatively small,
epoch synchronization is a lightweight event that only incurs
local communication.

Snapshot cache lines evicted from the cache hierarchy (not
only LLC) are handled by the OMC, which is integrated into
the memory controller. The OMC maintains a series of mapping
tables, which translates the cache line address to the shadow
address on the NVM. As shown by the picture, NVOverlay’s

501

st @ 104

Evict 100*
(a) L1 Store (b) L1 Evict (c) L2 Evict

Fig. 4: L1 Store-Eviction — Only showing line OID. “*” means dirty
version. Additions to baseline protocol are marked red.

control logic can be distributed over multiple OMCs for better
scalability, each responsible for its own address partition. Note
that the application can use DRAM, or NVM, or both as
working memory.

C. The Relaxed Epoch Model

Conceptually, NVOverlay divides the execution of a single
VD into epochs, identified by 16-bit integers. For simplicity of
discussion, we first assume only a single VD is present. Within
each epoch, the system state is updated by store instructions.’
Such state changes are incrementally captured by NVOverlay’s
Coherent Snapshot Tracking (see Section IV), and persisted
to the NVM as a snapshot. Each snapshot only contains state
changes made within that epoch, but not before. Processors in
the VD also dump their internal context to the NVM at the
end of every epoch as part of the snapshot.

On crash recovery, NVOverlay first searches the most recent
fully persisted epoch, E. Then the consistent memory image
is rebuilt by combining all incremental changes before and
during E, taking time proportional to the working set size.

The model becomes more complicated, due to data dependen-
cies, when multiple VDs interact via shared memory accesses.
Recall that, unlike previous proposals, each VD in NVOverlay
runs an independent epoch. How could data dependency be
observed, for example, if a cache line written by VD X in
epoch i is accessed by VD Y in epoch j?

As a solution, NVOverlay synchronizes VD epochs when
data “from the future” is observed, setting VD Y’s local epoch
to i if j <i in the above example. This is similar to how a
Lamport clock captures ordering of events in a distributed
system [16, 38]. As a trade-off, the “relaxed” snapshot taken
by NVOverlay may not be the exact memory image at any
real-time point during execution. Nevertheless, the snapshot
still correctly preserves system progress, since the image after
recovery is consistent in terms of logical time. An example
is given in Fig. 3. In this figure, the captured snapshot only
reflects real-time memory states of VDO, VDI, and VD2 in
time 5, t7 and 8, respectively. The snapshot is still consistent,
however, since the local VD state it captures agrees with the
causality order implied by inter-VD cache coherence.

IV. COHERENT SNAPSHOT TRACKING (CST)

As described in Section III-C, the Coherent Snapshot Track-
ing (CST) design must address two challenges: incremental

2This paper primarily focuses on recording memory state changes; for
complete recovery, certain I/O and external events (network data from a recv
syscall) may also need to be recorded at the system level. See, e.g., [49, 74, 77].

Evict 100*
(b) L1 Write Back |(c) L2 Send and Evict

Fig. 5: L2 External Downgrade — After downgrade, both caches
hold a shared copy of the most recent version.

DIR-GETS

(a) Forward to L1

tracking of state changes and synchronization of epochs. In
the following sections we discuss these two topics in details.
We begin with operations within a single VD, and then extend
the discussion to multiple VDs and with cache coherence.

We assume directory-based MESI [63] as the baseline
protocol. The design can be easily extended to support snoop-
based MESI, or its mainstream derivations such as MOESI [12]
or MESIF [75]. We also emphasize that NVOverlay does not
modify the baseline protocol. Instead, only a few extra tag
checks and evicts are added to existing coherence actions.
States and transitions remain untouched.

A. Version Access Protocol

Versions are cache lines whose contents are produced during
epoch execution. A cache line’s version number is the value of
its OID tag, which is set to the VD’s epoch number when the
line is written. All coherence messages sent over the network
also contain a version number, RV (Request/Response Version),
the meaning of which will be explained below.

Versions can be either clean or dirty depending on its
coherence state. For example, in MESI protocol, M state
lines are dirty, while S and E state are clean. NVOverlay
maintains the invariant that clean versions are already persisted
on NVM. A dirty version from a previous epoch E’ is, therefore,
immutable in epoch E, since it might be part of the snapshot
state of E’ that has not been persisted.

The goal of the version access protocol is to ensure that only
the most up-to-date version is accessed, even when multiple
versions of the same address may co-exist in the hierarchy.
The protocol also guarantees that eventually all versions in the
hierarchy are evicted to NVM, while DRAM only keeps the
most recent version as the working copy.

We next describe the version access protocol in L1 and L2
caches respectively.

1) L1 Operations: On receiving a load request from the
processor, the L1 behaves exactly the same as in a non-overlay
system. In particular, the tag lookup is performed without
checking the OID tag, as opposed to original Page Overlay’s
lookup protocol where both address and OID are compared.
If the lookup misses, a GETS request is sent to L2 before the
load is retried. Otherwise, the load completes locally.

On receiving a store request, a tag lookup is performed
as in loads. The store request’s RV is set to the VD’s cur-
epoch. If the lookup signals a miss, or if the line is not in
writable state (E or M), the cache controller will first acquire
exclusive permission by sending GETX before retrying the
store. The controller then compares line OID with RV. If
the line is dirty and OID equals RV, the store completes

502

Evict 100*
(a) Forward to L1 (b) L1 Evict (c) L2 Evict

Fig. 6: L2 External Invalidation — Optimization is applied. Version
103 is directly sent to the requestor via cache-to-cache transfer.

locally. Otherwise, the version is immutable. In this case,
the L1 controller evicts the immutable version to L2 without
invalidating the line, and performs the store in-place after
the eviction is scheduled (see Fig. 4). Such “store-eviction” is
critical in NVOverlay’s design, since it enables caching multiple
versions in the hierarchy, while leveraging the inclusive L2
cache as a temporary buffer for older versions. The line OID
is also updated to RV to reflect the fact that the line is now in
epoch RV’s snapshot.

On line eviction, if the line is dirty, a PUTX request is
scheduled in L1’s evict buffer, with RV set to line OID. Whether
clean evictions are processed is implementation-dependent.
Since cache line evictions are not on the critical path, store-
eviction will not affect L1 cache access latency.

2) L2 Operations: On receiving a GETS or GETX from
L1, the L2 performs a tag lookup as usual, and signals a miss
if the block is not present or has insufficient permission. When
the requested block is in the L2, it is read out and sent to the
L1 as response, the RV of which is set to line OID.

On receiving a PUTX from L1, the L2 first performs a tag
lookup to read out the line OID and coherence state. If the line
is dirty, and OID < RV, then L2 evicts the current line to avoid
overwriting an old version. This also preserves the invariant
that L1 versions must be no smaller than the L2 version on
the same address. Evictions scheduled in this situation will not
invalidate the L1 copy, since inclusiveness still holds. In all
cases, the L2 completes the request by copying data and OID
into the cache slot.

On line eviction, if the line is a dirty version, in addition
to sending it to LLC, the L2 controller also sends the version
to OMC via the coherence network, bypassing the LLC. Note
that in a non-inclusive LLC design, such bypassing network
already exists to allow the L2 cache directly writing back
lines that are predicted “dead” [18]. Our design, therefore,
avoids adding a dedicated datapath, and just takes advantage
of LLC bypassing. The request’s RV is also set to the line
OID. Backend operations are discussed in Section V.

3) External Invalidation and Downgrade: The main chal-
lenge of implementing external invalidation and downgrade
is the fact that L1 and L2 may each cache a dirty version.
NVOverlay solves this with extra evictions, as shown below.

On receiving an external invalidation (DIR-GETX) or
downgrade (DIR-GETS), the L2 controller first queries its
own directory for any L1 sharer. If there is none, L2 handles
the request locally by scheduling an eviction for the requested
version. The line state is also set to I or S respectively.

If there are L1 sharers, the L2 controller first forwards the
request to them. The L1 controller simply schedules an eviction,

f st @ 103

/st @ 103
@ 103 (]

@ 100*

(b) Inv. ACK
Fig. 7: Intra-VD Invalidation — Assume directory forwards ACK.

@ 100*

(a) L2 Forward Req (c) Store Completes

before changing the line state. The L2 controller then processes
the eviction from L1, if any, and handles the request locally.
In both cases, the most up-to-date version is also sent back to
the directory as response, with response’s RV setting to line
OID. An example is given in Fig. 5.

One difference between our protocol and the baseline is that
two evictions, instead of one, may be generated during the
process, which doubles the eviction traffic on both the LLC and
OMC, as every version written back from the L2 to the LLC
to fulfill forwarded coherence requests needs to be sent to the
OMC. This happens when L1 and L2 both have cached dirty
versions, and their OIDs are different, as shown by Fig. 6. A
closer inspection reveals, however, that the excessive evictions
can be avoided by leveraging two simple observations. First, if
both L1 and L2 have dirty versions, the L2 version need not be
evicted to LLC, since it does not constitute the current memory
image (the L1 version is newer). Second, if the request is an
invalidation, and the current VD owns the most recent version,
then this version need not be sent to the LL.C directory (and
hence also sent to the OMC) to fulfill the DIR-GETX request
at all. Instead, a cache-to-cache transfer is initiated to send the
line directly to the requestor cache?, reducing both write back
traffic and coherence latency (see Fig. 6).

4) LLC and DRAM Operations: Once a version leaves a
VD, it is guaranteed to be persisted, even if the coherence state
may still indicate dirty. The LLC and DRAM, therefore, do
not implement the version coherence protocol, except that line
OIDs are updated on write backs.

To maintain per-line OID in the DRAM, the DRAM
controller may reserve a few words for every DRAM page,
and updates both OID and data in a way similar to how ECC
memory is updated. In fact, the 16-bit OID can just be stored
in the ECC banks on ECC-enabled memory. Other techniques,
such as DRAM compression [72], can also be employed to
embed OID without extra cost.

By preserving line OIDs even outside of VDs, we avoid
losing track of the most recent epoch that updates the line.
This is necessary for “remembering” data dependency.

B. Coherence-Driven Epoch Update

1) Versioned Domain Coherence: Intra-VD coherence re-
mains unchanged, except that when L1 writes back a dirty
version, the L2 needs to check its local version and possibly
schedules an eviction. Examples are given in Fig. 7 and Fig. 8.

3Some coherence protocols have already implemented this trick, i.e.,
ownership of an address, on dirty invalidations, is not transferred to the
LLC, but to the peer cache via point-to-point links. NVOverlay just uses the
existing mechanism in this case.

503

f Id @ 103

[@102

@ 100*

f Id @ 103

? @102*

@ 100*

Evict 100*
(c) L2 Evict
Fig. 8: Intra-VD Downgrade — Assume directory forwards data.

(a) L2 Forward Req (b) Forward Data

When caches request an address not present or has insuf-
ficient permission in the VD, the request becomes inter-VD,
which is forwarded by the L2 controller to the LLC directory.
The directory further forwards the request (or invalidations,
downgrades) to other VDs, or to the LLC, exactly as in a
non-NVOverlay cache hierarchy.

2) Advancing Epochs: When an inter-VD request receives
the response, the RV field of the response is always set to
the OID of the line. On receiving such a response, the L2
controller compares its cur-epoch register with RV. If RV is
larger, the VD must terminate the current epoch, and advance
to epoch RV.

In order to advance the epoch, the L2 controller first
signals all cores in the VD to stall their pipelines. The L2
cache controller also stops responding to external coherence
requests, and drains the intra-VD request queue (deadlocks
are impossible). Next, all cores in the VD dump their non-
speculative context to the NVM, tagged with cur-epoch. Finally,
the cur-epoch registers in all cache controllers are updated to
RV.

In practice, to avoid large epoch skews between VDs,
VDs also advance their local epochs after a fixed number
of instructions or on external events. In the rare event of an
epoch wrap-around, please refer to Section IV-D.

C. Cache Tag Walker

The last component of the Coherent Snapshot Tracking
mechanism is the L2 cache tag walker, a hardware state
machine built into the cache controller. The tag walker runs
opportunistically, scanning cache tags only when they are not
used by outstanding requests. Each VD has its own tag walker,
as shown in Fig. 2.

Dirty versions whose OIDs are smaller than the L2 con-
troller’s cur-epoch will be written back to the NVM by the
tag walker. The write back downgrades the line from M state
to E state, in addition to sending both data and OID to the
OMC. The E state line will be either discarded when evicted,
or overwritten when a dirty line on the same address is evicted
from L1. The correctness of NVOverlay protocol does not rely
on the tag walker making progress, though.

D. Epoch Wrap-around

Conceptually, epoch numbers should monotonically increase,
since they represent the progress of computation. In practice,
epoch numbers are represented with a fixed-width integer and
will wrap around to zero eventually.

The simplest approach to eliminating errors as the system
approaches the wrap-around condition would be to reset system-
wide versioning by clearing all local epochs and version tags,

Version eviction @ E

oMC

DRAM Update table

NVM

Rersist data

ound
ge

'master

——
IR
Overlay Page

11100110110 ... 001010 N:{ifyETY

1

Versions Buffer Pool
Fig. 9: Multi-snapshot NVM Mapping — Orange arrow represents
data flow on L2 eviction. Red arrow represents background merge
after E becomes recoverable. Blue represents metadata, while grey
represents data.

after flushing the cache. The second solution does not force
a reset, but limits inter-VD epoch skew to half the version-
number space. We partition the epoch space into two equally
sized groups, L and U. A persistent epoch-sense bit indicates
whether epochs in L are larger than those in U, or the other way
around (in-group ordering is unchanged). The OMC enforces
the invariant that all VDs must be running epochs in the same
group. Whenever a VD first advances its local epoch from
one group to another, the system ensures that no cache lines
remain with tags belonging to the “new” group and flips the
epoch-sense bit, essentially recycling epoch numbers in the
currently smaller group for reuse by “moving” them ahead of
the currently larger group.

E. Discussion

Protocol Compatibility: As stated in the beginning, neither
does NVOverlay assume specific coherence protocols, nor does
it modify the coherence state machine. As long as the protocol
supports the notion of “ownership”, it can be extended to
support NVOverlay.

Coherence Overhead: NVOverlay’s version coherence
protocol only generates more evictions, which is out of the
critical path in most cases. Such eviction overhead also exists
in most background persistence designs.

Reducing NVM Writes: If an address is evicted or down-
graded by L2 frequently in the same epoch, redundant write
backs to NVM (but not to DRAM) will be generated. To this
end, we propose adding a battery-backed, write-back cache
to OMC to reduce both persist latency and NVM writes. The
cache essentially acts as a persistent LLC for absorbing version
evictions, which will be flushed on a power failure.

V. MULTI-SNAPSHOT NVM MAPPING (MNM)
A. Overview

Versions evicted from VDs are tracked by the Multi-snapshot
NVM Mapping (MNM) mechanism, which can be retrieved
on request. NVOverlay’s MNM is managed by the OMC in
both DRAM and NVM: Data structures that can be rebuilt
upon recovery are maintained in volatile DRAM for better
access bandwidth and to avoid NVM contention. Meanwhile,
versions are maintained in the NVM compactly as overlay
data pages. The OMC maintains the image of the most recent

504

recoverable epoch using a series of overlay mapping tables.
As we will see below, these tables are continuously updated,
in the background, to incorporate more recent versions evicted
from the frontend. Fig. 9 depicts the MNM.

B. Determining the Recoverable Epoch

In NVOverlay, an epoch E becomes fully persistent only
after all VDs have (1) advanced their local epochs past E; and
(2) written back all dirty versions produced in E. In addition,
for epoch E to be used for recovery, all epochs before £ must
have been fully persistent as well. Since epochs are not globally
synchronized, the recoverable epoch must be determined in a
distributed fashion, as we discuss below.

Each tag walker has a local register, min-ver, which is
initialized to cur-epoch when tag walk begins, and updated to
the smallest version OID encountered during the walk. The L2
cache controller then sends the value of min-ver to the OMC,
where an array of most recently received min-ver for each VD
in the system is maintained. On receiving the message, the
OMC recomputes the recoverable epoch, E,, as the smallest
among all min-vers. E, is also atomically written to a known
location, rec-epoch, on the NVM.

If multiple OMCs are present, each OMC first computes its
local E,, and then one of them is selected as the master, to
which all remaining OMCs send their E,s. The master OMC
persists the final result after computing the smallest E,.

C. Overlay Mapping Tables

NVM storage allocated to the multi-snapshot NVM mapping
mechanism is maintained as a page buffer pool, which is
initialized at system startup time, and managed by OMC
hardware. The OMC tracks the allocation status of pages using
a bitmap (see Fig. 9) with negligible storage overhead. The
index need not be persistent, and can be rebuilt on recovery.

For each epoch E, the OMC maintains a per-epoch volatile
mapping table Mg. The mapping table is implemented as a
four-level radix tree in DRAM, similar to x86-64 page tables.
Table Mg tracks versions produced in epoch E by mapping the
physical address of the version to data pages on NVM. The
OMC manages epochs as separate page overlay instances, each
having one mapping table and a set of distinct data pages. As
in the Page Overlays design, sparse pages (pages with only a
few versions) are stored compactly in sub-pages smaller than
4KB to save storage (see [71, Sec. 4.4]).

When a version from epoch E is written back, the OMC
finds Mgy using the request’s RV, and then inserts the version
into Mgy using the physical address as key. This process is
very similar to how an OS populates its page table, except that
NVOverlay uses the 48-bit physical address as table index.

The OMC also maintains a Master Mapping Table, M./,
which stores overlay mapping for epoch rec-epoch. My ugter 18
a five-level radix tree (one more level than the per-epoch table).
The first four levels are exactly the same as per-epoch tables,
and the last level is indexed by address bit 6-11 for cache
line granularity mapping, as shown in Fig. 10. M,,,s., reflects
the current consistent memory image, and all nodes of M, er

3029

2120 65

Data
Page

Fig. 10: Master Mapping Table — Shows five-level radix tree
structure. Blue represents index pages while grey represents data.

are persisted on NVM. Updates to M,;5r0 are made atomic
using either logging or persistent buffers [20]. Whenever rec-
epoch is updated by the OMC from the old epoch E; to new
epoch E; (j > i), the OMC also merges mappings from volatile
tables M1, Mii2, ..., Mj, t0 Myqger, advancing the consistent
memory image. The update procedure simply scans the per-
epoch table, and for each version V, inserts its physical address
and NVM address into M,;,,5.,- No data page is copied in this
process. Both table update and merge are performed in the
background by the OMC without affecting normal execution.

D. Garbage Collection

Once a table Mg is merged, versions unmapped from M,,gzer
become stale, which qualify for garbage collection (GC). We
cannot, however, immediately reclaim their storage, since
versions are mapped in the granularity of pages (or subpages,
in the case of sparse page — we use “page” to refer to both
below), while unmapped individually in cache line granularity.

Less frequently updated cache lines will block the containing
page from being GC’ed, causing storage explosion. When NVM
storage runs out, the OMC raises an exception to the OS, which
simply allocates more pages, if feasible, and notifies the OMC
of the physical address range. Otherwise, if allocating more
pages to the OMC is deemed infeasible by the OS, e.g., the
device is full, or the storage consumption reaches a quota
limit, the OMC needs to perform version compaction to free
some space. The algorithm, when invoked, will start from the
oldest epoch still having versions mapped by M, 4s¢er, and copy
these versions over to the most up-to-date epoch, as if these
addresses were written in the current epoch. The source pages
can then be safely reclaimed. The resulting write amplification
is negligible, as long as the majority of addresses are updated
at least once during the past few epochs. DRAM pages used by
per-epoch tables can be reclaimed as soon as they are merged
into Mynaster.

E. Retrieving Persistent Snapshots

Recall that persistent snapshots are stored on the NVM in
a per-epoch manner for efficient retrieval. Depending on the
scenario, snapshot data can be accessed either individually
using the per-epoch mapping table, or using M., for only
accessing the latest snapshot. We next discuss a few use cases
where snapshots are utilized.

Crash Recovery: After a crash, the OS or firmware first
restores the system to the initial state when snapshotting was
started. The recovery procedure then loads the consistent image
from the NVM by scanning M5 and reading all versions
into their corresponding addresses in the DRAM. After this

505

completes, the procedure reads rec-epoch stored on NVM, and
finds the processor context that were dumped to the NVM at
the end of rec-epoch. After loading the context, the system
resumes execution as if the crash had never happened. Volatile
OMC data structures are also rebuilt during the recovery.

Remote Replication: Snapshots, once persisted, can be
transferred to a remote backup machine via the network. On
receiving the snapshot, the remote machine can either choose
to replay the incremental changes as redo logs, or archive them
for future accesses. The remote replication architecture and
atomicity guarantees, however, are orthogonal to our work, and
have been studied quite thoroughly in previous works [88].

Debugging/Time-Travel Reads: For accessing a single
address X on epoch E, the access function finds the largest
E’, E' < E, where My maps the address X. This “fall-through”
semantics is similar to how version chains are accessed in an
MVCC database [13, 39, 58, 83], which is necessary since
snapshots are saved incrementally.

F. Discussion

Hardware Cost: NVOverlay’s hardware cost includes per-
line 16 bit OID tag field and OMC logic. The 16 bit OID tag
only increases total on-chip SRAM storage by at most 3.2%.
Similar costs also exist in prior proposals [59, 81, 89]. Neither
the replacement algorithm nor the coherence state machine is
changed, requiring less verification cost.

The OMC logically serves as the memory controller. It can
be either a dedicated CPU thread, as in software managed
caches [1], or implemented as hardwired logic [20, 29, 82], or
an embedded, programmable micro-controller chip [6, 70].

We emphasize that NVOverlay’s hardware additions, such as
OID tagged lines, are of general usefulness in many other areas
such as transactional memory [79]. Besides, Page Overlay’s
broad user scenario also enables potentially many novel use
cases to be explored once it is deployed.

Runtime DRAM Overhead: Each 64 byte line in the
DRAM is tagged with 16 bit OID, incurring a DRAM overhead
of at most 3.2%. The OID tracking granularity can also be
larger than 64 bytes. For example, the OMC may only reserve
16 OID tags for each 4KB DRAM row, lowering tagging
overhead to less than 0.8%. In this case, each OID will be
shared by a “super block™ of 4 cache lines. The existing OID
is only updated if the incoming OID is larger.

Runtime NVM Overhead: NVM pages are used for storing
both the working set and M,,4s.r- Unlike previous shadow
paging proposals where a worst-case 2x space overhead is
possible [10, 65, 82], NVOverlay allows users to make a trade-
off between write amplification and storage by setting a space
overhead threshold. If the number of in-use pages exceeds
this threshold, OMC will suspend adding new versions, and
immediately start version compaction to reclaim storage.

Scaling to Large NVM Arrays: On future NVM platforms,
the storage density of which is expected to be higher than
DRAM, NVOverlay’s OMC-based MNM design is also ex-
pected to scale to large NVM arrays. On such systems, multiple
memory controllers may co-exist, each responsible for serving

requests on an address partition. Each OMC maintains its own
instance of overlays and of M,,,s.r for the address partition.
One OMC is selected as the master, which maintains the min-
ver array for all VDs, which will send their epoch updates to
the master.

VI. EXPERIMENTAL FRAMEWORK
A. Simulation Environment

Our evaluation uses zsim [67], a Pin-based [48] simulator
featuring fast, cycle-accurate multicore simulation. We imple-
mented NVOverlay as a separate module without changing the
existing coherence protocol. Table II shows the configuration
of the simulated system.

Processor 16 cores 4-way superscalar @ 3GHz
L1-D cache 32KB, 64B lines, 8-way, 4 cycles

L2 cache 256KB, 64B lines, 8-way, 8 cycles
Shared LLC | 32MB, 64B lines, 16-way, 30 cycles
DRAM DDR3 1333 MHz, 4 controllers
NVDIMM 16 banks, 133 ns write latency (miss)

TABLE II: Simulated Configuration

B. Comparison Points

We compare NVOverlay to five other mechanisms: (1) Soft-
ware Undo Logging (“SW Logging”), (2) Software Shadow
Paging (“SW Shadow”), (3) Hardware Shadow Paging (“HW
Shadow”), (4) PiCL [59], and (5) PiCL running at L2 level
(PiCL-L2). We briefly describe these mechanisms below.

Software Logging: Software generates and flushes an undo
log entry before the first write. We assume that the software
library tracks the write set, and flushes them at the end of an
epoch. All NVM writes use barriers.

Software Shadow: Software tracks the write set and flushes
dirty lines back at the end of each epoch. Software also
maintains a persistent mapping table, which is updated at
the end of an epoch. All NVM writes use barriers.

Hardware Shadow: We model hardware shadow paging
using a three-version, cache line granularity shadow scheme
similar to ThyNVM [65]. Hardware can overlap the persistence
of the previous epoch with the execution of the current
epoch. However, the centralized mapping table is updated
synchronously.

PiCL: Uses hardware undo logging. Log entries are gener-
ated as in software logging. Hardware tracks dirty lines with a
version-tagged, inclusive LLC. A tag walker periodically evicts
dirty lines from previous epochs. We ignore the overhead of
global epoch synchronization, and only focus on the data path.

PiCL-L2: A hypothetical design that functions the same as
PiCL, except that tag walks are at the L2 level. We use this to
estimate the performance of PiCL-style undo logging on large
multicores without a monolithic and inclusive LLC.

For fairness of comparison, we assume all simulated designs,
including the baselines, are equipped with a write-back DRAM
buffer whose size can accommodate the entire working set.
For our main experiments, the epoch size is set to 1M store
uops [67]. Both PiCL and NVOverlay initiate tag walk (ACS
in PiCL’s terminology) after an epoch completes.

506

C. Benchmarks

We use benchmarks from the STAMP [51] suite and a set of
data structure benchmarks for our evaluation. STAMP consists
of memory-intensive applications that stress the data path and
its transactional multicore synchronization model stresses the
modified coherence protocol.

The data structure benchmarks consist of BTreeOLC [43],
ARTOLC [42], red-black tree (std: :map) and hash table
(std: :unordered_map). They represent workloads with
large working sets. We run an insert-only workload with random
keys to mimic bulk insertion into a database index.

All benchmarks spawn 16 worker threads, and are compiled
with locks except BTreeOLC and ARTOLC. Threads execute
until either the end of the program, or 100M instructions per-
thread are reached (i.e. 1.6B total instructions).

VII. EXPERIMENTAL RESULTS
A. Multicore Performance

Fig. 11 shows the wall-clock cycles for each workload using
16 worker threads. The results are normalized to an ideal
NVM system with no snapshotting. For 9 out of 12 workloads,
both NVOverlay and PiCL can fully overlap execution with
snapshotting, incurring no cycle overhead. These results are
also consistent with the original PiCL paper [59], in which PiCL
was shown to perfectly overlap execution with persistence.

PiCL-L2, on the other hand, suffers from slightly slower
execution, due to the smaller on-chip working set, which results
in excessive evictions and log writes from the hierarchy. For
ssca2 and kmeans, PiCL-L2 runs 10% and 40% slower
compared with NVOverlay and PiCL.

SW Logging and SW Shadow are both considerably slower
than NVOverlay. The slowness is a natural consequence of
writing both data and log entries synchronously.

Note that although NVOverlay can fully overlap the cost
of persistence with execution in most cases, this does not
contradict the observation that software schemes can be more
than 2x worse. This is because NVOverlay is better at handling
and distributing bursts of writes, which is the case for some
workloads (e.g. shifting existing elements after locating a
B+Tree leaf node). For example, our evaluation shows that in
B+Tree workload, out of 11,778,311 total NVM data write
requests, 11,503,974 (97.7%) of them are generated by the
coherence protocol. NVOverlay evenly distributes these writes
across the execution.

HW Shadow is moderately slower than NVOverlay. In all
but B+Tree and ART, HW Shadow is at most 3x slower
than NVOverlay. We attribute this to its ability to overlap data
persistence with execution. It has to, however, synchronously
update the mapping table at the end of an epoch to avoid
corrupting the table in the next epoch.

B. Write Amplification

Fig. 12 shows the results of write amplification in terms of
bytes written to the NVM device. We measure both data and
metadata writes. For PiCL and PiCL-L2, we assume each log
entry takes 72 bytes (64B data + 8B address tag). For HW

E=3 SW Logging EEE SW Shadow

B HW Shadow

N PiCL Efeal PiCL-L2 [E58 NVOverlay

~

)]

(3]

SN

w

Normalized Cycles

Hash Table B+Tree ART RBTree labyrinth

baye]

genom

vacatio

=

yada

intruder kmeans

Fig. 11: Normalized Cycles — 16 worker threads. All numbers are normalized to baseline execution without snapshotting.

3.0
[%2]
2]
225 &
) -
o -
d o o @ %* N
o © : @ . oo
Q2.0 Q- - s Qe QfF
=] — ; ey e — e
= O frer w1 bror o o er 2r- Al
; — (e S < pr ¢ o 0 oo v
~ e be oo w —~ w4l
15 o e o 7] preo A A
o AA A ~ oo i AA A
< oy ¢ < 7| brer o < o oy ¢
Q aNFe e gleHe o mHo oW e AR AALS] e
_10 © A o erery T o oyl T — prord oAy orery T
—n S or ¢ o bt % or ¢ % 4 o
© ON Yew A ot A g% A
E or ¢ o b 2 4 o o e A b o o
€ gl oo gk o gk oo A
05 e er aA br = 4 g A e Fed
o VU o rer halt bror e ot A
e oo v 1 b R A A e
A A o0 b ks A
00 or or- A pror oo o or- A 1 0

Hash Table B+Tree ART RBTree labyrinth

bayéé

yada intruder vacation kmeans genome

Fig. 12: Write Amplification (Bytes of Data) — 16 worker threads. All numbers are normalized to NVOverlay.

Shadow and NVOverlay, we track the number of eight byte
writes performed on the radix tree mapping table. All numbers
are normalized to NVOverlay.

As stated in Section II, both HW Shadow and NVOverlay
demonstrate lower write amplification than logging. This is
an expected result, since PiCL and PiCL-L2 need to write
two full cache lines for each cache eviction instead of one.
Overall, PiCL writes 1.4x-1.9x more data than NVOverlay.
For PiCL-L2, write amplification is higher, ranging between
1.8x-2.3x. This is caused by the smaller on-chip working set,
as we discussed in the previous section.

In 5 out of 12 workloads, NVOverlay incurs more than
10% writes than Shadow Paging. This is because NVOverlay’s
coherence protocol issues a write to the NVM when the
ownership of a cache line is transferred from the upper level
of the hierarchy to the LLC. The negative effect of such write
backs can become significant, as we see in kmeans, where
70% fewer writes are issued to the NVM for HW Shadow, and
37% fewer for PiCL. PiCL-L2, on the other hand, issues 2x
more writes to the NVM compared with NVOverlay, due to
extra log writes.

Further studies of kmeans reveal that only 896,837 writes
are issued from the LLC when simulating HW Shadow,
while 3,087,987 writes (3.4x more) are issued from the L2
when simulating NVOverlay. Among these 3 million writes,
2,413,754 are caused by L2 capacity miss evictions, 668,951
by load-downgrade, 4,994 by store-eviction, and 288 by other
events. From these numbers, we conclude that kmeans suffers
from L2 thrashing by writing a large portion of data it fetched
into L2, and later forced to evict them on capacity misses. This
explains why kmeans favors LLC-based hardware schemes.

507

25

[0 Mnaster Size (% of Working Set)
3 >
3% -
o < a —
25 I TR S T = - B~ - - S
© s — o o —] - — — - o
= = =
.810 = =
I = =
% — —
=° = =
° C(e 7" o " e® 70 < ' S e &
01e? b @@ Q8 (0 o 3 0
BT I G g o (B @ oo e
s Q@7 ot O AT QT o0 o ¢

Fig. 13: Persistent Mapping Metadata Cost — All numbers are
percentage of working set size.

Fortunately, the larger write amplification does not translate to
higher execution time for NVOverlay.

C. Persistent Metadata Overhead

Fig. 13 presents the size comparison between the Master
Mapping Table (M45er, see Section V-C) and the write
working set. We define the write working set as the total
amount of data mapped by M ger-

The ratio between working set size and M5, Size is rather
stable across different runs. In all workloads except yada, the
metadata cost is between 12.8%—15.1% of the working set size.
This result is consistent with the property of radix trees: In a
perfectly populated tree, each 8 byte pointer in a leaf node can
map a 64 byte cache line, achieving a theoretical lower bound
of 12.5%. Our results show that in most cases, NVOverlay
can achieve an almost optimal use of mapping table storage,
thanks to the locality of computation.

EIN PiCL Ez=d PiCL-L2 ES8d NVOverlay
(72}
» 25 L20 >
o] & .
Q20 ® e
3 £15 4 e
B1s = 4o i i
N o i Ay E
% g 1.0 o oy A)
£ 10 = ok & P
5 g ‘ : ‘
i ; !
Zos 5% Ford oo sl
z & X)
{o o] o e
00 00500k — M oM 4M
Epoch Size

(a) Normalized Cycles (b) Normalized Writes

Fig. 14: Sensitivity to epoch size (ART benchmark) — Cycles are
normalized to baseline; Writes are normalized to NVOverlay.

|- Capacity Miss B Coherence/Llog HEE Tag Walk|
100 100,
80 80
(2] 123
c c
3 60 2 60
© ©
[} (5]
o o
B 0 5 0
> >
w w
20 20!
0 PiCL PiCL-L2 NVOverlay 0 PiCL PiCL-L2 NVOverlay

(a) With Tag Walker (1M Epoch) (b) Without Tag Walker
Fig. 15: Evict Reason Decomposition — Workload is ART.

As for yada, further investigation shows that each inner
page in the table only maps 18.14 pages (3.54% of total slots)
on average, implying low occupancy of inner pages. In contrast,
93.66% of leaf page slots map a cache line, suggesting that
locality in small address ranges are still maintained.

D. Sensitivity Study

1) Epoch Size: We study the effect of varying epoch sizes
(and hence tag walk frequency) by simulating PiCL, PiCL-L2
and NVOverlay on ART, with epoch sizes ranging from 500K
to 4M. Results are shown in Fig. 14a (cycles) and Fig. 14b
(write amplification).

Cycles: Both NVOverlay and PiCL-L2 are insensitive to
epoch size change. This could be explained by the fact that most
evictions are caused by coherence load-downgrade (2,105,356,
29.7%) and L2 capacity miss eviction (4,194,012, 59.1%),
while tag walks (792,255, 11.2%) only marginally contribute
to total write bandwidth. PiCL, on the other hand, performs
better under long epochs, since around half of the evictions
are generated by tag walk evictions (6,086,088, 50%), which
are necessary to commit a previous epoch.

Write Amplification: As epoch size increases, write ampli-
fication of both PiCL and PiCL-L2 steadily drops, as a result
of reduced frequency of tag walks. Besides, since dirty cache
lines can survive longer in the cache without being forced out,
less log entries are generated. As epoch size increases from
500K to 5M, write amplification drops 11.0% and 15.9% for
PiCL and PiCL-L2, respectively.

2) Tag Walker: To evaluate the effect of tag walker on
performance, we simulate PiCL, PiCL-L2 and NVOverlay on

508

2.0

[E=Ed NVOverlay

E5=8 NVOverlay

Normalized Cycles
NVM Writes (Million)
o - M w & 0 o N

No Buffer

With Buffer No Buffer With Buffer

(a) Normalized Cycles

(b) NVM Writes
Fig. 16: Reducing Writes with OMC Buffer — Workload is ART.

ART, with and without the tag walker. Results are presented
in Fig. 15 as a decomposition of evict reasons.

Both PiCL and PiCL-L2 are heavily dependent on the tag
walker for making progress. As in Fig. 15a, more than 47%
of total write requests are generated by tag walks, indicating
that the tag walker might become a performance bottleneck on
larger caches for PiCL and PiCL-L2. NVOverlay, by contrast,
writes back dirty lines mainly by cache coherence and capacity
miss eviction, which is distributed evenly during the execution.
The tag walker only contributes to around 11% of total evictions.
The efficiency of the tag walker, therefore, has limited effect
on NVOverlay, as shown in Fig. 15b.

3) OMC Buffer: We evaluate the persistent OMC buffer
proposed in Section IV-E by simulating NVOverlay on ART,
with and without the buffer. The evaluation has only one epoch
throughout the execution to stress-test the buffer’s ability to
absorb redundant write backs (i.e., those generated on the same
address and in the same epoch) from the hierarchy. We use a
buffer that has the same configuration as the simulated LLC,
with the expectation that it would further reduce NVM write
traffic as if NVOverlay were built on the LLC. Results are
in Fig. 16.

As shown in Fig. 16a, the OMC buffer improves performance
by 41%. Fig. 16b further reveals that the performance improve-
ment is a result of reduced writes, proving its effectiveness.
Out of total 7,136,893 write requests, 5,336,687 hit the buffer,
achieving a hit rate of 74.8%.

E. Bandwidth

To evaluate bandwidth benefits, we simulate NVOverlay
and PiCL on BTree, and measure NVM write bandwidth.
Results are presented in Fig. 17. Fig. 17a shows bandwidth
over time during the entire simulation using the default
epoch size. NVOverlay demonstrates two clear advantages:
(1) Average bandwidth consumption is significantly lower than
PiCL; (2) Peak bandwidth and overall fluctuation is also lower,
indicating better scalability since more components can be
supported on a fixed bandwidth budget. We attribute this to the
fact that NVOverlay’s version coherence “amortizes” version
write back bandwidth over regular execution, while PiCL must
evict dirty lines with tag walk, creating bandwidth surges at
epoch boundaries.

Fig. 17b shows bandwidth over time when epochs occur in
short but localized bursts. We use this to mimic time-travel

PiCL o—o0 NVOverlay
20
(8]
[0
@
@ {5
) 15
=]
© L
2 10
©
3
m 5:_-" v Pt e e,
=
Z
00 20 40 60 80 100
Time (Total Progress)
(a) BTree, 1M Default Epoch
20 .
[&]
[0
@
M 15
) 15
=
© L
3 10
©
S AN e | PRSI
8 gl et Ty M e e
s |
z
% 20 40 60 80 100

Time (Total Progress)

(b) BTree, Bursty Epoch
Fig. 17: NVM Write Bandwidth Time Series

debugging, where programmers may manually start new epochs
around suspicious code segments. Three “bursty” intervals are
present, marked by blue vertical lines. From left to right, the
size of epochs in these bursty intervals are 1K, 10K, and 100K,
respectively. The figure demonstrates that when epoch size is
moderately small (100K), both schemes work as usual. With
extremely small epochs (1K, 10K), however, NVOverlay still
sustains relatively lower bandwidth, while PiCL observes 50%
more traffic due to frequent log generation.

VIII. ADDITIONAL RELATED WORK

We now discuss some additional related work beyond
what we already covered in Section II. Journaling has long
been implemented on conventional file systems for crash
recovery [64]. Before an operation commits, the changes to
its metadata® are first flushed to the journal area of the disk,

which can be replayed after a crash for the sake of recovery.

Journaling is related to a log-structured file system (LFS) [66],
which treats the entire file system as a large journal. Under
LFES, there is no fixed “home location” for data and metadata:
a mapping table is used to locate an item given its logical
address, and this mapping table is also journaled to the log.
NVOverlay’s backend (MNM) works similarly to LFS, with
a key difference being that there are multiple journal objects
(rather than one), each representing an epoch’s working data.

Regarding using NVM to improve file systems, one of the
earliest NVM file system designs—BPFS [9])—treated the

“In some versions of journaling, the changes to file data are also logged.

509

entire file system as a forest of B+Trees. With BPFS, each
update operation creates a new snapshot of the file system via
Copy-on-Write (CoW) and atomic pointer swings. Similarly,
Jacob [25] describes a flash-based design that tracks snapshots
by “chaining” mapping entries of the same address together
through a combination of a customized FTL that performs
CoW, along with firmware-maintained mapping table. These
snapshots can be retrieved later for crash recovery.

In contrast with these previous designs that target file system
crash recovery, our goal in this paper of supporting high-
frequency snapshotting of the full address space in DRAM-
based main memory involves several additional challenges.
First, the snapshotting frequency necessary to simply support
crash recovery is orders of magnitude slower than what we
are targeting with NVOverlay, thereby making it much easier
to avoid performance bottlenecks. Second, file systems (and
flash storage) already contain explicit metadata to track the
location of data, which is not the case for DRAM main memory.
Enabling this ability to distinguish the data from separate
multiversioned snapshots in DRAM and caches while still
running at full speed is a major aspect of our NVOverlay
design. Third, file systems involve an explicit software interface
for write operations, unlike CPU writes to main memory
(which are performed by regular write instructions, at very high
frequencies). As described earlier, NVOverlay uses Coherent
Snapshot Tracking (CST) and Multi-snapshot NVM Mapping
(MNM) to overcome these challenges.

IX. CONCLUSIONS

In this paper, we have presented and evaluated a novel
hardware technique (NVOverlay) for snapshotting to NVM
the full address space of an unmodifed parallel application
running on a large-scale multiprocessor. By leveraging page
overlays to support lazily persisting a number of cache-
resident checkpoints, NVOverlay achieves significantly better
performance than hardware shadow paging on a number of
benchmarks. Compared with hardware logging, NVOverlay
significantly reduces the amount of write amplification (by
roughly a factor of two) since it avoids writing both a log
and dirty data to the NVM. When NVM bandwidth becomes
precious (e.g., in the ART benchmark), this bandwidth savings
can have a signficant performance impact. By supporting
snapshotting in an efficient and scalable fashion, NVOverlay
makes both crash recovery and the frequent checkpointing
that may occur in checkpoint-based debugging practical for
large-scale parallel applications.

REFERENCES

[1] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for
high-performance processors,” ISCA, 2004.

J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson, “Bztree: A
high-performance latch-free range index for non-volatile memory,” VLDB,
January 2018.

J. Arulraj, M. Perron, and A. Pavlo, “Write-behind logging,” VLDB,
2016.

J.-L. Baer and W.-H. Wang, “On the inclusion properties for multi-level
cache hierarchies,” Computer Architecture News, 1988.

K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, “Makalu: Fast
recoverable allocation of non-volatile memory,” OOPSLA, 2016.

(2]

[3

[t

(4]
(5]

(61

[10]

(1

[12]

[13]

[14]
[15]

[16]

[17]
[18]

[19]

[20]
[21]
[22]
[23]

24

[25

26

[27

[28

[29

[30

31

[32

[33

[34]
[35]

[36

[37]

M. N. Bojnordi and E. Ipek, “Pardis: A programmable memory controller
for the ddrx interfacing standards,” ISCA, 2012.

D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” OOPSLA, 2014.

N. Cohen, D. T. Aksun, H. Avni, and J. R. Larus, “Fine-grain
checkpointing with in-cache-line logging,” ASPLOS, 2019.

J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,”
SOSP, 2009.

A. Correia, P. Felber, and P. Ramalhete, “Romulus: Efficient algorithms
for persistent transactional memory,” SPAA, 2018.

T. David, R. Guerraoui, and V. Trigonakis, “Asynchronized concurrency:
The secret to scaling concurrent search data structures,” ASPLOS, 2015.
A. M. Devices, “Amd64 architecture programmer’s manual volume 2:
System programming,” 2006.

C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-
pher, N. Verma, and M. Zwilling, “Hekaton: Sql server’s memory-
optimized oltp engine,” SIGMOD, 2013.

K. Doshi, E. Giles, and P. Varman, “Atomic persistence for scm with a
non-intrusive backend controller,” HPCA, 2016.

J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data
structures persistent,” STOC, 1986.

E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,” ACM
Computing Surveys, 2002.

R. F. Freitas and W. W. Wilcke, “Storage-class memory: The next storage
system technology,” IBM Journal of Research and Development, 2008.
J. Gaur, M. Chaudhuri, and S. Subramoney, “Bypass and insertion
algorithms for exclusive last-level caches,” ISCA, 2011.

J. Gu, Q. Yu, X. Wang, Z. Wang, B. Zang, H. Guan, and H. Chen,
“Pisces: A scalable and efficient persistent transactional memory,” ATC,
2019.

S. Gupta, A. Daglis, and B. Falsafi, “Distributed logless atomic durability
with persistent memory,” MICRO, 2019.

T. C.-H. Hsu, H. Briigner, I. Roy, K. Keeton, and P. Eugster, “Nvthreads:
Practical persistence for multi-threaded applications,” EuroSys, 2017.
Q. Hu, J. Ren, A. Badam, J. Shu, and T. Moscibroda, “Log-structured
non-volatile main memory,” ATC, 2017.

D. Hwang, W. Kim, Y. Won, and B. Nam, “Endurable transient
inconsistency in byte-addressable persistent b+-tree,” FAST, 2018.

J. Tzraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory
updates via justdo logging,” ASPLOS, 2016.

B. Jacob, “The 2 petaflop, 3 petabyte, 9 tb/s, 90 kw cabinet: a system
architecture for exascale and big data,” IEEE Computer Architecture
Letters, 2015.

A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr., and J. Emer, “Achieving
non-inclusive cache performance with inclusive caches: Temporal locality
aware (tla) cache management policies,” MICRO, 2010.

J. Jeong, C. H. Park, J. Huh, and S. Maeng, “Efficient hardware-assisted
logging with asynchronous and direct-update for persistent memory,”
MICRO, 2018.

A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Dhtm: Durable
hardware transactional memory,” ISCA, 2018.

A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom: Atomic durability
in non-volatile memory through hardware logging,” HPCA, 2017.

A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist barriers
for multicores,” MICRO, 2015.

R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V. Chi-
dambaram, “Splitfs: Reducing software overhead in file systems for
persistent memory,” SOSP, 2019.

R. Kateja, N. Beckmann, and G. Ganger, “Tvarak: software-managed
hardware offload for redundancy in direct-access nvm storage,” ISCA,
2020.

R. Kateja, A. Pavlo, and G. Ganger, “Vilamb: Low overhead asynchronous
redundancy for direct access nvm,” Carnegie Mellon University Parallel
Data Lab, 2019, technical report CMU-PDL-20-101.

C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” ASPLOS, 2002.
W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won, “Nvwal: Exploiting
nvram in write-ahead logging,” ASPLOS, 2016.

A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M.
Chen, and T. F. Wenisch, “Delegated persist ordering,” MICRO, 2016.
A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-
performance transactions for persistent memories,” ASPLOS, 2016.

510

[38]

[39]

[40]

[41]

[42

[43

[44]

[45]

[46]

[47

[48]

[49]

[50]

[51]

[52

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62

[63]

[64

[65]

L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, 1978.

P.-r. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and
M. Zwilling, “High-performance concurrency control mechanisms for
main-memory databases,” VLDB, 2011.

S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, “WORT: write
optimal radix tree for persistent memory storage systems,” FAST, 2017.
S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram, “Recipe:
Converting concurrent dram indexes to persistent-memory indexes,”
SOSP, 2019.

V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful
indexing for main-memory databases,” ICDE, 2013.

V. Leis, F. Scheibner, A. Kemper, and T. Neumann, “The art of practical
synchronization,” DaMoN, 2016.

M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren,
“Dudetm: Building durable transactions with decoupling for persistent
memory,” ASPLOS, 2017.

Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung, “ido:
Compiler-directed failure atomicity for nonvolatile memory,” MICRO,
2018.

S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in encrypted
non-volatile main memory systems,” HPCA, 2018.

S. Liu, Y. Wei, J. Zhao, A. Kolli, and S. Khan, “Pmtest: A fast and
flexible testing framework for persistent memory programs,” ASPLOS,
2019.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” PLDI, 2005.

A. J. Mashtizadeh, T. Garfinkel, D. Terei, D. Mazieres, and M. Rosenblum,
“Towards practical default-on multi-core record/replay,” ASPLOS, 2017.
H. MclIntyre, S. Arekapudi, E. Busta, T. Fischer, M. Golden, A. Horiuchi,
T. Meneghini, S. Naffziger, and J. Vinh, “Design of the two-core x86-64
amd bulldozer module in 32 nm soi cmos,” IEEE journal of solid-state
circuits, 2011.

C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp: Stanford
transactional applications for multi-processing,” 2008 IEEE International
Symposium on Workload Characterization, 2008.

A. Miraglia, D. Vogt, H. Bos, A. Tanenbaum, and C. Giuffrida, “Peeking
into the past: Efficient checkpoint-assisted time-traveling debugging,”
ISSRE, 2016.

A. Mirhosseini, A. Agrawal, and J. Torrellas, “Survive: Pointer-based
in-dram incremental checkpointing for low-cost data persistence and
rollback-recovery,” IEEE Computer Architecture Letters, 2017.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “Aries:
a transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging,” ACM Transactions on
Database Systems (TODS), 1992.

I. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia, P. Ranganathan,
and N. Binkert, “Consistent, durable, and safe memory management for
byte-addressable non volatile main memory,” TRIOS, 2013.

D. Mulnix, “Intel xeon processor scalable family technical overview,”
2017.

M. Nam, H. Cha, Y.-R. Choi, S. H. Noh, and B. Nam, “Write-optimized
dynamic hashing for persistent memory,” FAST, 2019.

T. Neumann, T. Miihlbauer, and A. Kemper, “Fast serializable multi-
version concurrency control for main-memory database systems,” SIG-
MOD, 2015.

T. M. Nguyen and D. Wentzlaff, “Picl: A software-transparent, persistent
cache log for nonvolatile main memory,” MICRO, 2018.

Y. Ni, J. Zhao, H. Litz, D. Bittman, and E. L. Miller, “Ssp: Eliminating
redundant writes in failure-atomic nvrams via shadow sub-paging,”
MICRO, 2019.

M. A. Ogleari, E. L. Miller, and J. Zhao, “Steal but no force: Efficient
hardware undo+redo logging for persistent memory systems,” HPCA,
2018.

I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “Fptree:
A hybrid scm-dram persistent and concurrent b-tree for storage class
memory,” SIGMOD, 2016.

M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ISCA, 1984.

V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Analysis and evolution of journaling file systems.” ATC, 2005.

J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “Thynvm:
Enabling software-transparent crash consistency in persistent memory

[66]
[67]
[68]
[69]
[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]
[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]
[88]

[89]

[90]

[91]

[92]

systems,” MICRO, 2015.

M. Rosenblum and J. K. Ousterhout, “The design and implementation
of a log-structured file system,” ACM TOCS, 1992.

D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitectural
simulation of thousand-core systems,” ISCA, 2013.

D. Schwalb, T. Berning, M. Faust, M. Dreseler, and H. Plattner, “nvm
malloc: Memory allocation for NVRAM,” ADMS, 2015.

J. Seo, W.-H. Kim, W. Baek, B. Nam, and S. H. Noh, “Failure-atomic
slotted paging for persistent memory,” ASPLOS, 2017.

S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De, Y. Jin, Y. Liu,
and S. Swanson, “Willow: A user-programmable ssd,” OSDI, 2014.

V. Seshadri, G. Pekhimenko, O. Ruwase, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, T. C. Mowry, and T. Chilimbi, “Page overlays: An enhanced
virtual memory framework to enable fine-grained memory management,”
ISCA, 2015.

A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis, “Memzip:
Exploring unconventional benefits from memory compression,” HPCA,
2014.

S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A flexible
and fast software supported hardware logging approach for nvm,” MICRO,
2017.

S. M. Srinivasan, S. Kandula, C. R. Andrews, Y. Zhou et al., “Flashback:
A lightweight extension for rollback and deterministic replay for software
debugging,” ATC, 2004.

M. E. Thomadakis, “The architecture of the nehalem processor and
nehalem-ep smp platforms,” Texas A&M Tech Report, 2011.

S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell,
“Consistent and durable data structures for non-volatile byte-addressable
memory,” FAST, 2011.

N. Viennot, S. Nair, and J. Nieh, “Transparent mutable replay for
multicore debugging and patch validation,” ASPLOS, 2013.

T. Wang, J. J. Levandoski, and P. Larson, “Easy lock-free indexing in
non-volatile memory,” ICDE, 2018.

Z. Wang, M. A. Kozuch, T. C. Mowry, and V. Seshadri, “Multiver-
sioned page overlays: Enabling faster serializable hardware transactional
memory,” PACT, 2019.

C. Warner, D. Robinson, J. Wastlick, M. Schroeder, and J. Moy, “Non-
inclusive cache systems and methods,” 2014, uS Patent 8,661,208.

X. Wei, D. Feng, W. Tong, J. Liu, and L. Ye, “Morlog: Morphable
hardware logging for atomic persistence in non-volatile main memory,”
ISCA, 2020.

S. Wu, F. Zhou, X. Gao, H. Jin, and J. Ren, “Dual-page checkpointing:
An architectural approach to efficient data persistence for in-memory
applications,” ACM Trans. Archit. Code Optim., 2019.

Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo, “An empirical evaluation
of in-memory multi-version concurrency control,” VLDB, 2017.

J. Xu, J. Kim, A. Memaripour, and S. Swanson, “Finding and fixing
performance pathologies in persistent memory software stacks,” ASPLOS,
2019.

J. Xu and S. Swanson, “NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories,” FAST, 2016.

J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “Nv-tree:
Reducing consistency cost for nvm-based single level systems,” FAST,
2015.

V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient
encryption for non-volatile memories,” ASPLOS, 2015.

Y. Zhang, J. Yang, A. Memaripour, and S. Swanson, “Mojim: A reliable
and highly-available non-volatile memory system,” ASPLOS, 2015.

J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing the
performance gap between systems with and without persistence support,”
MICRO, 2013.

P. Zuo, Y. Hua, M. Zhao, W. Zhou, and Y. Guo, “Improving the
performance and endurance of encrypted non-volatile main memory
through deduplicating writes,” MICRO, 2018.

P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance
hashing index scheme for persistent memory,” OSDI, 2018.

P. Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling application-transparent
secure persistent memory with low overheads,” MICRO, 2019.

511

