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ABSTRACT
Hospitals around the world collect massive amount of physiological
data from their patients every day. Recently, there has been increas-
ing research interest to subject this data into statistical analysis for
gaining more insights and providing improved medical diagnoses.
Enabling such advancements in healthcare require efficient data
processing systems. In this paper, we show that currently available
data processing solutions either fail to meet the performance re-
quirements or lack simple and flexible programming interfaces. To
address this problem, we propose LifeStream, a high performance
stream processing engine for physiological data. LifeStream hits
the sweet spot between ease of programming by providing a rich
temporal query language support and performance by employing
optimizations that exploit the constant frequency nature of phys-
iological data. LifeStream demonstrates end-to-end performance
up to 7.5× higher than state-of-the-art streaming engines and 3.2×
than hand-optimized numerical libraries.

1 INTRODUCTION
In recent years, healthcare industry has been experiencing an in-
creasing trend in the adoption of approaches like data-driven diag-
nostic methods [12, 41], automated patient monitoring systems [21],
and AI-assisted risk prediction models [2, 19, 43]. Advancements
in the data collection technologies [14] and recent developments
in fields like statistics and machine learning [30, 45] are the ma-
jor enabling factors for this shift from the traditional methods of
healthcare practices. Hospitals collect and store hundreds of giga-
bytes of physiological data every day with the help of monitoring
devices [39] attached to the patients in the intensive care units
(ICUs) [7, 15]. The monitors continuously collect physiological
signals or waveforms such as arterial blood pressure (ABP), electro-
cardiogram (ECG), and electroencephalogram (EEG) and produce
output at regular intervals in a streaming manner. A single measure-
ment or event in the waveform data typically contains a timestamp
and a measurement value at that moment in time.

Traditionally, this data has been monitored and analyzed man-
ually by the clinicians. However, statistical and machine learning
based algorithms can provide insights into complex data patterns
that can help clinicians to prepare more precise diagnosis and per-
sonalized treatment plans [24]. Moreover, statistical models are
About to appear at ASPLOS ’21, April 19-23, 2021, Virtual
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shown to be capable of accurately predicting short and long term
trends in the physiological data such as cardiac arrest [43] and
sepsis risk [11]. Even though data analytics on physiological data
shows great potential, there are several practical challenges that
need to be addressed in order to unleash its full potential.

Unlike other streaming datasets, raw physiological data has a
high degree of noise and discontinuities. Therefore, the data needs to
go through a series of data cleaning operations and transformations
before it can be used for meaningful analyses. Additionally, in
certain cases, researchers need to compute derived variables from
the raw data (e.g, measuring heart rate from ECG signal or finding
temporal correlation between multiple signals). Although general
purpose stream processing engines that can handle these types of
computations do exist in both industry and academia (e.g., Apache
Spark streaming [48], Apache Beam [3], and Apache Flink [9]), we
observe that they fail to be a good fit for processing physiological
data for the following reason.

Most contemporary streaming engines provide simple and flexi-
ble programming interfaces with an implicit notion of event time,
ordering and support for fine-grained windowing strategies that
are well suited for building physiological data processing pipelines.
However, most of them are designed with a distributed setup in
mind and, unfortunately, exhibit poor singlemachine performance [25].
This is generally compensated by scaling up the computation to
large machine clusters that most hospitals neither have the infras-
tructure nor the required expertise to operate. Moreover, hospitals
have to abide by the medical data privacy protection laws [18],
which restrict data being moved outside the hospital facilities, elim-
inating cloud infrastructure as a viable choice for running such
computations. This necessitates on-premise computations over lim-
ited hardware resources. Our experiments reveal that most of the
contemporary streaming engines fail to provide good performance
under such hardware resource constrained setup (see Section 3 for
more details).

Because of these limitations, data scientists usually prefer to
write adhoc data processing pipelines using numerical libraries
(e.g., NumPy [33], SciPy [34] and Scikit-learn [13]). Even though,
numerical libraries provide a rich set of operations for scientific
computing with efficient hand-tuned implementations, the lack of
temporal ordering and windowing support, as well as the absence of
the unified API specifications and common data abstraction limits
data scientists’ ability to efficiently program and maintain large
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data processing pipelines. Additionally, as the pipeline gets longer
and more complex, the performance of the combined workflow
starts to considerably deteriorate due to expensive data movement
across the functions and lack of cross-operation optimizations [36].

Our goal in this work is to build a physiological data processing
system that is both easy to program and provides high performance
even under hardware resource constraints. To this end, we pro-
pose LifeStream, a new high performance stream processing engine
for physiological waveform data with a rich temporal query lan-
guage support. LifeStream provides high performance with efficient
hardware utilization using optimizations that exploits the constant
frequency nature of the waveform data. We derive the following
two key properties of temporal operations on a constant frequency
stream:
Linearity property: The timestamps of the events produced by a
temporal operator is a linear transformation of that of the input events.
This property allows LifeStream to map the events in the output
stream of an operator to its parent events in the input stream(s).
Since all the temporal operations follow this property, the map-
ping can be extended to compute the entire lineage of every event
produced during query execution. We call this mechanism event
lineage tracking.
Bounded memory footprint: The memory footprint of a temporal
operator is bounded by the size of its input(s). Every temporal op-
erator has a fixed interval size with which it operates on its input
streams. Given the frequency of the input streams, the total memory
required to execute that operation can be calculated statically.

We use the above properties and propose the following three
query compile-time and runtime optimizations:

(1) Locality tracing: LifeStream precisely estimates the data
locality of the end-to-end data processing pipeline using the
linearity property. LifeStream performs static analysis on
top of the entire query and prepares an execution plan that
maximizes the cache locality for the whole pipeline.

(2) Static memory allocation: LifeStream estimates the up-
per bound of the memory required for each operation in
the pipeline using the bounded memory footprint property
and pre-allocates the memory for all intermediate results
produced in the stream, thus almost completely eliminating
the runtime memory allocation and deallocation overhead.

(3) Targeted query processing: We observe that the discon-
tinuities in the physiological data are highly uneven across
different signals and the number of mutually overlapping
events are generally far fewer than the total number of events
in the streams. Therefore, joining multiple streams together
filters out many events, rendering any prior computation on
them wasteful. LifeStream eliminates such redundant com-
putations using event lineage tracking mechanism at runtime
by selectively targeting only regions of input data that are
expected to produce an output.

We evaluate LifeStream against state-of-the-art streaming en-
gines and numerical libraries on real datasets collected at The Hos-
pital for Sick Children, Canada. On a single machine, LifeStream
exhibits up to 7.5× higher end-to-end performance compared to
the state-of-the-art streaming engine called Trill [10], and 3.2×
compared to the hand-tuned numerical libraries such as SciPy [34],
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Figure 1: Typical physiological data collection infrastruc-
ture

NumpPy [33], and Scikit-learn [13] (while providing much more
flexible programmingAPI and corresponding abstractions). LifeStream
also extends the traditional query language vocabulary to sup-
port certain domain-specific use cases found in the physiologi-
cal data processing domain (e.g., artifact/shape detection in the
signal stream). Finally, we note that even though LifeStream is
built for stream processing on physiological data, the ideas behind
LifeStream can also be applied to other streaming use cases where
data is produced at a constant frequency.

In summary, this paper makes the following contributions:
• We showcase the challenges faced in the domain of physio-
logical data processing and propose solutions that are evalu-
ated on real datasets and workloads used in major hospitals.

• We derive two key properties of temporal operations on
constant frequency streams, namely linearity and bounded
memory footprint, and leverage them to propose three key op-
timizations, namely locality tracing, static memory allocation,
and targeted query processing, that can significantly improve
the hardware utilization and query execution performance
compared to the state-of-the-art streaming engines.

• We propose LifeStream, a new high performance stream pro-
cessing engine with rich temporal query language support.
We show that LifeStream can outperform state-of-the-art
streaming engines by as much as 7.5× and hand-optimized
numerical libraries by as much as 3.2× on the end-to-end
data processing pipeline on real physiological datasets.

2 PHYSIOLOGICAL DATA COLLECTION AND
PROCESSING

Figure 1 shows a typical physiological data collection process from
the patients in the intensive care units (ICUs) to keep track of their
health status with the help of multiple monitoring devices [39]
attached to patients, each making different measurements such
as arterial blood pressure (ABP), electrocardiogram (ECG), and
electroencephalogram (EEG). These devices generate a continuous
stream of signal events at constant intervals, typically at a rate
ranging from 10−4 Hz to 103 Hz. Each signal event constitutes a
timestamp corresponding to the time of measurement and a signal
value which is the magnitude of the measurement at that point in
time. We use the term period to refer to the shortest time interval
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Figure 2: Distribution of ECG and ABP signals collected
froma singlemonitoring device over first sixmonths of 2019
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Figure 3: A sample data processing pipeline on ECGandABP

between consecutive events in a signal. For example, a 500Hz signal
stream would have a period of 2 ms.

Unlike other streaming datasets, physiological waveform data is
known to contain a high degree of noise and many discontinuities,
because of external disruptions in the connection between the mon-
itoring devices and the patients. Figure 2 shows the discontinuities
in the ECG and ABP signals collected from a single monitoring
device over a 6month period. Such disruptions are common, which
make it virtually impossible to run meaningful analyses on top of
raw data. Therefore, the data has to go through a series of trans-
formations and data cleaning operations before a data scientist can
run analytics algorithms. For example, standard signal processing
operations like frequency-based filtering [40] are used for removing
the noise from the signals, signal value imputation methods are
used to fill small discontinuities in the data stream with dummy
values, and data normalization methods are used to convert all
signals to a uniform scale. Additionally, different data analytics
algorithms might require additional variables that are derived from
the raw data (e.g., the systolic and diastolic blood pressure [8], heart
rate measured from ECG, and the temporal correlation of different
signals).

Figure 3 shows a sample data processing pipeline which joins a
125 Hz ABP signal with 500 Hz ECG signal based on their times-
tamps. First, the small gaps in both waveforms are filled using signal
value imputation. Next, the ABP signal is upsampled to match the
frequency of ECG. Finally, the signal values are normalized before
joining them together to pair up strictly overlapping events. Even
though there are several general-purpose solutions [3, 9, 10, 44, 48]
proposed in the big data community to build and process such
data flow pipelines, from our experience closely working with the
clinicians, data analysts, and machine learning researchers at The
Hospital for Sick Children, we recognize several new challenges
that make physiological waveform data processing unique.

First, the choice of operations and transformations applied on the
waveform data varies considerably based on use cases. Therefore,

var left = sig500
.Multicast(s => s
.Select(e => e.val) // select signal value
// compute mean and subtract from values
.Join(s.TumblingWindow(100).Mean(),
(val, mean) => val - mean));

var right = sig200
.Select(e => e.val); // select signal value

var output = left
// join with sig200 values
.Join(right, (l, r) => new {l, r});

Listing 1: Running example of a temporal query

the data scientists should have freedom to experiment with different
data processing pipelines and should be able to do so with minimal
effort. Moreover, most of the operations and transformations ap-
plied on the waveform data follows a strict notion of the temporal
ordering of the data. This necessitates a flexible and easy to use pro-
gramming interface with in-built temporal logic support. Second, the
data analysts and ML researchers usually first perform the experi-
ments and analysis on the retrospective (i.e. historical) data stored
in the persistent disks, and then deploy their solutions on real-time
data once the algorithms are finalized. It is crucial for this to be a
seamless and error-free deployment. Finally, as described in Section 1,
since the physiological data collected are fully-identified, there are
several legal restrictions [18] on moving the dataset outside hospi-
tal facilities. Even though there has been some recent efforts (e.g.,
MIMIC [23]) to de-identify data for public research purposes, the
risk of leaking patient information from those datasets still per-
tains [1]. Hence, most hospitals tend to keep even de-identified data
private. As a result, the physiological data processing systems has
to perform computations within limited hardware budget available
in hospitals and still provide high performance.

3 A CASE FOR EFFICIENT TEMPORAL
STREAMING FORWAVEFORM DATA
PROCESSING

Since physiological waveform data is produced in a stream-
ing fashion, stream processing [6] is a natural choice for build-
ing aforementioned data processing pipelines. Modern streaming
engines [3, 5, 10, 44, 48] support some type of a temporal query
language which has implicit notion of event time, ordering, and
fine-grained windowing strategies. To illustrate, Listing 1 shows the
query for a simplified version of the pipeline in Figure 3 which joins
a 500 Hz signal (sig500) and 200 Hz signal (sig200) after a series
of transformations.1 First, the signal values of sig500 is adjusted
by taking the mean of signal values on 100 ms tumbling window
(fixed-size, non-overlapping and contiguous intervals) and subtract-
ing that from the original values. This transformed signal values are
joined with the signal values from sig200 using temporal Inner Join.
Through such query languages, modern streaming engines provide
simple and flexible programming interface for writing complex
data processing pipelines. However, most contemporary streaming
engines are built with distributed setup in mind and, unfortunately,
exhibit sub-optimal single machine performance as a result of poor
hardware utilization [10, 25]. At the same time, streaming engines

1We use signal frequencies 500 Hz and 200 Hz to show that LifeStream can handle
misaligned signals as well.
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Benchmarks Spark Storm Flink Trill SciPy
Temporal Join 0.07 0.04 0.09 0.80 -
Upsampling - - - 0.69 15.06

Table 1: Throughput of Spark, Storm, Flink, Trill, and SciPy
(in million events/sec)

that are optimized for single machine performance (e.g., Trill [10])
demonstrate orders of magnitude higher performance.

To validate this in the context of waveform data processing, we
compare the single-core performance of the temporal Join oper-
ation in four major state-of-the-art streaming engines (i) Spark
streaming [5, 48], (ii) Flink [9], (iii) Storm [44], and (iv) Trill [10]
from Microsoft Research. Join is one of the most commonly used
primitive operations in physiological data processing, since com-
puting derived variables such as aggregates and joining them back
with the events in the input stream are frequently performed during
data transformations. Therefore, performance of Join operation can
considerably affect the performance of the entire pipeline in such
scenarios.

Table 1 shows the number of signal events joined by different
streaming engines per second. We observe that Trill outperforms
other streaming engines by more than 10×. Trill’s performance ben-
efits come from its better memory management system, improved
cache locality using columnar data representation and use of hand-
optimized primitive operators that leverages certain characteristic
properties of the stream.

Unfortunately, despite all these optimizations that made Trill
significantly better than its competitors, we observe that the perfor-
mance of Trill is far from being competitive with the hand-tuned
implementations used by the data scientists. Such implementa-
tions are usually based on numerical libraries such as SciPy [34],
NumPy [33], and Scikit-learn [13] and provide a rich ecosystem
of highly efficient data processing operators. Table 1 shows the
performance comparison of signal upsampling [47] operation im-
plemented in Trill and the corresponding implementation available
in the SciPy library. We observe that Trill is about 22× slower than
SciPy. This makes numerical libraries seem like a better choice for
building data processing pipelines from a performance perspec-
tive. Even though this is the status quo among data scientists, we
argue that such an approach has significant drawbacks from a pro-
grammability and system maintainability perspective, and below
we explain the reasons.

First, the lack of implicit notion of event time and support for
flexible windowing strategies make building physiological data pro-
cessing pipelines using numerical libraries significantly harder and
more complicated for data scientists. For instance, writing the data
transformations in Listing 1 would require data scientists to manu-
ally maintain the temporal ordering of the data at the application
level. Moreover, making simple tweaks like modifying the pipeline
to use a rolling mean would only take a single line of change from
TumblingWindow to SlidingWindow in a temporal query language.
The same change would require a complete redesign of the code
base in the typical numerical library-based approaches.

These limitations force data scientists tomake one of two undesir-
able choices. (i) To put considerable engineering effort to implement
temporal features on top of the numerical libraries, or (ii) make

Where

(            )

Figure 4: Shape detection using extendedWhere query

compromises in their experimentation and requirements to adjust
to the restrictions imposed by numeric libraries. Secondly, a lack of
common API specifications and data abstractions across different li-
braries further complicates building large data processing pipelines,
as the data scientists need to make sure the correctness of the input
data types of each function, and need to additionally perform type
conversions when necessary. Such an approach quickly becomes
unmanageable and error-prone when the data pipeline becomes
larger and more complex.

Despite all these drawbacks, data scientists still choose to go
with such adhoc library-based methods for building data process-
ing pipelines as opposed to more systematic approaches (e.g, using
stream processing engines such as Trill) due to the significant per-
formance benefits associated with numerical libraries. As a result,
we observe that data scientists end up spending majority of their
development time writing peripheral code and extra “glue” logic to
wire different numerical libraries together [42], instead of focusing
on their primary goal—analysing data and generating insights from
it.

On the other hand, even though the library-based approach
seems desirable from the performance perspective at first, prior
works [35–37] have pointed out that the functions in these libraries
may achieve high performance in isolation, but they usually fail
to maintain those benefits in a more complex workflow with a
combination of functions, because of the overhead associated with
intermediate data conversion and lack of cross function optimiza-
tions. This makes numerical libraries a poor choice for building
physiological data processing pipelines even from a performance
standpoint.

Based on the above observations, we conclude that to be efficient
and easy to manage, a physiological data processing system must
provide a programming interface similar to the ones supported by
the major streaming engines with flexible windowing strategies
and implicit notion of temporal ordering and event time. Secondly,
the system must efficiently utilize the available hardware resources
to provide high performance.

4 LIFESTREAM: SYSTEM OVERVIEW
To address the challenges described in the previous section, we intro-
duce LifeStream, a temporal query processing engine specifically
optimized for physiological waveform data processing. LifeStream
lies in the sweet-spot of programmability and performance com-
pared to the alternative approaches. LifeStream provides: (i) supe-
rior performance by taking advantage of the constant frequency na-
ture of the waveform data and optimizing the end-to-end pipeline,
(ii) a rich temporal query language support (similar to the one
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provided by Trill) with simple and flexible primitive temporal oper-
ations and fine-grained windowing support, and (iii) several exten-
sions on traditional temporal operations that are useful for physio-
logical data processing such as extending Where operator to query
visual patterns and shapes in data streams as shown in Figure 4
(see Appendix Section A.1 for more details).

LifeStream provides the data abstraction that consists of a stream
of events in chronological order. An event is a single unit of data
with three fields: (i) a user-defined payload, (ii) a sync time which
dictates the time from which that particular event is active, and (iii)
a duration which defines the active lifetime of the event. LifeStream
is exclusively targeting data streams in which events appear at
a constant frequency. That means the sync time of every event is
always at the period boundaries. Since the position of each event
in a stream is predictable, we use the symbolic representation of
(offset, period) to describe a stream, where offset is the sync time
of the first event in the stream and period is the reciprocal of the
frequency. Even though we are primarily targeting physiological
waveform data, any streaming data that can be represented in
the aforementioned format can take advantage of the benefits of
LifeStream. This include constant frequency streaming datasets
such as performance counters produced in data centers [17], data
collected from wearable devices [16], and real-time sensor data [32].

One of the key design choices we make in LifeStream is to de-
couple the operator implementation from the data representation
used for storing stream data. Most of the streaming engines such
as Trill [10] and Spark streaming [5] implement their operators to
take an arbitrary sequence of events from the input stream data in
the form of a batch, and produce another batch as its output. In our
work, we realize that this approach has several severe limitations.
First, the locality of the computation is highly tied with the batch
size. Therefore, usually the system has to trade-off the benefits of
large batch processing in favor of preserving locality. Second, we
observe that such operator implementations limit different compile-
time and runtime optimizations we can perform on LifeStream (see
Section 5 for more details).

To avoid such limitations, we introduce a new key construct
called fixed interval sliding window or FWindow. FWindow is an
arbitrary interval within a stream. Similar to an event, FWindow
also has a sync time corresponding to the starting timestamp of the
interval and a fixed size or duration. Since FWindow is an interval
on a stream, the size of the FWindow should always be a multiple
of the period of the stream. In LifeStream, we implement all the
operations based on FWindows—the operators typically take one or
two FWindows as input and produce a single FWindow as output.2
Operators can slide the FWindows to read different parts of the
stream at runtime by updating its sync time. The only restriction
is that FWindows can only be moved forward in time in order to
ensure monotonic progress in query execution.

LifeStream provides a rich set of primitive temporal operations
with which data scientists can write queries (similar to Listing 1)
on streaming data. The query is compiled into a computation graph
composed of FWindows and temporal operators. The size of the
FWindows are initially set to the same value as the corresponding

2Multicast operation is an exception. It outputs only a single FWindow, but passes the
same FWindow to multiple operators as input.

P0 P1 P2 P3 ...(0,1)

P'0 P'1 P'2 P'3 ...(0,1)

0 1 2 3 4

0 1 2 3 4

(a) Select

P0 P1 P2 P3 ...(0,1)

P0 P1 P2 P3 ...(k,1)

0 1 2 3 4

k+0 k+1 k+2 k+3 k+4

(b) Shift(k)

L0 L1 L2 L3 ...(0,1)

L0,R0 L1,R0 L2,R1 L3,R1 ...(0,1)

0 1 2 3 4

0 1 2 3 4

R0 R1 ...(0,2)

0 2 4

(c) Join

Figure 5: Event lineage tracking

stream’s period. Figure 6(a) shows the initial computation graph pre-
pared from the example query in Listing 1. The FWindows are rep-
resented using a symbolic representation (offset, period)[dimension]
where the dimension is the FWindow size. This graph is then passed
on through a graph transformation process to generate the final
executable computation graph. Finally, the input data is streamed
through the executable computation graph to generate the result.

5 LIFESTREAM: KEY OPTIMIZATIONS
LifeStream maximizes resource utilization by (i) improving cache
locality, (ii) reducing runtime overhead, and (iii) pruning redundant
computations. We achieve this goal by identifying two key prop-
erties of the temporal operations on constant frequency streams
described in Section 5.1. Using which, we propose three major query
compilation and execution time optimizations in sections 5.2 and
5.3.

5.1 Properties of Temporal Operations on
Constant Frequency Streams

Linearity of temporal operations: The sync time of events in the
output stream of a temporal operator is a linear transformation of
that of the input events.

This property allows LifeStream to map every output event of
a temporal operator to the corresponding parent input event(s).
Figure 5 shows how the event times change in the output stream of
several common temporal operators such as Select, Shift, and Join
when applied on a constant frequency stream. One consequence of
this property is that the period and the offset of the output stream
is also a linear transformation of that of the input stream and can
be computed statically. Moreover, this allows to map the events
in the output stream of an operator to the corresponding parent
events in the input stream(s). Figure 5 shows how the output events
are mapped to the input events after an operator transformation.
Since all temporal operators follow this property, the mapping can
be extended from the output stream events all the way to the input
stream events. We call this mechanism event lineage tracking and
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use in LifeStream to improve both the cache locality and to prune
redundant computations at runtime.
Bounded space complexity: For a constant frequency stream with
period 𝑝 , the maximum number of events that can be present within
a given time interval 𝑑 is bounded by 𝑂 (𝑑/𝑝).

One of the key properties of a constant frequency stream is that
two events can not overlap with each other, which means there
can only be at most one event active at any point in time within a
stream. Therefore, a maximum number of events in an interval is
bounded by the duration of that interval. Moreover, since tempo-
ral operations also follow linearity property, all the intermediate
streams generated in the query should also have constant frequency,
and thus should also satisfy bounded space complexity property.
LifeStream uses this observation to estimate the maximum memory
footprint of all the intermediate results and preallocate them to min-
imize the runtime memory allocation and deallocation overhead
commonly observed in other streaming engines [10, 38].

5.2 Locality Tracing and Memory Footprint
Estimation

One thing that makes stream processing attractive is that even
though the data it processes is usually huge (and sometimes can
even be potentially infinite), the computations performed on the
data are highly local and require only to deal with a small con-
tinuous window of events within the stream. Most streaming en-
gines take advantage of this locality property only at an individ-
ual operation-level and do not optimize or even maintain cross-
operation locality. In LifeStream, we introduce a method called
locality tracing which uses the linearity property of constant fre-
quency streams to precisely estimate the end-to-end locality of
the computations in the entire pipeline. Locality tracing performs
static analysis on top of the computation graph and adjusts the
dimensions of all the FWindows to make sure that the input and
output dimensions of all the operators match.

Figure 6 shows the locality tracing procedure performed on the
example query in Listing 1. The procedure starts from the end of
the pipeline, and LifeStream identifies a mismatch in the input and
output dimensions of the last Join operation (𝐽𝑜𝑖𝑛2). Since the FWin-
dow sizes has to be a constant multiple of the periods, in order to
match the dimensions of 𝐽𝑜𝑖𝑛2, LifeStream sets the FWindow sizes
to the least common multiple of the input and output dimensions.
In this case, the dimensions are set to 10. Next, the dimensions of
the 𝐽𝑜𝑖𝑛1 operation is adjusted similarly. However, this adjustment
introduces a mismatch in 𝐽𝑜𝑖𝑛2, which is corrected in the next step.
This procedure is continued until all operations have uniform input
and output dimensions. This graph transformation ensures that the
intermediate results are consumed immediately by the subsequent
operation(s), which, in turn, maximizes the locality of the entire
query.

Once the dimensions of all the operations are computed, LifeStream
uses the bounded space complexity property to determine the max-
imum memory footprint of all the FWindows. LifeStream then pre-
allocates this memory statically and keep reusing the same memory
during runtime in order to minimize dynamic memory allocation
overhead, commonly observed in other streaming engines [38].

5.3 Targeted Query Processing
Most streaming engines process queries in an eager fashion where
the query computation is initiated at the data ingestion side and
each subsequent operators perform the corresponding transforma-
tions on the input as soon as it receives the data, and immediately
passes it on to the next operator down the pipeline, irrespective
of whether the next operation would actually need to process that
data or not. In physiological waveform processing, this introduces
a lot of redundant computations as the data contains high degree
of discontinuity.

One of the most common examples would be the use of Inner
Joins to pair up overlapping events from multiple signal streams
after a series of compute intensive data transformations (Figure 3).
Figure 2 shows that the mutually overlapping regions in ECG and
ABP signal streams are far fewer compared to the total number
of events in the individual streams. In an eager query processing
model, all the events from both streams are invariably going to
be passed through the intermediate transformations, even though
most of them are eventually going to get discarded by the final Join
operation.

In LifeStream, we address this issue by introducing targeted
query processing which uses event lineage tracking to map output
FWindows to corresponding parent FWindows in the input. As
opposed to eager execution, in LifeStream, the query processing
is initiated by the final operator rather than the initial one. This
lets LifeStream operators to selectively target regions of its input
stream(s) by sliding the FWindows and running the computations
only when an output FWindow is expected to be produced. Hence,
targeted query processing lets LifeStream skip all those compute-
heavy transformations in the presence of discontinuities in the
input data stream and focus only on the relevant parts of the data.

6 LIFESTREAM: IMPLEMENTATION
We implement LifeStream as a library using C# programming lan-
guage and .Net core v3.1 framework [28]. Hence programmers who
work with LifeStream can also benefit from high level language
features such as arbitrary data types, integration with custom pro-
gram logic, and rich ecosystem of libraries [29]. They can also create
streams from a variety of sources including real time data through
networks, retrospective data from files, and cached data from the
main memory.

As described in the Section 4, the key building block that tempo-
ral operators use to access streaming data is FWindow. In FWindow,
events are indexed by their sync time. In addition to the event pay-
load, FWindow contains three extra fields, namely vsync, duration,
and bitvector. Vsync and duration fields store the sync time and
duration of the events. Bitvector is used to mark the absence of an
event. Every event in the FWindow has an associated bit which can
either be 0 or 1 to mark the presence or absence of the event. All
the fields in the FWindow are stored in columnar format in order to
maximize cache locality as most operators only need to read from
or write to a subset of the fields.

In the following sections, we describe the details about the ex-
tended temporal query language supported in LifeStream and a few
implementation challenges we faced and corresponding solutions.

6



LifeStream: A High-performance Stream Processing Engine for Waveform Data About to appear at ASPLOS ’21, April 19-23, 2021, Virtual

(0,2)[2]

Multicast

(0,2)[2]

Select Mean(100)

(0,2)[2] (0,100)[100]

Join1

(0,5)[5]

Select

(0,5)[5]

Join2

(0,2)[2]

(0,2)[2]

(a) Initial computation graph

(0,2)[2]

Multicast

(0,2)[2]

Select Mean(100)

(0,2)[2] (0,100)[100]

Join1

(0,5)[5]

Select

(0,5)[10]

Join2

(0,2)[10]

(0,2)[10]

(b) Adjust 𝐽 𝑜𝑖𝑛2

(0,2)[2]

Multicast

(0,2)[2]

Select Mean(100)

(0,2)[100] (0,100)[100]

Join1

(0,5)[5]

Select

(0,5)[10]

Join2

(0,2)[10]

(0,2)[100]

(c) Adjust 𝐽 𝑜𝑖𝑛1

(0,2)[2]

Multicast

(0,2)[2]

Select Mean(100)

(0,2)[100] (0,100)[100]

Join1

(0,5)[5]

Select

(0,5)[100]

Join2

(0,2)[100]

(0,2)[100]

(d) Re-adjust 𝐽 𝑜𝑖𝑛2

(0,2)[100]

Multicast

(0,2)[100]

Select Mean(100)

(0,2)[100] (0,100)[100]

Join1

(0,5)[100]

Select

(0,5)[100]

Join2

(0,2)[100]

(0,2)[100]

(e) Final computation graph

Figure 6: Locality tracing procedure on the example query
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Figure 7: Line zero artifact in arterial blood pressure (ABP)
signal

6.1 Temporal Query Language Extensions
Apart from performance benefits, LifeStream also provides several
additional important features through the query language exten-
sions. We introduce a generic Transform primitive operation which
lets users write arbitrary transformations on a fixed interval of
events. This operation helps users to easily integrate third-party
libraries into the stream processing pipeline.

We also extend the Where query primitive operation to support
shape-based querying. As shown in Figure 4, users can input ar-
bitrary artifacts or patterns they want to detect in the stream as a
list of signal values. We extend the dynamic time warping (DTW)
algorithm [46] for a streaming scenario called restricted dynamic
time warping (RDTW) algorithm for pattern matching in a data
stream.

Figure 7 shows an artifact commonly found in the arterial blood
pressure (ABP) signal which occurs when the pressure sensors
attached to patients are calibrated against atmospheric pressure. In
such cases, the ABP signal values produced by the monitors would
show this characteristic shape because of the distortion in the
measurements. There are several other artifacts found in different
signals and data scientists generally want to remove such regions
from the physiological data as this could negatively affect their data
analysis process. In LifeStream, data scientists can use the extended
Where query primitive to filter out these artifacts from the stream
by providing a representative shape as input to the query in the
form of a sequence of signal values. LifeStream subsequently uses
the RDTW algorithm do the pattern matching in the input stream.
We measure the pattern matching accuracy of RDTW algorithm

over a month of ABP signal data from a single device containing 49
line zeroing artifacts. RDTW achieves 0% false negatives and 0.2%
false positives. This shows, LifeStream can accurately detect such
characteristic shapes in the data streams.

6.2 FWindow Fragmentation
Since FWindow is a continuous interval with a fixed duration,
one potential issue on using FWindows for accessing stream data
is that the memory might get fragmented if there are small gaps
present in the input data. This might lead to lowmemory utilization,
which, in turn, could lead to low query performance. However, as
shown in Figure 2 in the main paper, most of the discontinuities in
the raw physiological data are generally concentrated on specific
time periods rather than being randomly scattered throughout the
stream. Hence most parts of the stream has continuous sequence
of data. However, in the occurrence of small gaps, we handle them
by setting the bitvector field in the corresponding position in the
FWindow.

Another possible cause of fragmentation is whenWhere query is
used to filter out certain events in the stream, based on an arbitrary
predicate defined by the programmer. From our experience building
pipelines using LifeStream, Where operation is the least commonly
used primitive operation. Even when it is used, it is mostly to
filter out a large continuous portion of the stream (e.g., removing
noisy regions or artifacts from the data). Therefore, the chances for
FWindow fragmentation are minimum.

In the use cases that we evaluate in this work (see Section 8), we
observe the degree of the FWindow fragmentation to be at most
0.3% which is too small to make any significant negative effect on
query performance.

6.3 Stateful Temporal Operators
In certain cases, in addition to the input FWindow(s), some temporal
operators need to carry a state throughout the query execution (e.g.,
rolling aggregate operations or temporal Join operation on streams
with arbitrary duration). To handle such cases, LifeStream allows
operators to create constant size states during initialization, in order
to preserve bounded space complexity property and ensure that
there is no dynamic memory allocation during operator execution.

For example, Figure 8 shows an example of stateful Join opera-
tion where a constant duration stream (Left) is inner joined with
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Figure 8: Stateful Join operation

Operation Libraries Description
Normalize Scikit-

learn
Normalize a window of signal values us-
ing standard scores.

PassFilter SciPy Filter frequencies using finite impulse
response [40].

FillConst NumPy Fill gaps smaller than the given window
size with a constant value.

FillMean NumPy Fill gaps smaller than the given window
size with the mean of the values in the
window.

Resample SciPy Up/Down sample the signal using linear
interpolation [47].

Table 2: Operation benchmarks and their descriptions

another stream with arbitrary duration (Right). The red dotted lines
represent the FWindow boundaries. As shown in the figure, event
𝑅2 in the Right stream has overlapping events in the Left stream in
both FWindows. In such cases, in order for LifeStream to produce
the output event (𝐿5, 𝑅2) correctly, the Inner Join operation needs
to save the event 𝑅2 in its state before moving to the second FWin-
dow. However, the constant frequency property of these streams
ensures that there can only be at most one such event in a stream
that can cross the interval boundary of the FWindow at any time.
Therefore, the state required for temporal Join is always constant
size and stateful Join operators does not violate the bounded space
complexity property.

7 METHODOLOGY
Benchmarks: We evaluate LifeStream on three categories of
benchmarks. (i) Primitive benchmarks: This benchmark include
several primitive temporal operations like Select, Where, Aggregate
and temporal Inner Join. (ii) Operation benchmarks: This include
five operations described in Table 2 that we find commonly used
by the data analysts to process physiological data. (iii) End-to-end
applications: We build the data processing pipeline described in
Section 2 and Figure 3 using the operations in Table 2.
Datasets: Physiological waveform data we use contain signal
events with a 64-bit timestamp and 32-bit floating point value.
For the experiments, we use two dataset types. (i) Synthetic data:
1000 Hz waveform data generated for 1000 minutes with randomly
selected signal values. This dataset contain continuous stream of
signal events and no gaps. (ii) Real data: A private dataset from a

well-known hospital we collaborate with, containing physiological
waveform data collected from 6100 patients over the past five years.
The dataset contains more than 830, 000 patient-hours of data and
250 different signal types. However, for our experiments, we only
use ABP and ECG signals sampled at their default rate 125 Hz and
500 Hz respectively [15].
Baselines: We compare the performance of LifeStream with two
baselines. (i) Microsoft Trill, a state-of-the-art temporal query pro-
cessing engine specially optimized for single machine performance.
(ii) Numeric libraries (NumLib) like SciPy, NumPy and Scikit-learn
with hand-optimized implementations for data processing opera-
tions. For end-to-end benchmarking, we implement the numerical
library-based data processing pipeline in Python. In order to make
fair performance comparisons, we tried to minimize computations
done on native Python as much as possible by offloading the heavy
processing to the numerical library functions. However, operations
like temporal Inner Join required pure Python implementations.
Metrics: We use the total execution time from a single core on
a fixed input data size as the primary comparison metric for per-
formance on primitive benchmarks, operation benchmarks, and
end-to-end benchmark. For scalability experiments, we use the
throughput obtained on multiple cores/machines. Throughput is
measured as the average number of signal events processed per unit
time. Both execution time and throughput reported is the average
of measurements from 10 trials. The standard deviation of the mea-
surements are observed to be less than 1%. For the sensitivity study
on cache utilization, we use total number of last level cache (LLC)
misses (median over 5 trials) on fixed workload as a comparison
metric measured using Intel vTune profiler v2020 [22].

For all the experiments except scalability, we use 8-core (16 hyper-
threaded) Intel Xeon CPU E5-2660 machine running at 2.2 GHz,
with 16 GB RAM, and running 64-bit Ubuntu 20.04. For scalability
experiments, we use up to 16 AWS EC2 m5a.8xlarge [4] machines
each with 32 cores and 128 GB DRAM. We use a window size of 1
minute for all the benchmarks unless otherwise specified.

8 EVALUATION
We evaluate LifeStream to answer the following questions:

(1) How does the performance of LifeStream compare to state-
of-the-art streaming engines and numerical libraries?

(2) Can LifeStream accelerate end-to-end performance of physi-
ological waveform data processing pipelines?

(3) How beneficial are the proposed optimizations?
(4) How well does LifeStream scale on multiple machines?

8.1 Primitive Benchmarks
We compare the performance of LifeStream against Trill on 7 most
commonly used primitive temporal operations using the synthetic
dataset for these experiments. Figure 9(a) shows the execution time
taken by both Trill and LifeStream and based on the results, we
make the following two major conclusions.

First, on simple operations such as Select and Where, perfor-
mance of LifeStream is within 20% of that of Trill. This shows
that LifeStream is not adding any significant overhead over al-
ready highly optimized operations in Trill. Second, we observe that
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Figure 9: (a) Primitive benchmarks, (b) Operation benchmarks, (c) End-to-end applications

LifeStream shows much higher performance benefits as the opera-
tions become more complex. Operators such as Aggregate, Chop,
ClipJoin, and Join are respectively 2.17×, 1.98×, 5.34×, and 6.65×
faster than its Trill counterparts.

We attribute LifeStream’s high performance on primitive opera-
tions to the introduction of FWindow. FWindow greatly simplifies
the operator implementations and eliminates the need for using
complex data structures such as hashmaps in temporal Join like
Trill. Moreover, since the timestamps of the events and their index
positions are aligned, operators implemented in LifeStream can cal-
culate the sync time of each event from its index position without
doing any memory accesses. Such implementation-level optimiza-
tion makes LifeStream efficient even at the primitive operation-
level.

8.2 Operation Benchmarks
To evaluate the performance of common physiological data transfor-
mations, we implement the operations listed in Table 2 on LifeStream
by writing queries using the temporal operators and compare their
performance against the similar queries written in Trill and the
hand-tuned implementations available in the corresponding nu-
merical libraries specified in Table 2. We conduct this experiment
on a 500 Hz ECG signal from the real dataset containing 126𝑀
events. Figure 9(b) shows the execution time of Trill, numerical
libraries (NumLib), and LifeStream on each benchmark. We make
three major conclusions from this figure.

First, across all the operations, LifeStream is shown to be 5 −
11.21× faster than Trill. This shows the effectiveness of the optimiza-
tions implemented in LifeStream. Second, LifeStream also exhibits

comparable performance against highly optimized implementations
available in the numerical libraries (within 50% performance of the
popular numerical libraries we evaluate). Third, in certain cases
such as a very commonly used Normalize operation, LifeStream
even surpasses the hand-tuned performance provided by Scikit-
learn library by 1.35×. This asserts our claim that LifeStream pro-
vides ease of programming of a temporal query language without
sacrificing performance.

8.3 End-to-end Applications
In order to evaluate whether LifeStream can improve the end-to-
end performance on data processing, we build the pipeline shown
in Figure 3 over LifeStream, Trill, and in Python using numerical
libraries. The data pipeline in all three implementations process
500 Hz ECG and 125 Hz ABP signals from the real dataset stored
in CSV format and produces a joined signal stream after running a
series of transformations on the data shown in Figure 3. The dataset
contains two weeks of data from a single monitoring device with
275𝑀 signal events. Figure 9(c) shows the end-to-end execution
time by varying the dataset size for all three implementations. We
make two major observations from this figure.

First, LifeStream outperforms both Trill and numerical library-
based implementation by 7.5× and 3.2× respectively. This reinstates
that, even though individual operators in the numerical libraries
can exhibit high performance when executed in isolation (as we
show in Section 3), it does not necessarily translate into the best
end-to-end performance due to data conversion overhead and lack
of end-to-end optimizations [36].
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Second, in the case of Trill, as the size of the dataset increases,
the execution time rises rapidly, and Trill goes out of memory at
200𝑀 events. Our investigation reveals that this happens because of
Trill’s implementation issue in the Join operation. Trill expects both
left and right streams of the Join operation to progress at a similar
pace. However, if the two streams diverge considerably, the internal
memory allocated for the Join operator keeps accumulating until the
available memory is exhausted. Since physiological data contains
high degree of discontinuity, it is very common for such divergence
to occur during query processing. LifeStream uses targeted query
processing optimization (described in Section 5.3) to skip over such
non-overlapping parts of the input data.

8.4 Sensitivity Studies
In this section, we conduct experiments to analyze the effectiveness
of the optimizations applied in LifeStream.

Batch size 105 106 107
Trill 2.43 4.11 6.73

LifeStream 0.79 0.82 0.96
Table 3: The number of last level cache misses (in millions)

8.4.1 Cache Utilization. In order to analyze how well LifeStream
utilizes the cache compared to Trill using optimizations such as
locality tracing, we conduct an experiment to measure the last level
cache (LLC) misses of both engines on one of the most commonly
used operation Normalize. In order to avoid the influence of data
discontinuities in the measurements, we use synthetic dataset for
this experiment. We use Intel vTune [22] to measure the cache
misses during the query execution over a constant size input dataset.

Table 3 shows the LLC misses in both Trill and LifeStream on
three different batch sizes. For a batch size of 105, LifeStream is
experiencing 3× lower cache misses as that of Trill. As the batch
size increases, the number of cache misses in Trill goes up signifi-
cantly while LifeStream’s miss rate stays relatively constant. The
reason being, as we describe in Section 5.2, Trill does not preserve
cross-operation locality. The consequence of this severe limitation
becomes more pronounced on larger batch sizes. LifeStream, on the
other hand, preserves the end-to-end locality of the query using
locality tracing irrespective of the batch size.

8.4.2 Targeted Query Processing. In this section, we analyze the
effectiveness of targeted query processing while running large data
processing pipelines. To perform this analysis, we pick the ECG
and ABP signals of several different dates from the real dataset with
varying degree of overlapping events between them. Figure 10(a)
shows the relative performance speedup of LifeStream over Trill,
measured with respect to the percentage of overlapping events
in these data subsets. We observe that, as expected, the speedup
is smaller when there is near perfect overlap, which is about 7×.
The speedup starts to increase as the degree of overlap decreases,
because LifeStream can skip increasing number of redundant com-
putations compared to Trill. For example, a day with 10% overlap
in ECG and ABP leads to about 38× speedup over Trill, which is
about 5× higher than the base performance of LifeStream.

8.4.3 Window size. In this section, we conduct a sensitivity study
on LifeStream to measure the effect of window size on its perfor-
mance. Figure 10(b) shows the execution time of Trill and LifeStream
on the end-to-end benchmark over the synthetic dataset with win-
dow size varying from 1 minute to 1 hour. The results suggest that
LifeStream can maintain its performance benefits compared to Trill
even on larger windows.

8.5 Scalability
Physiological datasets generally contain signals collected from thou-
sands of patients, and the data processing pipelines usually process
data from different patients separately. That means the data pro-
cessing can be parallelized across multiple patients. LifeStream
takes advantage of this data parallel nature of the physiological
dataset to scale up the computation to both (i) multiple cores within
a machine and (ii) multiple machines.

We evaluate the scalability of LifeStream and compare it against
Trill and numerical libraries on a single AWS m5a.8xlarge [4] ma-
chine with 32 cores and 128 GB DRAM on the end-to-end bench-
mark using synthetic dataset. Figure 10(c) shows total number of
signal events processed per second against the number of paral-
lel threads of data pipeline execution. We observe that LifeStream
provides up to 6.02× better scalability than Trill and 1.90× better
than numerical libraries. This shows, LifeStream can maintain its
performance benefits on multi-core parallel data pipeline execution
compared to Trill and provide better parallel processing capabilities
than numerical library-based approach.

We also observe that Trill goes out of memory and crashes when
we run experiments with more than 12 parallel threads. LifeStream,
on the other hand, is much more memory-efficient and can scale up
to 32 parallel threads as the memory required for the intermediate
results are preallocated are reused throughout query execution.
Numerical library-based implementation is observed to scale up
to 48 threads, however, the performance gets saturated after 24
threads and exhibits a peak performance that is 44% lower than
that of LifeStream.

We also measure the scalability of LifeStream on amulti-machine
setup using up to 16 Amazon EC2 m5a.8xlarge [4] machines with
each running 12, 24 and 32 parallel threads respectively for Trill,
numerical libraries and LifeStream, since these thread counts are
observed to provide the peak performance from multi-core ex-
periment. Figure 10(d) shows the throughput measured against
the number of machines. On 16 machines, LifeStream can process
473.66 million events per second which is 8.38× higher than the
peak performance of Trill and 1.73× higher than that of numerical
libraries. This shows that LifeStream can maintain the performance
benefits at large scale through efficient data parallel processing.

9 RELATEDWORK
Several major solutions were proposed in the past to address large
scale stream processing demands [3, 31, 44, 48]. Unfortunately, these
solutions fail to satisfy either in terms of (i) programmability or (ii)
performance (or even both) due to the unique requirements of phys-
iological data processing. In this work, we show that LifeStream
finds a sweet spot between both programmability and performance.
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Figure 10: (a) Targeted query processing, (b) Varying window size, (c) Multi-core scaling, (d) Multi-machine scaling

Below we provide the detailed comparison of LifeStream against
key prior works based on these two aspects.
Stream processing. Popular stream processing engines such as
Apache Spark stream [5], Storm [44], Flink [9], and Beam [3] pro-
vide simple declarative programming interfaces for writing complex
data processing pipelines. However, most of them fail to support
several features essential for physiological data processing. For
instance, Storm [44] does not have any implicit notion of event
time or windowing. Spark streaming, on the other hand, does not
have support for millisecond precision event time as required for
many signals in physiological data and lacks several useful tem-
poral primitive operations that are necessary for writing queries
on physiological data. Additionally, as we show in Section 3, these
solutions are primarily designed for distributed setup and trade-off
single machine performance to favor scalability and fault-tolerance.

Trill [10] is the closest streaming engine we could find that pro-
vides rich support for temporal operations, high precision event
time, and flexible windowing, as well as 1 − 2 orders of magni-
tude higher single machine performance compared to distributed
streaming engines. Unlike Trill, LifeStream takes advantage of the
end-to-end locality of the entire data pipeline using locality tracing.
Additionally, LifeStream employs optimizations like static memory
preallocation and targeted query processing to minimize runtime
memory allocation/deallocation overhead and pruning redundant
computations. These optimizations, as we have shown in Section
8, make LifeStream significantly faster than strong baselines like
Trill.

Following the footsteps of Trill, there are two other streaming en-
gines recently proposed, StreamBox [27] and StreamBox-HBM [26]

that focus on improving the singlemachine performance. Both these
designs, however, provide a very low-level and generic program-
ming abstraction and lack a rich high-level temporal language sup-
port. Additionally, StreamBox-HBM was designed specifically for
machines with high bandwidth memory (HBM) which are both very
rare3 and expensive. Compared to these two engines, LifeStream
provides much simpler programming interface with high perfor-
mance on commodity hardware.
Numerical libraries There has been some recent studies [35, 37]
to improve the performance of numerical library-based data pro-
cessing pipelines. Weld [35] proposed a compiler-based approach
to optimizes across disjoint libraries and functions with the help
of an intermediate representation (IR). The followup work, called
Split Annotations [37], eliminates the need for an IR and reimple-
mentation of library functions while potentially providing similar
end-to-end performance benefits.

Even though these solutions can improve the end-to-end perfor-
mance of numerical library-based data processing pipelines by some
margin, the lack of temporal logic support and unified API specifi-
cation still make such approaches less desirable in terms of ease of
programming and maintainability. We believe high-level temporal
query language provided by LifeStream is more systematic and
appropriate approach for doing data processing on physiological
data.

3In fact, Intel’s Knight Landing architecture used in StreamBox-HBM is discontinued
now [20].
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10 CONCLUSION
In this paper, we showcase the limitations of modern streaming en-
gines and numerical libraries in building complex physiological data
processing pipelines in terms of their ease of programming, main-
tainability, and performance. We subsequently propose LifeStream,
which provides a simple and flexible temporal query language as
the programming interface, and exploits the constant frequency
nature of the physiological data to provide high performance. We
propose three key optimizations in LifeStream, namely, (i) local-
ity tracing for improving end-to-end cache utilization of the data
pipeline, (ii) memory footprint estimation for minimizing runtime
memory allocation and deallocation overhead, and (iii) targeted
query processing for pruning redundant computation. We conduct
experiments and evaluations on real datasets and use cases, and
demonstrate that LifeStream outperforms state-of-the-art streaming
engines by as much as 7.5× and numerical library-based approaches
by as much as 3.2× on the end-to-end data processing performance.
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