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Automatic 
Mixed Precision

Motivation
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Why Low Precision?

Common Training Issues
⨯ Compute-Heavy
• Days even weeks to train.

⨯ GPU Memory Capacity Limited
• Large models (e.g., BERT-Large) 

cannot fit into a single GPU.
• Even if possible, small training 

batch size limits data parallelism.

Low-Precision Benefits
✓ Lower Arithmetic Complexity

⇒ Performance ↑↑↑
✓ Less GPU Memory Footprint
• FP16 requires half of the storage 

needed by FP32.
• Side Effects:

• save memory & network bandwidth
• increase batch size 

⇒ Further Performance ↑↑↑Your hardware 
supports it!

Do NOT waste it. 3



Why Mixed Precision?

Low-Precision Cost
⨯ Small Dynamic Range
• Numeric Overflow/Underflow
⇒ Model Accuracy Loss,

even Divergence

• Mixed-Precision
• A mixture of FP16 and FP32.
• Where FP32 …

• Handles computations that are 
numerically-dangerous.

• Serves as a backup plan.

• But how to mix? Manually?
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Why Automatic Mixed Precision?

• SOTA frameworks now support 
Automatic Mixed Precision.
• E.g., TensorFlow, PyTorch & MXNet
• Automatically leverage the power 

of FP16 with minor code changes 
or environment variables.
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Automatic 
Mixed Precision

Under the Hood
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Key Question • Why would FP16 training diverge?
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Arithmetic Overflow/Underflow

• Why & When would it happen?
• Numerically-Dangerous Ops [2]

• Exponential, Logarithmic
• Reduction Sum

• E.g., 1 + 10'( = ?
• In FP32, the answer is 1.0001, but 

in FP16, the answer is 1.

• TL’DR FP16 ‘+’ is ineffective
if the two operands
are different by more than 𝟐k.Why is Reduction Sum 

considered dangerous?

When would 
it happen?
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Arithmetic Overflow/Underflow

• Why & When would it happen?
• Numerically-Dangerous Ops [2]

• Exponential, Logarithmic
• Reduction Sum

• Weight Update [1]
• Gradients are often too small when 

compared with the weights.
• Many are even NOT representable.

• E.g., 1 + 10'( = ?
• In FP32, the answer is 1.0001, but 

in FP16, the answer is 1.

• TL’DR FP16 ‘+’ is ineffective
if the two operands
are different by more than 𝟐k.
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Arithmetic Overflow/Underflow (Cont.)

Proof. Gradient Value Distribution of 
Multibox SSD [1]

Any chance we could shift 
this graph rightward?

More than half of the 
nonzero gradients are 

grounded.

Most representable range 
has been left unused.
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Loss Scaling [1]

𝑊/012 = 𝑊/012 −

𝜇 5
𝑑𝐸
𝑑𝑊 /012
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Loss Scaling [1]

𝑊/012 = 𝑊/012 −

𝜇 5
𝑑𝐸
𝑑𝑊 /012

Chain Rule
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Loss Scaling [1]

𝑊/089 = 𝑊/089 −

𝜇
1
𝑠

5𝑠
𝑑𝐸
𝑑𝑊 /012→89

Summary. Scale gradients up 
during backpropagation &
Do weight update in FP32. 
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Graph Rewrite [2]

• Categorize operators by their 
numerical-safety level.
 White Always in FP16 
 Clear 
 Grey  
 Black Always in FP32 

 

Context-Dependent 

Numerically-Safe plus 
Performance Critical:

Convolution & Matmul

Numerically-Neural: 
E.g., Max, min

Numerically-Safe 
(Conditional):

E.g., Activations

Numerically-Dangerous:
Exp, Log, Pow, Softmax

& Reduction Sum, Mean
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Graph Rewrite [2]

• Categorize operators by their
numerical-safety level.
• Rewrite the graph, with the goals below:
• performance-critical ops are in FP16.
• numerical-safety is preserved.
• min CastOps
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Automatic 
Mixed Precision

User Instructions
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AMP Support (TensorFlow)

• NVIDIA Tensorflow BERT with FP16 support:
• https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/

LanguageModeling/BERT

• Summary of Major Changes
• export TF_ENABLE_AUTO_MIXED_PRECISION_GRAPH_REWRITE=1
# -> scripts/run_squad.sh 
# enable automatic graph rewrite

• optimizer = …LossScaleOptimizer(…)
# -> optimization.py ~L80
# switch the optimizer
# to di automatic loss scaling

𝟐× Speedup 
(𝐵/012 = 𝐵/089)
𝟑× Speedup
(max𝐵/012)
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Automatic
Mixed Precision

Backup
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FAQ

• Q: Does Matmul involve reduction sum? Why can it be done in FP16?
• A: In tensor core FP16 MAC (Multiply-Accumulate) unit, 

the accumulation is always done in full precision, 
which avoids the problem of arithmetic underflow.

Reference: https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
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FAQ (Cont.)

• Q: How is the loss scaling factor determined?
• A: The loss scaling factor 𝑠 is determined automatically.
• Key Idea. Loss scaling factor should be as large as possible 

so long as numerical overflow does not happen.
• To start with, 𝑠 is initialized with a large number (by default, 21J ≈ 3×10J).

• A loss scale that is too high gets lowered far more quickly
than a loss scale that is to low gets raised.

• If an overflow happens, the current iteration is discarded,
and 𝑠 is decreased (usually halved).
• After certain number of steady iterations (by default, 2k), 𝑠 is doubled.

Reference: https://www.tensorflow.org/api_docs/python/tf/train/experimental/DynamicLossScale
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#training
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FAQ (Cont.)

• Q: Is AMP supported on other frameworks?
• A: NVIDIA people have been working hard to port the idea of AMP

onto more SOTA frameworks, please check the link below
for the support status on your favorite framework:

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-
training/index.html#framework
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FAQ (Cont.)

• Q: Is AMP supported on PyTorch?
• A:  The current Megatron implementation already supports FP16.

It only converts BatchNorm layers to FP32.
However, according to NVIDIA developer Michael Carilli,
it is recommended to use the PyTorch extension Apex,
which is more generic and transparent to the frontend users.

Reference: https://discuss.pytorch.org/t/training-with-half-precision/11815/10
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Apex User Instructions

• Install Apex:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir \

--global-option="--cpp_ext" \
--global-option="--cuda_ext" ./

• Add the following lines to your code:
# After the model and optimizer construction,
model, optimizer = amp.initialize(model, optimizer, …)
# loss.backward() changed to: 
with amp.scale_loss(loss, optimizer) \

as scaled_loss:
scaled_loss.backward()
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Reference: https://github.com/NVIDIA/apex/tree/master/examples/imagenet
https://nvidia.github.io/apex/amp.html#apex.amp.initialize

https://github.com/NVIDIA/apex
https://github.com/NVIDIA/apex/tree/master/examples/imagenet
https://nvidia.github.io/apex/amp.html

