
Automatic Mixed Precision
(AMP) Training

Bojian Zheng
Vector NLP Meeting

Acknowledgement: Most materials on this slides are based on:
[1] S. Narang, P. Micikevicius et al. Mixed Precision Training (ICLR 2018).
[2] M. Conley, M. Sun et al. Mixed precision Grappler optimizer

(Tensorflow Pull Request #26342, March 2019).

1

Automatic
Mixed Precision

Motivation

2

Why Low Precision?

Common Training Issues
⨯ Compute-Heavy
• Days even weeks to train.

⨯ GPU Memory Capacity Limited
• Large models (e.g., BERT-Large)

cannot fit into a single GPU.
• Even if possible, small training

batch size limits data parallelism.

Low-Precision Benefits
✓ Lower Arithmetic Complexity

⇒ Performance ↑↑↑
✓ Less GPU Memory Footprint
• FP16 requires half of the storage

needed by FP32.
• Side Effects:

• save memory & network bandwidth
• increase batch size

⇒ Further Performance ↑↑↑Your hardware
supports it!

Do NOT waste it. 3

Why Mixed Precision?

Low-Precision Cost
⨯ Small Dynamic Range
• Numeric Overflow/Underflow
⇒ Model Accuracy Loss,

even Divergence

• Mixed-Precision
• A mixture of FP16 and FP32.
• Where FP32 …

• Handles computations that are
numerically-dangerous.

• Serves as a backup plan.

• But how to mix? Manually?

4

Why Automatic Mixed Precision?

• SOTA frameworks now support
Automatic Mixed Precision.
• E.g., TensorFlow, PyTorch & MXNet
• Automatically leverage the power

of FP16 with minor code changes
or environment variables.

5

Automatic
Mixed Precision

Under the Hood

6

Key Question • Why would FP16 training diverge?

7

Arithmetic Overflow/Underflow

• Why & When would it happen?
• Numerically-Dangerous Ops [2]

• Exponential, Logarithmic
• Reduction Sum

• E.g., 1 + 10'(= ?
• In FP32, the answer is 1.0001, but

in FP16, the answer is 1.

• TL’DR FP16 ‘+’ is ineffective
if the two operands
are different by more than 𝟐k.Why is Reduction Sum

considered dangerous?

When would
it happen?

8

Arithmetic Overflow/Underflow

• Why & When would it happen?
• Numerically-Dangerous Ops [2]

• Exponential, Logarithmic
• Reduction Sum

• Weight Update [1]
• Gradients are often too small when

compared with the weights.
• Many are even NOT representable.

• E.g., 1 + 10'(= ?
• In FP32, the answer is 1.0001, but

in FP16, the answer is 1.

• TL’DR FP16 ‘+’ is ineffective
if the two operands
are different by more than 𝟐k.

9

Arithmetic Overflow/Underflow (Cont.)

Proof. Gradient Value Distribution of
Multibox SSD [1]

Any chance we could shift
this graph rightward?

More than half of the
nonzero gradients are

grounded.

Most representable range
has been left unused.

10

Loss Scaling [1]

𝑊/012 = 𝑊/012 −

𝜇 5
𝑑𝐸
𝑑𝑊 /012

11

Loss Scaling [1]

𝑊/012 = 𝑊/012 −

𝜇 5
𝑑𝐸
𝑑𝑊 /012

12

Loss Scaling [1]

𝑊/012 = 𝑊/012 −

𝜇 5
𝑑𝐸
𝑑𝑊 /012

Chain Rule

13

Loss Scaling [1]

𝑊/089 = 𝑊/089 −

𝜇
1
𝑠

5𝑠
𝑑𝐸
𝑑𝑊 /012→89

Summary. Scale gradients up
during backpropagation &
Do weight update in FP32.

14

Graph Rewrite [2]

• Categorize operators by their
numerical-safety level.
 White Always in FP16
 Clear
 Grey
 Black Always in FP32

Context-Dependent

Numerically-Safe plus
Performance Critical:

Convolution & Matmul

Numerically-Neural:
E.g., Max, min

Numerically-Safe
(Conditional):

E.g., Activations

Numerically-Dangerous:
Exp, Log, Pow, Softmax

& Reduction Sum, Mean
15

Graph Rewrite [2]

• Categorize operators by their
numerical-safety level.
• Rewrite the graph, with the goals below:
• performance-critical ops are in FP16.
• numerical-safety is preserved.
• min CastOps

16

Automatic
Mixed Precision

User Instructions

17

AMP Support (TensorFlow)

• NVIDIA Tensorflow BERT with FP16 support:
• https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/

LanguageModeling/BERT

• Summary of Major Changes
• export TF_ENABLE_AUTO_MIXED_PRECISION_GRAPH_REWRITE=1
-> scripts/run_squad.sh
enable automatic graph rewrite

• optimizer = …LossScaleOptimizer(…)
-> optimization.py ~L80
switch the optimizer
to di automatic loss scaling

𝟐× Speedup
(𝐵/012 = 𝐵/089)
𝟑× Speedup
(max𝐵/012)

18

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT

19

Automatic
Mixed Precision

Backup

20

FAQ

• Q: Does Matmul involve reduction sum? Why can it be done in FP16?
• A: In tensor core FP16 MAC (Multiply-Accumulate) unit,

the accumulation is always done in full precision,
which avoids the problem of arithmetic underflow.

Reference: https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

21

https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

FAQ (Cont.)

• Q: How is the loss scaling factor determined?
• A: The loss scaling factor 𝑠 is determined automatically.
• Key Idea. Loss scaling factor should be as large as possible

so long as numerical overflow does not happen.
• To start with, 𝑠 is initialized with a large number (by default, 21J ≈ 3×10J).

• A loss scale that is too high gets lowered far more quickly
than a loss scale that is to low gets raised.

• If an overflow happens, the current iteration is discarded,
and 𝑠 is decreased (usually halved).
• After certain number of steady iterations (by default, 2k), 𝑠 is doubled.

Reference: https://www.tensorflow.org/api_docs/python/tf/train/experimental/DynamicLossScale
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#training

22

https://www.tensorflow.org/api_docs/python/tf/train/experimental/DynamicLossScale
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

FAQ (Cont.)

• Q: Is AMP supported on other frameworks?
• A: NVIDIA people have been working hard to port the idea of AMP

onto more SOTA frameworks, please check the link below
for the support status on your favorite framework:

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-
training/index.html#framework

23

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

FAQ (Cont.)

• Q: Is AMP supported on PyTorch?
• A: The current Megatron implementation already supports FP16.

It only converts BatchNorm layers to FP32.
However, according to NVIDIA developer Michael Carilli,
it is recommended to use the PyTorch extension Apex,
which is more generic and transparent to the frontend users.

Reference: https://discuss.pytorch.org/t/training-with-half-precision/11815/10

24

https://discuss.pytorch.org/t/training-with-half-precision/11815/10

Apex User Instructions

• Install Apex:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir \

--global-option="--cpp_ext" \
--global-option="--cuda_ext" ./

• Add the following lines to your code:
After the model and optimizer construction,
model, optimizer = amp.initialize(model, optimizer, …)
loss.backward() changed to:
with amp.scale_loss(loss, optimizer) \

as scaled_loss:
scaled_loss.backward()

25

Reference: https://github.com/NVIDIA/apex/tree/master/examples/imagenet
https://nvidia.github.io/apex/amp.html#apex.amp.initialize

https://github.com/NVIDIA/apex
https://github.com/NVIDIA/apex/tree/master/examples/imagenet
https://nvidia.github.io/apex/amp.html

