

Demystifying Development of Speech
Recognizers for Novices

Abstract
Despite recent popularity of interfaces such as Google
Now or Siri, speech-enabled systems are not yet
developed in abundance to support every type of user
group, language, or acoustic scenario. A core issue is
the difficulty involved in building a “reasonably
accurate” speech recognizer (even though it may not

be 100% accurate). In this paper, we discuss two tools
to alleviate this problem: first, “The Speech Recognition
Virtual Kitchen” that provides virtual machines to
provision pre-existing speech experimental setups for
the benefit of developers. Second, “SToNE” that lowers
the bar of experience needed to make accuracy
improvements to automatic speech recognition.

Author Keywords
Novices, Rapid development, Speech recognition

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g.,
HCI): Miscellaneous.

Introduction
Although very recent, the boom in speech-recognition
applications is not surprising, given that they offer
several potential advantages. First, speech-based
interaction offers truly hands-free, eyes-free
interaction, a dream that has evaded us for many
years. Second, speech is faster than typing on a
keyboard, and without the need for an onscreen
keyboard, there is much greater flexibility in terms of
screen real estate. Finally, speech-driven applications
present important opportunities for the 800 million or
so illiterate users in developing regions, giving them a
feasible way to access computing.

License: The author(s) retain copyright, but ACM receives an exclusive
publication license.

Anuj Kumar, Florian Metze, Eric Riebling
Carnegie Mellon University
407 S. Craig, Pittsburgh, PA, 15213 USA
{anujk1, fmetze, er1k}@cs.cmu.edu

Matthew Kam
American Institutes for Research,
1000 Thomas Jefferson St. NW, Washington D.C., 20007, USA
mkam@air.org

However, speech interfaces are not yet developed in
abundance. From a development perspective, there are
several reasons, although in our experience, two
challenges stand out. First, a multitude of tools need to be
setup and properly configured. Very often, this is a leading
source of frustration and time sink for novice developers.
Second, even with a proper setup, novices (or even
developers with 1-2 years of experience) find it extremely
hard to build an accurate speech recognizer for a new user
group, language, or acoustic scenario [Laput, 2013].
Below we describe two ideas to address these difficulties.

Author’s Note: Interest in Workshop
The workshop hits a key point, that speech recognition
accuracy need not be 100% to build a useful speech
application. Yet, there are not many examples of HCI
designers actively incorporating speech in their
applications, when in fact, a lot of users can benefit
from speech-based functionalities. Our belief is that
though 100% accuracy is not needed, a somewhat
reasonably accurate recognizer needs to be developed.
While the core speech recognition technology has
reached a point where, in principle, speech recognizers
can be developed and fine-tuned for every possible
user group, language or acoustic scenario, it is still very
difficult for non-speech developers to engage in the
development and fine-tuning process of speech
recognizers. This, in our view, is the core problem –
and by bringing together HCI and speech technologists,
the workshop hits the right note. In this paper, we
briefly describe two projects that aim at simplifying the
process of developing a “reasonably accurate” speech
recognizer. Note the benchmark of what classifies as
“reasonable accuracy” is debatable, but our vision is to
simplify the process involved in adapting and building a
speech recognizer for a new user group so that every

application designer can as easily integrate speech
modality in their work, as they do with other modalities
like touch or keyboard input. Also note, this paper
discusses the design of our projects, and we have left
the discussion of early results for the workshop itself.

The Speech Recognition Virtual Kitchen
The first challenge in speech recognizer development is
getting the correct setup. The setup not only involves
getting the correct toolkits, scripts, data, compatible
versions of software, etc. installed correctly but also
involves setting up the previously finished experiments
(by other, more experienced researchers) exactly as
they had intended. The latter step is the most
challenging part, but is vital as novice developers can
get tremendous information on how to either replicate
the process (for a different user group), or improve the
work (for the same user group) without spending too
much time on properly setting up the baseline.

In the “Speech Recognition Virtual Kitchen”
(www.speechkitchen.org) project, we aim to build a
community research and education infrastructure in
speech recognition. The "kitchen" environment aims to
promote community sharing of research techniques,
foster innovative experimentation, and provide solid
reference systems as a tool for education, research,
and evaluation with a focus on, but not restricted to,
speech and language research. The core of the research
infrastructure is the use of virtual machines (VMs) that
provide a consistent environment for experimentation.
We liken the virtual machines to a "kitchen" because
they provide the infrastructure into which one can
install "appliances" (e.g., speech recognition toolkits),
"recipes" (scripts for creating state-of-the art systems),
and "ingredients" (language data). Below we describe

what a developer- user can achieve with this
infrastructure.

Download Self-Configuring Virtual Machines
The development of speech recognizers is, in most
circumstances, best suited for Linux based systems.
With this in mind, Virtual Machines (VMs) provide two
primary advantages: first, they make the development
of speech recognizers independent of the host
operating system, e.g. developers who have other OS’s
on their machines can participate without having to go
through a lengthy disk partitioning to install Ubuntu or

other Linux-based OS’s. Second, VMs provide a
consistent way to package an entire experiment
consistently, and distribute one’s work widely.

In addition to those advantages, in Speech Kitchen, we
provide self-configuring Virtual Machines. This means
that users can get setup with a Virtual Machine that is
configured to their requirement, i.e. with a toolkit
(Kaldi, Sphinx, etc.) of their choice, scripts they need,
and the data they require for their work. Moreover, it
provides a way to ensure that latest, stable, and
compatible versions of all software is installed, which is
often a big source of developer pain in complex
systems such as speech recognizers.

Platform to Share Published Experiments
Speech Kitchen provides a way for the speech
recognition experts to share their experiments (results,
acoustic and language models, logs, etc.) with the
broader community in a consistent way, i.e. by
packaging their entire setup in form of standard .deb
files. Typically, published results are the de-facto
medium of sharing one’s work, but in large, complex
systems, every small nuance is hard to document in a
paper. A standardized method can greatly help improve
community and knowledge sharing.

SToNE: A Speech Toolkit for Non-Experts
While the Speech Recognition Virtual Kitchen helps get
developers’ setup the development environment
correctly, the developers may next struggle with
improving recognition accuracy beyond setting up a
baseline. Our second project, SToNE – A Speech Toolkit
for Non-Experts addresses exactly that problem. Based
on what the developer is working on, it provides
technical guidance on understanding “why might the

Figure 1: Speech Kitchen provides Virtual Machines that
can self-configure to suit developer-user’s requirements,
e.g. they can self-configure to install relevant speech
toolkits (Kaldi, Sphinx, etc.), scripts (for speaker
adaptation, feature extraction, scoring, etc.), and data (for
training and testing). They can also download “published”
experiments as exemplars along with all the log files and
documentation for guiding the development process.

recognizer be failing?” or “what to do to fix it?” Below
we describe the two essential modules that make up
SToNE.

Feature Extractor & Error Analysis Visualizer
This module assists in answering the first question: why
is the recognizer failing? A speech recognizer can fail
because of many reasons, ranging from acoustic issues
(pronunciation, speaking rate, noise, speaking pitch,
etc.) to language modeling issues (out-of-vocabulary,
high perplexities, etc.), or more generally, a mismatch
between training and testing dataset.

For a given test dataset, this module does two things:
first, it automatically extracts relevant features that
correspond well to known reasons of failure, per-audio-
file. Second, it plots these features in a visualizations
module along with accuracy correlations to help
understand reasons of error. The visualizations module

also helps in comparing two subsets of the test dataset
(for instance, a high performing subset and a low
performing subset) to contrast and compare reasons of
respective performance.

Knowledge Base & Optimization Advisor
This module helps in identifying relevant speech
techniques that can improve the recognition accuracy
beyond a baseline. It does so by utilizing the quantified
values of several metrics (from the Feature Extractor
module) and performing a univariate and multivariate
regression analysis with accuracy (as the dependent
variable) to identify the most significant factors
impacting recognition.

Next, it looks up a rule-based knowledge base to
recommend the corresponding optimization
technique(s). This rule-based knowledge base was
developed as a result of contextual interviews with
speech recognition experts at Carnegie Mellon
University, and results of this work were published in
InterSpeech [Kumar, 2013]. At the workshop, we will
discuss these results and also showcase working
implementation for both the above projects.

Acknowledgements
This work is supported by NSF Grant Nos. CNS-
1205589 & IIS-1247368.

References
[1] Laput G.P, et al. PixelTone: A Multimodal Interface

for Image Editing. In Proc. ACM CHI, 2013, pp.
2185–2194.

[2] Kumar, A., Metze, F., Wang, W., Kam, M.
Formalizing Expert Knowledge for Developing
Accurate Speech Recognizers. In Proc.
InterSpeech, ISCA; Lyon, France, 2013.

Figure 2: The visualizations module displays the distribution
of test data along several metrics. The user can also select

smaller subsets of this data to compare and contrast
recognition accuracy, and identify reasons of error.

