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ABSTRACT
Although it has never been rigourously demonstrated, there
is a common belief that CS grades are bimodal. We statisti-
cally analyzed 778 distributions of final course grades from
a large research university, and found only 5.8% of the dis-
tributions passed tests of multimodality. We then devised
a psychology experiment to understand why CS educators
believe their grades to be bimodal. We showed 53 CS pro-
fessors a series of histograms displaying ambiguous distri-
butions and asked them to categorize the distributions. A
random half of participants were primed to think about the
fact that CS grades are commonly thought to be bimodal;
these participants were more likely to label ambiguous dis-
tributions as “bimodal”. Participants were also more likely
to label distributions as bimodal if they believed that some
students are innately predisposed to do better at CS. These
results suggest that bimodal grades are instructional folklore
in CS, caused by confirmation bias and instructor beliefs
about their students.

1. INTRODUCTION
It is a prevailing belief in the computer science education

community that CS grades are bimodal, and much time has
been spent speculating and exploring why that could be (for
a review, see [1]). But these discussions do not include sta-
tistical testing of whether the CS grades are bimodal in the
first place.

From what we’ve seen, people take a quick visual look at
their grade distributions, and then if they see two peaks,
they say it’s bimodal. But eyeballing a distribution is unre-
liable; for example, if you expect the data to have a certain
distribution, you’re more likely to see it.

Anecdotally, we’ve seen new instructors and TAs (and stu-
dents) shown histograms of grades and told the grades were
“bimodal.” The bimodality perception hence becomes an
organizational belief, and those who enter the community
of practice of CS educators are taught this belief. Every
community of practice has a knowledge base of beliefs that
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inform their practice [13], and these beliefs may or may not
be based on empirical evidence.

1.1 Explanations of Bimodality
A number of explanations have been presented for why CS

grades are bimodal, all of which begin with the assumption
that this is the case.

1.1.1 Prior Experience
A bimodal distribution generally indicates that two dis-

tinct populations have been sampled together [5]. One ex-
planation for bimodal grades is that CS1 classes have two
populations of students: those with experience, and those
without it [1].

High school CS is not common in many countries, and
so students enter university CS with a range of prior ex-
perience. However, this explanation fits students into two
bins. Prior experience is not as simple as “have it” vs. not –
there is a large range on how much prior experience students
can have programming, and practice with non-programming
languages like HTML/CSS could also be beneficial [21].

1.1.2 Learning Edge Momentum, Stumbling Points,
and Threshold Concepts

One family of explanations could be summarized as that
some CS concepts are more difficult for students to learn,
and if they miss these concepts, they fall behind while their
peers advance ahead of them [1]. Because CS1 as it is typ-
ically taught builds on itself heavily, once a student falls
behind, they continue to fall further and further behind [1].

One might think of this explanation as a variant of the
prior experience explanation, where the students who suc-
ceed have better study skills, and those who fall behind do
not.

1.1.3 The Geek Gene Hypothesis
Some would instead argue that the two populations in CS1

classes are those who have some “natural talent,” giftedness,
or predisposition to succeed at computing. Guzdial has re-
ferred to this belief as the “Geek Gene Hypothesis” in his
writing [6].

This belief appears to be quite prevalent. In a survey of
CS faculty, Lewis found that 77% of them strongly disagree
with the statement“Nearly everyone is capable of succeeding
in the computer science curriculum if they work at it.” [15].

However, there seems to be little evidence that there is
indeed a “Geek Gene”, and that plenty of evidence that ef-
fective pedagogy allows for all students to succeed [8].
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1.1.4 Lousy Assessment
Another line of explanation implicates instructors’ assess-

ment tools as the source of bimodally distributed grades
[33, 23]. A common trend on CS exams is to ask a series
of long-answer coding questions. Zingaro et al. found that
these questions are coarse in terms of the information given
to instructors: students either put all the pieces together,
or fail to. Instructors do not adequately identify when a
student has partial understanding nor quantify how much
understanding this student has of a concept.

As an alternative, Zingaro et al. experimentally compared
using short answer questions which build upon each other
to having one isomorphic long-answer question. When the
different conceptual parts of the question were broken up,
the resulting grades were normally distributed, whereas the
long-answer questions led to grades that the authors de-
scribed as bimodal [33].

1.1.5 Or perhaps CS grades are not bimodal?
A competing view of CS grades argued by Lister is that

the grades are not, in fact, bimodal [17]. Lister observed that
CS grades distributions are generally noisy, and in line with
what statisticians would accept as normally distributed. Lis-
ter argued that the perception of bimodal grades results from
instructors’ beliefs in the Geek Gene Hypothesis, and hence
see bimodality where there is none [17]. Lister’s argument
was theoretical, and based on statistical theory; in our pa-
per we will test his argument by statistically analysing real
world grades distributions.

2. WHAT IS A BIMODAL DISTRIBUTION?
To properly tackle the question of “are CS grades bi-

modal?”, we should first clearly establish what bimodality
means.

Most standard continuous probability distributions have
a mean, a median, a mode, and some measure of the distri-
bution’s width (variance). Standard distributions most peo-
ple might be familiar with include the normal (Gaussian),
Pareto, Poisson, Cauchy, Student’s t, and logistic distribu-
tions. When we plot them with a histogram, we see what’s
called their probability density.

All of these distributions have a single mode, and have
a probability density that can be modelled with a function
that has a single term. For example, the normal distribu-
tion’s PDF is:

f (x) = ae
− (x−b)2

2c2

In this function, a represents the height of the curve’s peak,
b is the position of the centre of the peak, and c represents
the width of the curve [31].

In contrast, a bimodal distribution has two distinct modes.
A ‘multimodal’ distribution is any distribution with multiple
distinct modes (two or more).

For an example, consider these examples from [28]. Both
are created by the equal mixture of two triangular distribu-
tions (solid lines). The sums are shown with dashed lines:

As we can see, when the two sub-distributions are far away
(example a), we get a distribution with two peaks. But
when the two sub-distributions are close together (example
b), they add together to form a plateau, with a single peak.
Example a is considered bimodal; example b is not.

The same can be seen for normal distributions (also from
[28]):

For a distribution to be bimodal, the sub-distributions
can’t overlap too much. As shown in [28], for the two dis-
tributions to be sufficiently far apart, the distance between
the means of the two distributions needs to exceed 2σ. This,
however, assumes the two distributions have the same vari-
ance.

More formally, if the two sub-distributions do not have
the same variance, then for their sum to be bimodal, the
following must hold [30]:

2
1
2
|µ1 − µ2|√
(σ2

1 + σ2
2)
> 2

2.1 Real World Data
Consider this histogram of sepal widths for the Iris species

versicolor, taken from the Wikipedia page on “normal dis-
tribution” [31]:

These data have two peaks, but it is considered a nor-
mal distribution. If we were to try and model these data
as the mixture of two normal distributions, the two sub-
distributions would be too close together to produce two
distinct peaks. The simplest way to model these data is as
a normal distribution.

Finally, it must be stressed that what we see in a his-
togram is a result of how we bin the data. It is possible to
bin these data in a way which do not have two ‘peaks’ (for
example, using larger intervals for the bins, or shifting the
intervals).
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2.2 Skewness and Kurtosis
By definition, a normal distribution is symmetric around

its mode (which is also its mean and median). However,
many real world data which produce a bell curve when graphed
as a histogram do not fit these properties.

2.2.1 Skewness
Skewness is a measure of how asymmetric the data are. A

distribution with a skewness of zero is perfectly symmetric.
In comparison, a distribution with a negative skewness will
have a longer ‘tail’ on the left side than on the right side;
the opposite is true of positive skewness [32]:

One may expect grades distributions to be skewed. One
cause of skewness is the ceiling effect: if students are per-
forming well (and this is normally distributed), and we set
a maximum grade of 100%, this will cause the students at
the top of the class to be bunched together.

By convention, if the absolute value of the skewness is
greater than 1, a distribution is considered highly skewed;
an absolute value of skewness between 0.5 and 1 is consid-
ered moderately skewed; less than 0.5 is considered approx-
imately symmetric [32].

2.2.2 Kurtosis
Kurtosis is a measure of how ‘tailed’ the data is. A distri-

bution with high kurtosis has a sharp peak and short tails.
A distribution with low/negative kurtosis has a low peak
and long tails. The normal distribution has a kurtosis of 3.
A distribution with a kurtosis greater than this cannot be
bimodal [30].

If you look back at the illustration of adding two normal
distributions together, for the bimodal example, the distri-
bution winds up being rather spread out horizontally. That
distribution has low kurtosis. Indeed, for a distribution to
be spread out far enough horizontally to allow for multi-
modality, it necessarily will have low kurtosis.

3. STUDY 1: STATISTICAL ANALYSIS OF
GRADES

Are CS grades bimodal, or unimodal? To test this, we ac-
quired the final grades distributions for every undergraduate
CS class at the University of British Columbia (UBC), from
1996 to 2013. This represents 778 different lecture sections,
containing a total of 30,214 final grades (average class size:
75).

3.1 Testing for normality vs. bimodality
There are a number of ways to test whether some data

are consistent with a particular statistical distribution.
One way is to fit your data to whatever formula describes

that distribution. You can then eyeball whether your re-
sulting curve matches the data, or you could look at the
residuals, or even do a goodness-of-fit test.

Another is to use a pre-established statistical test which
will allow you to reject/accept a null hypothesis on the na-
ture of your data. We used this approach, for the ease of
checking hundreds of different distributions and comparing
them.

There are a large variety of tests for whether a distri-
bution is normal, such as Anderson-Darling and Pearson’s
chi-squared test. We chose Shapiro-Wilk, since it has been
found to have the highest statistical power [25].

There are few tests for whether a distribution is bimodal.
Most of them essentially work by trying to capture the dif-
ference in means in the two distributions that are in the bi-
modal model, and testing whether the means are sufficiently
separate. We used Hartigan’s Dip Test, because it was the
only one available in GNU R at the time of analysis.

We also computed the kurtosis for every distribution due
to the necessary (but not sufficient) condition of kurtosis
< 3 for bimodality [30]. To minimize false positives, we
only performed Hartigan’s Dip Test on distributions where
the kurtosis was less than 3.

We chose the standard alpha value of 0.05. Given that
we performed thousands of statistical tests, false positives
are inevitable – we expect 5% of our tests will yield a false
positive.

3.2 Test results

3.2.1 Unimodality vs. Multimodality
Beginning with kurtosis, 323 of the 778 lecture sections

had a kurtosis less than 3. This means that 455 (58%) of
the classes were definitely not bimodal, and that at most
323 (42%) classes could be bimodal.

Next we applied Hartigan’s Dip Test to the 323 classes
which had a kurtosis less than 3. For this test, the null
hypothesis is that the population is unimodal. As a result,
if p < α, then we may reject the null hypothesis and conclude
we have a multimodal distribution. This was the case for 45
classes (13.9% of those tested, 5.8% of all the classes).

Of the 45 classes which were multimodal, 16 were 100-
level classes (35%), 5 were 200-level (11%), 12 were 300-level
(27%), and 12 were 400-level (27%). For comparison, in the
full set of 778 classes, 171 were 100-level (22%), 165 were
200-level (21%), 243 were 300-level (31%), and 199 were
400-level (26%).
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Figure 1: The six histograms shown to participants, all of which were generated using GNU R’s rnorm function. A ceiling of
100% was used, which is most evident in Distribution 6. Each generated distribution had 100 points, and was generated with
an average of 60 and standard deviation of 5.

1. Questions about how large their typical class was (“class-size”) and how long they had been teaching (“years-experience”).

2. A priming question: ‘It is a commonly-held belief that CS grades distributions are bimodal. Do you find this to be the
case in your teaching?’ (“have-bimodal”)

3. Questions on how often they look at their grades distributions:

• ‘When teaching, how often do you look at histograms of your students’ grades? (This applies both to term work
and final grades.)’ (“look-histo”)

• ‘How often do you look at how many students fall into each letter category (A, B, etc)? (This applies both to term
work and final grades.)’ (“look-letter”)

4. Six histograms, all generated with GNU R’s rnorm, shown in Figure 1. For each histogram, we asked two questions:

• ‘How often do you see the shape of [this distribution] in your classes?’

• ‘What sort of distribution would you describe [this distribution] as?’

5. Questions on the ‘Geek Gene’:

• Nearly everyone is capable of succeeding in computer science if they work at it. (“all-succeed”)

• Some students are innately predisposed to do better at CS than others. (“innately-predisposed”)

Table 1: The pages of the survey. Pages 2 and 5 were swapped for a random half of the participants. We chose the all-succeed
question because it had been used in [16].
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3.2.2 Normality
For the Shapiro-Wilk test, the null hypothesis is that the

population is normally distributed. So, if p < α, we can
reject the null hypothesis and say the population is not nor-
mally distributed. This was the case for 106 classes.

44 of the 45 classes which were previously determined
to be multimodal were among the 106 classes which the
Shapiro-Wilk test indicated weren’t normally distributed.
In short, 13.6% of the classes aren’t normally distributed,
many of which are known to be multimodal.

For the 86.4% of classes where we failed to reject the null
hypothesis, we can’t guarantee that they are actually nor-
mal, because of type II error. Fortunately, we have a large
sample size and good statistical power. We bootstrapped a
likely beta value, providing an estimated false negative rate
of 1.48%.

In short, an estimated 85.1% of the final grades in UBC’s
undergrad CS classes are normally distributed. If CS grades
were typically bimodal, we would expect far more than 5.8%
of classes to test as bimodal.

3.2.3 Skewness
While most of the distributions appear to be normally-

distributed, it is worth noting that the average skewness of
all the distributions was -0.33, ranging from -2.30 to 1.02.
For just the distributions we’d determined to be normal, the
average skewness was -0.13, ranging from -1.11 to 0.84. It
is therefore likely that for many of the distributions which
are unimodal but not normal, their non-normality is because
they are too skewed to pass a test of normality. This may
be a result of the ceiling effect in grade distributions.

3.3 Discussion
It is worth noting that we only examined final grades: our

analysis did not include term grades.
As grades only came from one institution, one may won-

der about the generalizability. We tried to get access to
grades distributions from other institutions but generally
found it difficult to gather the same scale of data. Analyz-
ing five grades distributions from the University of Toronto,
we found them to be normally-distributed.

While we can’t assert that every university has the same
grades distributions as UBC, the large scale of data both
in numbers and time-span gives does give us a great deal
of information. More work should be done to replicate our
findings at other institutions.

What stood out for us is that at both UBC and UToronto,
the CS faculty would routinely assert that their CS grades
are bimodal – and we now had evidence to the contrary.

Our results support Lister’s argument that CS grades are
generally not bimodal, and that the perception of bimodality
comes from instructors expecting their grades to be [17].

4. STUDY 2: HUMAN INTERPRETATION
OF DISTRIBUTIONS

So if CS grades are rarely bimodal, why does the belief in
bimodality persist? An insight came one day when generat-
ing some random normal distributions in R: with only 100
data points, there’s often more than one peak. The multiple
peaks may be erroneously perceived as “bimodal”. A typi-
cal “large class” does not have a large enough sample size to
consistently provide a smooth bell curve. Indeed, many of

the distributions produced by R’s rnorm looked very much
like the grade distributions we’d seen in our own classes and
called “bimodal.”1

Interested in whether instructor perceptions affect the in-
terpretation of noisy distributions, we designed an experi-
ment wherein participants are presented with histograms of
distributions produced by R’s rnorm function, and asked to
categorize the distribution (normal, bimodal, uniform, etc).
We initially had two research questions:

1. Do CS instructors who believe in the Geek Gene cat-
egorize more noisy distributions as bimodal?

2. If we prime participants that CS distributions are com-
monly thought to be bimodal, are they then more likely
to see bimodal distributions in the noise?

Once we’d analysed our data for those two research ques-
tions, a third research question arose:

3. If instructors label noisy distributions as bimodal, are
they more likely to agree with the Geek Gene hypoth-
esis? (i.e., is there a possible feedback loop between
looking at distributions and instructors’ beliefs?)

4.1 Experimental design
A difficulty in studies looking at priming effects is that

you cannot state the purpose of the study in the consent
form. If you do, then you are priming participants, even the
participants you want in your control group. To disguise our
study, we presented it as one asking people how often they
saw various distribution shapes in their own classes.

We presented each participant with the six histograms
shown in Figure 1, all of which we’d generated using R’s
rnorm function. We generated a few dozen histograms and
selected the six histograms from that pool: one to be clearly
normal (distribution 1), one that was mildly skewed (distri-
bution 5) as though students who were failing were pushed
up to 50%, one where the ceiling effect was visible (distri-
bution 6), and three noisy distributions which had multiple
peaks (distributions 2-4).

We asked each participant whether they saw this shape of
distribution in their own classes (very often to never on a
Likert scale), and then how they would categorize the dis-
tribution (normal, bimodal, multimodal, uniform, other).

We randomly assigned participants to one of two treat-
ments:

Treatment 0: participants were asked whether they agreed
with the Geek Gene Hypothesis, then asked to cate-
gorize the distributions, and were not being primed to
think about bimodality.

Treatment 1: participants were primed to think about the
common-held belief about CS grades distributions, be-
fore they saw the distributions; after that we asked
them whether they agreed with the the Geek Gene
Hypothesis.

The survey had five pages, which are described in Table 1.
For each question we created a shorthand, in bold, for use
in our analysis.
1One may wonder how many of the distributions generated
by rnorm will test as bimodal per Hargigan’s Dip Test. We
generated 100,000 distributions with n=100, µ=60, σ=5 and
only 133 distributions (1.3%) tested as multimodal per the
Dip Test.
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Treatment 0
Parameter 2 3 4 5
innately-pred -2.2 (1.2) -22 (4.5e-2)*
all-succeed -37 (14)* -35 (14)* -39 (14)*
look-histo 7.0 (57) 6.0 (57) 7.8 (57) -22 (3.1e-6)*
look-letter 32 (2.7) 1.4 (2.1) 1.0 (2.1) -4.1 (3.2)

Treatment 1
2 3 4 5

0.2 (1.8) 2.8 (1.8) 5.6 (2.3)*
3.5 (2.6) 4.6 (2.8) 6.9 (3.2)*

-2.6 (2.4)* -3.8 (2.1)* -6.4 (3.1)*
27 (1.9) 29 (0.9) 32 (1.8)

Table 2: Coefficients from the polr regression on seeing-bimodality for each treatment; standard errors are in parentheses; *
denotes statistical significance.

LR Chisq Df signif?
innately-predisposed 11.0 2 yes

all-succeed 14.8 3 yes
look-histo 4.1 4 no
look-letter 6.1 4 no

Table 3: Results of the Anova of the regressions on the two
treatments; i.e., does the relationship between a given factor
and seeing-bimodality differ between the two treatments?

Because so many of the potential participants were our
colleagues, we deliberately did not collect names and identi-
fying information about the participants in the survey. We
did not want to know who was or was not a participant, nor
how they responded to the survey.

As a courtesy, we offered to participants the option of
having their email recorded on a separate platform if they
wanted us to follow up with them about the results of the
study2. We did not look at this email list until after our
analysis was complete.

4.2 Participants
We recruited 60 CS instructors, mostly from the SIGCSE

members’ list. Some participants were recruited from other
online CS education communities, and some were recruited
at ICER 2015. 53 participants completed every question on
the survey; 28 were in Treatment 0 (the non-primed group),
and 25 were in Treatment 1 (the primed group).

The participants who had provided their emails for follow-
up purposes were debriefed. Since fewer than half of the par-
ticipants had provided their email, we posted open letters to
the online communities where we had recruited participants.

4.3 Results
For each participant, we computed a value we’ll call“seeing-

bimodality,” which is the number of distributions they had
categorized as bimodal/multimodal. In our data, seeing-
bimodality ranged from 0 to 5.

4.3.1 Regresion on seeing-bimodality

We wanted to see if seeing-bimodality could be predicted
by participants’ responses to the questions we’d asked. The
regression we performed was to model seeing-bimodality as a
function of innately-predisposed, all-succeed, look-histo, and
look-letter, using the shorthands from subsection 4.1.

When visualizing the results, we noticed that the rela-
tionship between seeing-bimodality and the Likert questions
varied between the two treatments. To perform a non-
parametric equivalent of ANCOVA, we performed an ordinal

2The survey was on SurveyMonkey; signing up for follow-up
emails was via Google Forms.

logistic regression on the two treatments separately using
the polr function from R’s MASS library, and then used the
Anova function from the car package to compare the two.

In doing so we expected to compute 28 p values. Applying
a Šidák correction to the standard alpha level of 0.05, we
used 0.002 as our alpha level for this section of our analysis.

We found a statistically significant relationship between
seeing-bimodality and participants’ responses to the ques-
tions relating to the Geek Gene hypothesis (all-succeed and
innately-predisposed), as shown in Table 2. Furthermore,
when it came to all-succeed, the effect was statistically sig-
nificantly stronger in the treatment which was primed to
think about CS grades being bimodal, as shown in Table 3.
We also observed there was a strong negative correlation
between all-succeed and innately-predisposed.

We also found a statistically significant relationship be-
tween seeing-bimodality and how often participants reported
looking at histograms of their grades (look-histo). This rela-
tionship was not statistically significantly different between
the two treatment groups.

4.3.2 Regression on all-succeed

After finding a one-way relationship between grade per-
ceptions and the Geek Gene Hypothesis, we wanted to see
if there was any evidence of a feedback loop between the
two. Because all-succeed and innately-predisposed correlated
so highly, we found they were interchangeable as measures
of belief in the Geek Gene. Since logistic regression involves
only one dependent variable, we had to pick one of the two
to use. We chose to do this analysis with all-succeed because
the question item had been used in another study [16].

Recall that our study was set up so that a random half
of the participants categorized distributions then were asked
about the Geek Gene (Treatment 1), and the other half were
asked about the Geek Gene and then categorized the distri-
butions (Treatment 0). If there’s a feedback loop here, we
would expect that seeing-bimodality would predict all-succeed
in Treatment 1, but not in Treatment 0.

Guidelines for statistical power in logistic regression are
that for an alpha level of 0.05, you need 10–20 data points
per independent variable in your model [18]. Because this
part of the analysis requires the statistical power to reject a
null hypothesis, we modelled all-succeed as only a function
of seeing-bimodality, and set α = 0.05.

For Treatment 1, we found that seeing-bimodality was a
statistically significant predictor of all-succeed, as shown in
Table 4. In Treatment 0, we found that it was not. This
indicates that there is a feedback loop between categorizing
distributions as bimodal and agreement with the Geek Gene
Hypothesis.

We hence have observed evidence for the feedback loops
illustrated in Figure 2.

118



Treatment 0
Parameter 1 2 3
seeing-bimodality -0.2 (0.9) -1.1 (1.0) -0.7 (1.1)
intercepts -3.8 (1.2) -2.0 (0.8) -0.3 (0.6)

Treatment 1
Parameter 1 2 3 5
seeing-bimodality 0.6 (1.0) 0.9 (1.2) 1.4 (1.0) 1.7 (3.2e-7)*
intercepts -2.6 (1.1) 0.2 (0.7) 1.5 (0.8)

Table 4: Coefficients from the polr regression on all-succeed for each treatment; standard errors are in parentheses; * denotes
statistical significance. p values were calculated from z values using coeftest.

4.4 Discussion
We were initially surprised that regularly looking at his-

tograms of grades was associated with a higher score for
seeing-bimodality. This led us to add our third research ques-
tion, based on the idea that it could be that the more often
you look at your grades, the more it solidifies your concep-
tion of what your grades are like. This supports our obser-
vation that categorizing distributions as bimodal increases
belief in the Geek Gene Hypothesis.

Our approach to priming may have led participants to
believe more that grades are bimodal. Because the survey
presents us, the researchers, as authority figures, and we im-
ply that grades are thought to be bimodal, some participants
could assume it to be true since we said so.

When we piloted our survey, some participants opined
that they believed that some students were predisposed be-
cause of prior experience, rather than inherent brilliance.

We had hoped to recruit a larger number of participants;
however, recruiting a large number of CS educators to fill out
the survey turned out to be infeasible with our resources. It
must be noted that we did not have a representative sam-
ple of CS educators. The educators who participate in CS
education communities are generally much more invested in
their teaching than their peers who do not. Furthermore,
some of our participants may be familiar with Ahadi and
Lister [2], which could have influenced their responses.

But we would expect the SIGCSE community to be less
inclined to believe in the Geek Gene hypothesis than their
non-SIGCSE peers. We still had enough participants who
agreed with the hypothesis for us to conduct our analysis.
Future work is needed to replicate our findings with a more
representative sample of CS educators.

4.4.1 Supporting Literature
Our findings agree with the psychology literature: peo-

ple’s biases affect their decision-making more when they
are judging more ambiguous information [10]. For example,
Heilman et al. found that resumes of extremely qualified
candidates were likely to be judged worthy of a salary in-
crease regardless of the gender listed on the resume—but
for resumes of ambiguously qualified candidates, resumes
with male names were more likely to be viewed positively
than those with female names [10]. As another example,
Eyesnck et al. studied the interpretation of sentences as
either threatening or non-threatening by people who have
anxiety and by a control group [4]. They found that un-
ambiguously threatening/non-threatening sentences were in-
terpreted similarly between groups, but participants with
anxiety were more likely to label ambiguous sentences as
threatening than participants in the control group. Visual
information is subject to this phenomenon also: Payne et
al. showed participants a series of photos of black and white
people holding either guns or ambiguous objects, and par-
ticipants were more likely to identify the ambiguous object
as a gun if it was held by a black person [22].

Furthermore, belief can affect judgment regardless of am-
biguity. For example, Kahan et al. found that participants
were more likely to get a math problem incorrect if the cor-
rect result would disagree with their political beliefs [12]. It
is hence plausible that a computer scientist who believes in
the Geek Gene Hypothesis could look at an unambiguously
unimodal distribution and still view it as bimodal.

As for our evidence that looking at histograms reinforces
belief in the Geek Gene Hypothesis, systems justification
theory explains that once you are forced to take a position
on a subject, you’re more likely to believe and defend it [11].

5. THE GEEK GENE HYPOTHESIS AS A
SOCIAL DEFENSE

Once again, our findings support Lister’s hypothesis that
CS grades are generally not bimodal and this perception
stems from instructors expecting to find bimodal grades due
to a belief in the Geek Gene Hypothesis. We would go a
step further and argue that the perception of bimodality is
a social defense in the CS education community.

5.1 What is a Social Defense?
In sociology and social psychology, a“social defense is a set

of organizational arrangements, including structures, work
routines, and narratives, that functions to protect members
from having to confront disturbing emotions stemming from
internal psychological conflicts produced by the nature of
the work” [20].

For example, Padavic et al. [20] found that the “work-
family” narrative in business is an example of a social de-
fense: people will say that women leave the workplace be-
cause of “family”, despite the large amount of evidence that
women leave their jobs because of inadequate pay or op-
portunities for advancement [20], particularly when they
see male co-workers promoted ahead of them. The “work-
family”narrative is a more palatable explanation rather than
to confront sexual discrimination in the workplace, and so
the narrative continues.

5.2 Teacher Self-Efficacy
Guzdial reported that, per Fives [9], teachers generally

have a high level of self-efficacy (great confidence in their
teaching ability) at the start of their career. This then plum-
mets as they face the realities of classroom teaching. With
time, their self-efficacy slowly increases again. [9]

Teacher self-efficacy is not necessarily tied to how well
they can teach: university educators often get little mean-
ingful feedback on how their students are learning, given
their large class sizes and lecture-based pedagogies. [9]

Guzdial reasoned that if an individual university-level CS
educator has high self-efficacy, and sees evidence of students
not learning, then it’s rational for them to believe that the
problem lies with the students and that the problem is innate
to them—i.e., beyond the ability of the teacher to improve
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it [9]. Compounding this, Sahami and Piech have observed
that CS educators are more aware of their top and bottom
students than they are of their average students, giving ed-
ucators a biased perception of their students’ abilities [27].

Relatedly, Guzdial noted that CS educators have poor re-
sults, because we so frequently use ineffective teaching meth-
ods [7]. Indeed, Porter et al. recently found that perfor-
mance on early assessments in CS1 correlate highly with
final grades, indicating that surprisingly little learning goes
on in CS1 [24]. The results of Zingaro, Petersen, and Craig
would add that not only do CS educators frequently use
ineffective pedagogies, they also frequently use ineffective
assessment tools [33, 23].

We theorize that the Geek Gene Hypothesis is a social
defense: it is easier for computer science educators to blame
innate qualities of their students for a lack of learning than it
is for the educators to come to terms with the ineffectiveness
of their teaching.

A social defense is a phenomenon on a social scale, in
contrast to Guzdial’s observation about individual teachers.
When numerous educators bond over how their students just
“don’t have it,” it allows for the Geek Gene hypothesis to go
from one individual’s suspicion to a social narrative. And
as bimodal grade distributions sometimes do occur, those
cases are used to argue that this is a common and inherent
phenomena in CS classes. When administrators accept this
narrative and do not mandate professors to improve their
teaching, the narrative can continue unchallenged.

The perception of bimodal grades provides evidence to
the Geek Gene narrative that some students “have it” and
some do not. And when new educators begin teaching, do
not see all their students learning, and have been primed by
colleagues to see bimodality, the new educator can then see
this as evidence of the Geek Gene. The reproduction of the
Geek Gene Hypothesis is hence social in nature.

Recent studies have found that academic disciplines in
which “brilliance” is seen as necessary for success have less
demographic diversity [14]. Looking at the history of sci-
ence, women and people of colour were long denied entry
and acknowledgment in science because they were seen as
lacking the “brilliance” needed to do science [26].

If computing ability is viewed as being the result of a
“Geek Gene”, then educators may use this as an reason not
to teach students who lack this “gene”. Similarly they could
lower expectations of these groups and encourage them less.
Research on implicit biases consistently find that implicit
biases against seeing women and people of colour as being
brilliant scientists [29]. Students with disabilities or atten-
tion disorders could also be affected, or whoever else a par-
ticular educator might see as lacking the “gene”. The “Geek
Gene” narrative can also contribute to how women and mi-
norities feel they do not belong in CS classes. It has been
documented that underrepresented groups feel demotivated
when their more experience peers boast that CS is “easy”,
and this could trigger stereotype threat [3].

6. CONCLUSIONS
Our analysis of UBC’s grades indicates that while bimodal

grade distributions can be found, they are far from typical
(at most 5.8% of cases given type I error). Much more com-
monly, grade distributions are normal (85.1%) or skewed.

Figure 2: Individual-level feedback loops leading individuals
to categorize ambiguous distributions as bimodal.

Figure 3: Social-level feedback loops leading individuals to
categorize ambiguous distributions as bimodal.

Our psychology experiment found that priming partici-
pants to think about the common perception of bimodal
grades leads to participants being more likely to label am-
biguous distributions as bimodal. This indicates confirma-
tion bias plays a role in the belief that bimodal grades are
typical, when our (more rigourous, less anecdotal) evidence
is that they are uncommon.

We also found that participants who reported beliefs con-
sistent with the Geek Gene Hypothesis were more likely to
label ambiguous distributions as bimodal. This indicates
instructor beliefs play a role in perception of bimodality.

We observed that instructors who report looking at his-
tograms of their grades were more likely to label ambiguous
distributions as bimodal. As well, the random half of partic-
ipants who labelled distributions as bimodal and then were
asked about the Geek Gene Hypothesis were more likely to
agree with it than the random half of participants who had
been asked about the Geek Gene first.

Both our analysis of UBC’s grades and our psychology
experiment provide evidence for Lister’s hypothesis that CS
grades are not typically bimodal.

We theorized that the perception of bimodal grades in CS
is a social defense. It is easier for the CS education com-
munity to believe that some students “have it” and others
do not than it is for the community to come to terms with
the shortfalls of our pedagogical approaches and assessment
tools. A belief in the Geek Gene gives educators an easy
way out from confronting these issues and being pushed to
do better. In order for efforts to have CS taught “for all” to
succeed, the CS education community needs to develop and
use pedagogical approaches and assessment tools that will
benefit all students.
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