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1. Detailed Dataset Statistics

This complements §5 in the paper. Because we used very
different methods to obtain data in Mixamo, ShapeNet and
Web sets, we break down speed distributions for each data
source separately (Fig.2a), in addition to showing the over-
all dataset statistics in Fig.6a of the paper. The ShapeNet set
contains more large-displacement flow examples due to fast
object collisions and randomization in the rigid body simu-
lation. This data is, therefore, likely to be more challenging.

We show style distribution in Fig.2b, where flat, toon and
textured styles indicate corresponding Blender styles, and
others correspond to Stylit examples drawn in a particular
medium (refer to Fig.5a in the paper). As was our aim, we
capture the diversity of styles found in the wild (paper §4.1),
but do not necessarily aim to mimic the exact distribution of
styles in Animation Show of Shows (paper Fig. 3), which
is just one small set of stylized animated data. Anecdotal
evidence suggests that flat and toon shading are common
among other animation sources as well, and we ensure that
these styles are well-represented in our dataset.

2. Detailed Analysis

This complements §6 in the paper. We analyze the per-
formance of several methods on the foreground mask only of
our test set, as motion of featureless floor and background
may be too ambiguous (See §3.2 in the paper). For quick
reference, the methods analyzed are Horn-Schunck (HS)
[4] implemented in [7], Classic+NLfast (Cl+NL) method
from [7], and method by Brox et al. (brox) [1], Epic Flow
(epic) [6], DC Flow (dcflow) [8], PWC-Net [7] trained on
FlyingChairs (pwc-ch) [3] and on MPI Sintel [2] (pwc-sin),

(a) Speed distribution by content source.

(b) Shading style distribution.

Figure 1: Train Set Statistics: speed distribution in % of frame
width (1500px) in (a), and style distribution in (b).

and LiteFlow Net [5] tuned for Sintel (liteflownet).
In in Fig.2, we analyze distributions of mean foreground

endpoint error for all the samples in our 10K test set. The
error distributions of all methods contain many outliers with
extremely incorrect flow estimates and, in some cases, sig-
nificantly lower error medians. This is not surprising, given
that our data is designed to be noisy and does not meet stan-
dard assumptions of flow methods such as smoothness and
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Figure 2: Performance on Foreground Mask: box plots show
distribution of mean foreground pixel errors across all 10K test set
samples, with box spanning the range between 25th and 75th per-
centile with median line shown and outliers appearing in yellow.
Overall foreground error mean as reported in paper, Fig.7b, FG
column is shown as filled magenta diamonds, mean of mean per-
sample foreground endpoint error is shown as hollow diamonds.

temporal coherence of texture.
As an approximation of outliers, we collect the samples

SM
out from our test set that performed in the worst 10% for

each method M , with the total set of outliers defined as
Sout = {S1

out ∪ ...S8
out}. If each method performed poorly

on a unique subset of the test set, the size of Sout would be
about 8000. We find that |Sout| is 2667, with 1010 outliers
(38%) performing in the worst 10% for only one method,
466 outliers (17%) performing in the worst 10% for two
methods, and the rest being in the worst 10% for three or
more methods. The fact that 38% of outliers perform par-
ticularly poorly for only one method indicates that different
methods find different aspects of our data difficult. We also
discover that all methods find the ShapeNet component of
the test set the most challenging, with 70% of outliers cor-
responding to frame pairs in these sequences. This could
be due to the speed distribution of ShapeNet data (Fig.2a),
symmetric featureless objects, specific motion profiles of
the rigid body physics simulation, or the presence of the
floor, which could confuse foreground pixel estimates even
though it is excluded from the error computation.

Universally Difficult Cases: Among examples resulting
in poor performance for 4 or more methods, we found that
some sequences were particularly difficult and contributed
many frames to Sout. For example, first three rows of Fig.3a
had 20+ frames each which performed in the worst 10% for
at least 4 methods. The first row is particularly challenging,
due to highly stylized charcoal style and a complex ground
truth motion pattern of a crumbling piece of paper. Even a
human observer may need several frames to get the gist of
the motion. In this web example, the floor was also labeled
as an object and so included in the computation, increas-
ing the difficulty. The symmetrical object in row 2 offers
few features to suggest direction of rotation. The third row
contains a large textured area, where static texture that does
not move with the character confuses most methods in this
foreground region, resulting in zero flow. Other sequences
only contain a few difficult frames. For example, Fig.3a

row 4 was the only difficult frame pair from that sequence,
singled out due to extreme change in view angle.

Uniquely Difficult Cases: Other samples caused only
one method to perform especially poorly. For example, first
row of Fig.3b contains the same crumbling piece of paper
(Fig.3a, row1) at another camera angle (Web data is ren-
dered at two camera angles, see §5 in the paper) and toon
shading. With these settings, the crisp outlines are enough
to make most methods perform fairly well, with the excep-
tion of PWC-ch. This network is likewise most confused
about the textured trumpet example in the second row of
Fig.3b, where trumpet features are enough to make most
methods do a reasonable job on the foreground, unlike the
textured shirt in Fig.3a row 3, which confused many. Like-
wise, certain sequences are most confusing to specific clas-
sical methods, e.g. last row of Fig.3b most confuses HS.

Easy Cases: Examples where many methods’ perfor-
mance ranked in the top 10% tended to include textured
background with rich features (Fig.4a, rows 2,3,4), or de-
tailed shading (Fig.4a, rows 3,5). Some highly stylized
examples showed good performance on the foreground
(Fig.4a first row, Fig.4b rows 1,4,5), but caused confu-
sion in the temporally-incoherent background, which would
make optical flow results hard to use in practice. Among
examples that performed in the top 10% for only one
method, many still show good foreground performance for
other methods, as 10% falls within narrow low error band
(Fig.4b). It is interesting to note that chaotic background
can confuse some learning-based methods and not others
(e.g. Fig.4b rows 1,4,5 confuse PWC-ch, but not dcflow).
Fig.4 suggests that even when performance on the fore-
ground regions is good, untextured backgrounds present a
problem and call for a notion of uncertainty in automatic
optical flow estimation methods, especially if used for styl-
ized content.

3. Summary
The diversity of styles and content in the Creative Flow+

Dataset (§1) generates a rich diversity of challenging exam-
ples (§2), with many combinations of factors contributing to
example’s difficulty or a method’s robustness, leaving much
room for future research.
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mask frame0 frame1 truth HS Cl+NL brox epic DC pwc-ch pwc-sin LiteFN

11.4 23.8 19.3 21.9 5.6 84.8 108.2 37.2

51.6 31.6 43.7 36.2 36.5 43.8 53.2 40.2

35.4 7.05 23.2 29.6 24.5 26.8 26.2 30.4

23.4 22.2 18.6 26.4 18.3 51.1 20.7 22.2

49.4 15.4 11.2 29.5 44.0 33.9 22.4 23.9
(a) Universally Bad: examples performing in the worst 10% for at least 4 methods.

mask frame0 frame1 truth HS Cl+NL brox epic DC pwc-ch pwc-sin LiteFN

5.83 4.75 4.94 4.74 4.55 200.9 4.74 4.85

17.2 11.7 16.7 12.9 11.5 38.9 12.1 12.1

39.6 14.2 10.0 9.39 7.95 17.2 8.33 7.58

17.8 6.16 5.08 4.98 25.8 10.2 5.57 5.24

51.1 13.3 4.66 7.96 6.85 4.07 3.71 3.12
(b) Uniquely Bad: examples performing in the worst 10% for exactly one method.

Figure 3: Samples of Poor Performance: examples found challenging by many methods (a) and only one method (b). Average endpoint
error for colorful (non-black non-white) pixels in the mask is shown below each example. Flow false coloring is computed individually for
every method.



mask frame0 frame1 truth HS Cl+NL brox epic DC pwc-ch pwc-sin LiteFN

0.643 0.488 0.193 0.210 0.246 1.02 0.278 0.431

0.184 0.186 0.198 0.119 0.169 0.271 0.161 0.482

0.541 0.485 0.487 0.812 0.595 4.21 6.28 2.48

0.774 0.658 0.644 0.660 0.696 0.862 0.785 0.745

0.398 0.552 0.484 0.372 0.395 0.459 0.493 0.616
(a) Universally Good: examples performing in the best 10% for at least 4 methods.

mask frame0 frame1 truth HS Cl+NL brox epic DC pwc-ch pwc-sin LiteFN

1.40 1.95 3.97 4.63 0.682 2.06 8.60 4.38

1.58 2.54 1.05 1.93 0.341 11.3 2.14 3.54

1.22 1.35 2.14 1.62 1.34 0.900 2.28 1.73

4.23 3.19 3.59 31.5 0.670 10.2 8.15 10.5

3.95 3.07 4.39 2.58 0.745 14.6 2.73 3.15
(b) Uniquely Good: examples performing in the best 10% for exactly one method.

Figure 4: Sample of Good Performance: examples with top optical flow performance by several (a) or one method (b). Average endpoint
error for colorful (non-black non-white) pixels in the mask is shown below each example. Flow false coloring is computed individually for
every method.




