
Creative Flow+ Dataset
Errata and Data Details

Maria Shugrina1,2,3

www.shumash.com

Ziheng Liang1,4

zhliang@cs.ubc.ca

Amlan Kar1,2

amlan@cs.toronto.edu

Jiaman Li1,2

ljm@cs.toronto.edu

Angad Singh1,5

angad.singh@alum.utoronto.ca

Karan Singh1

karan@dgp.toronto.edu

Sanja Fidler1,2,3

fidler@cs.toronto.edu

1University of Toronto 2Vector Institute 3NVIDIA
4 University of British Columbia 5 Evertz Microsystems

Overview

Creative Flow+ Dataset is large and was computationally
intensive to generate. We have done our best to ensure the
integrity of our data, but some minor things went wrong
(§1). We encourage all users of our data to at least read (§1).
Details about included ground truth (§2), data consistency
checks (§3), a newly discovered bug in blender (§4), and
our decision not to withhold the test set for a benchmark
(§5) are included below. Here are links to data and code.

1. Data Errata Summary

While rendering our training set, we discovered a bug in
Blender affecting under 5% of our optical flow data. Er-
roneous data is excluded from our downloads and has only
minor effects on the results we reported in the paper (§4).

Due to an operational error, for an unknown fraction of
our training set, the color randomization in the stylized ren-
derings (but not the style itself) abruptly switches at frame
number 5 (i.e. frame000006 and following frames have
different color settings from all previous 1-based frames in
the decompressed dataset). We believe that for most tasks,
including these frame pairs will actually make training more
robust. However, if you wish to exclude this data, we sug-
gest simply ignoring this particular frame pair for the entire
training set (about 2% of the data).

Back flow for the last frame in every sequence has been
mistakenly omitted from the compressed dataset. As this
supplemental metadata is not often required, we will not be
correcting this mistake.

(a) Frame I0 (b) Frame Ii

Figure 1: Correspondence renderings allow identifying closest
matching points across widely disparate views by color, when cou-
pled with the object id maps.

2. Data Details
2.1. Half Resolution Downloads

While compiling Creative Flow+ Dataset we have ex-
perienced the strain this scale of data can put on research
infrastructure. To make our dataset more attainable, we
are also providing lower resolution (750x750) downloads
at half of the original dimensions (1500x1500). To obtain
this lower resolution data, all compressed renderings were
downsampled using ffmpeg command line utility using
Lanczos resampling with default parameters. All the meta-
data was re-rendered from scratch at a lower resolution us-
ing Blender.

2.2. Sequence Lists

Sequence lists help navigate the actual frames in our
dataset, e.g. by using our python utilities. The test set se-

1

http://www.cs.toronto.edu/creativeflow/
https://github.com/creativefloworg/creativeflow
https://github.com/creativefloworg/creativeflow


quences contain more than 40K frames, some with no mo-
tion due to the character or object moving out of camera
view. In order to obtain the original 10K test set, we sub-
sampled these frames and ensured that they include motion.
We provide both subsampled and full sequence lists. Prior
to rendering the training set, we trimmed sequences to only
parts containing motion, so no frame filtering is necessary.

2.3. About Occlusions

Just like the MPI Sintel dataset [3], we mark the pixel x̄
in frame Ii as occluded, if optical flow Fi(x̄) differs from
back flowBi+1 interpolated for location x̄+Fi(x̄) by some
threshold τ . For our resolution of 1500x1500 we used τ =
0.5, larger than that for MPI Sintel dataset1, to reflect our
larger frame dimensions.

2.4. About Correspondences

To our knowledge, ours is the only dataset to render
dense correspondences as color persisting across frames.
This allows looking for closest matching color to find cor-
respondences in widely disparate views, where tracking us-
ing optical flow could become impossible due to occlusions
(e.g. Fig.1). Robustly finding correspondences in widely
disparate views across different drawing styles can be use-
ful for an array of creative applications, e.g. involving im-
age morphing and registration [9], autocompletion [11] and
frame interpolation [10, 1] of animation. Our data allows
formulating the correspondence problem not as finding ”the
one and only matching point”, but as finding ”the closest
matching point” on the underlying 3D object across 2 views.

To render correspondences, we embed the mesh of each
object in the reference pose (first frame) into a coordinate
system defined by its bounding box where each side spans
the range of [0..1]. The xyz location of each mesh vertex in
this coordinate system also becomes its RGB color. This
color assignment persists across the entire sequence and all
object deformations. In order to find the best correspond-
ing point in frame Ii for a point in frame I0, one has to
look for the closest matching color in correspondence ren-
derings, where the object id maps agree (correspondence
colors repeat across objects).

This method is not perfect. The color distance of vertices
depends on the initial pose and orientation of the object, and
is not normalized across different objects. However, this is
a fast and compact way of encoding correspondences across
the entire moving sequence.

We provide compressed correspondences encoded in an
mp4 video as a part of the core metadata download. We
have not quantified how much precision is lost due to this
compression, and therefore recommend downloading loss-
less correspondences if you are planning to heavily rely on
the precision of this data.

1We thank the authors of [3] for sharing details about their pipeline

2.5. About Depth

We provide depth maps, i.e. distance from the image
plane, in two different formats. The first format is depth
rendered as images, with white and black representing the
minimum and maximum depth values, respectively, across
the entire sequence. The actual unnormalized values in this
range are included in an accompanying text file. We also
provide depth as unnormalized numpy arrays (better pre-
cision) in a different, larger, download. Note that our se-
quences have not been normalized to have consistent depth.

2.6. About Compressed Downloads

The size of our dataset makes uncompressed distribution
prohibitive. Most renders are provided as mp4 files, in-
cluding lossy normals, depth images and correspondences.
Object id images are simply zipped for every animated se-
quence. Flows, lossless depth, lossless correspondence and
lossless normals are packed into special zips, one per se-
quence, which yield better compression in many cases.

Decompression utilities are provided in our github repo.
Following decompression, flow is written as Middlebury
.flo files, most renders as .png images and lossless
depth as serialized numpy arrays. Utilities for reading this
data are included in our python library.

3. Evaluating Data Consistency
While developing our pipeline we discovered that the

correctness of ground truth renderings (e.g. optical flow)
from Blender can be affected by various Blender settings, a
behavior that is not well-documented or predictable. Un-
like the authors of [3], we were not able to hand-curate
our dataset due to its larger size (100x). Further, optical
flow data cannot be easily checked for correctness. This
prompted us to write consistency checks for our data. To
our knowledge, ours is the first synthetic optical flow dataset
that comes with such ”sanity” checks, as we are the first
to render correspondences (§2.4) that can be cross-checked
with the flow values.

3.1. Sanity Computation

A ”sane” pixel x̄ in frame Ii should either be marked
as occluded, or its object id label Oi(x̄) and correspon-
dence color Ci(x̄) should agree with the next frame’s ob-
ject id label Oi+1 and correspondence color Ci+1 at loca-
tion x̄ + Fi(x̄), where Fi is flow. While object ids must
agree exactly, we require correspondence color to be within
β = 4 Euclidean distance in RGB ranging between 0 and
255. After rendering each sequence we run sanity checks
for a sample of foreground pixels in a subset of the frames
and compute overall ”sanity”, or the number of sane pix-
els divided by the number of tested pixels. These checks
are approximate, where aliasing artifacts in correspondence

https://github.com/creativefloworg/creativeflow
http://vision.middlebury.edu/flow/code/flow-code/README.txt
http://vision.middlebury.edu/flow/code/flow-code/README.txt
https://github.com/creativefloworg/creativeflow


rendering (especially of meshes rendered further away from
the camera), quantization artifacts at object boundaries in
object id renderings and other rendering particulars could
cause disagreement and impact the overall ”sanity”.

3.2. Sanity Results

Our pipeline was configured to only flag sequences with
sanity values lower than 0.8, i.e. with more than 20% of
pixels failing the test. We found that even these permis-
sive settings can flag benign inconsistencies, for example
in frames where the object rendering is small and there is
a larger than τ = 4 difference between adjacent pixels in
correspondence renderings. However, these rough checks
also led us to discover an important and much more subtle
bug in Blender (next section). Following this discovery, we
performed due diligence and computed per-frame sanity for
2000 random foreground pixels in every frame of every se-
quence. We make these values available in case some other
inconsistencies may be discovered later.

4. Blender Bug
A debugging saga (§4.2) led us to discover a bug in the

way Blender renders optical flow for clips that have anima-
tion of the camera focal length. We included focal length
animation for a small fraction of our sequences to simu-
late the zoom effect, and thus a fraction of our optical flow
ground truth is affected by this bug. We have filed a Bug
Report (T69731) with Blender2 and analyzed our data and
results, reporting minor corrections (§4.1).

4.1. Implications for Data and Results

Training set: In the training set, the focal length Blender
bug affected 104 out of 1379 Mixamo sequences and none
of the other data. We are excluding optical flow and occlu-
sions for these sequences in our downloads.

Test set: In the test set, the focal length Blender bug
affected 19 out of 268 Mixamo sequences and none of the
other data. This amounts to 475 frames out of 10,031 test set
frames, or 4.7%. The results reported in Fig.7b of the paper
were only slightly affected by excluding these frames from
the evaluation, and all the conclusions in our original anal-
ysis still hold. Despite the small differences, we include the
corrected results here for completeness (Tb.1). As with the
training set, we are excluding optical flow and occlusions
for the test set sequences affected by the bug.

4.2. Debugging Insane Clips

Debugging errors in data such as flow, which cannot be
hand-checked manually, is difficult, and we include details

2Note that this bug is very different from the bug corrected by the au-
thors of [3] in a custom Blender build, which has since then been fixed in
the Blender releases.

(a) W (Ii, Fi), Ii+1 (b) W (Ii, F
c
i ), Ii+1 (c) F c

i − Fi

Figure 2: Debugging: Frame Ii+1 overlaid with false color on the
previous frame Ii warped (a) using original flow field W (Ii, Fi)
(clear mis-alignment) and (b) using correspondence-based flow
W (Ii, F

c
i ) (better alignment). The difference in the two flow val-

ues (c) visualized using standard flow color (paper, Fig.7a inset)
reveals structured error.

in the case this is of interest. While most sanity failures
resulted from simple misconfiguration or benign disagree-
ment, 4% of our Mixamo training set failed for reasons that
left us stumped: flow disagreed with correspondence colors
for large areas of the frame and incorrect areas were marked
as occluded. After trying various debugging approaches,
we eventually decided to directly compute correspondence-
based flow F c

i by finding closest matching color in sequen-
tial correspondence renderings Ci, Ci+1. To our surprise,
though noisy and time-consuming to compute, F c

i resulted
in superior alignment of frame Ii+1 with the flow-morphed
frame Ii than the original flow Fi for one of the failing se-
quences (Fig.2a,b). Visualization of the error between two
flow fields F c

i − Fi revealed a rainbow-colored plot, indi-
cating that the error vectors pointed radially out, mimicking
the camera zoom present in this sequence. This finally led
us to create a small one-triangle example that demonstrated
the bug in the Blender pipeline. Note that camera motion
does not result in incorrect output, only the animation of
the camera focal length does.

All sequences that failed the sanity checks for inexplica-
ble reasons contained animation of the focal length. We
were also able to catch additional buggy sequences not
flagged by the randomized checks.

5. Why No Benchmark

At the onset of this project we intended to host a pub-
lic benchmark for the optical flow task and to keep the test
set private. However, as we expanded the scope to include
other ground truth, such as normals and depth, it became
clear that we cannot formulate the full range of tasks that
can be tackled with the Creative Flow+ Dataset. Discussion
with the members of the research community during our
CVPR poster session reinforced this realization. We, there-
fore, make a decision to release the test set and to trust the
integrity and creativity of researchers to use our data well.

https://developer.blender.org/T69731
https://developer.blender.org/T69731


Sintel Creative Flow+
median Styles Speeds

All All FG FG:flat FG:toon FG:tex. FG:stylit FG:1% FG:1-3% FG:3%
Horn-Schunck [4] 9.64 8.34 3.49 12.17 11.70 11.12 13.83 12.18 3.45 17.23 60.03
Classic+NLfast [7] 10.12 13.35 7.05 9.27 9.09 6.95 11.36 9.67 5.68 11.04 29.81
Brox2011 [2] 9.15 9.05 3.27 8.28 7.33 6.18 11.63 8.29 3.99 11.20 30.74
EpicFlow [6] 6.29 64.31 10.46 14.80 9.42 6.78 11.47 23.81 11.20 15.97 36.99
DC Flow [12] 5.12 41.08 3.37 11.21 7.69 9.32 12.57 13.39 3.90 17.98 44.76
PWC(chrs.) [8] - 66.71 40.98 22.73 41.20 10.85 15.94 23.67 23.10 17.89 32.77
PWC(snt.) [8] 4.60 73.98 33.04 18.17 24.75 7.01 17.29 21.72 17.45 15.20 30.93
LiteFlowNet [5] 5.06 35.14 13.69 11.19 6.77 6.37 13.68 14.95 8.37 12.61 27.25

Table 1: Minor Corrections to Fig.7b: New results exclude 4.7% of the test set, affected by the discovered Blender bug. Most values
differ from the original by less than 1.0, having no effect on the conclusions of our analysis.

References
[1] Y. Bai, D. M. Kaufman, C. K. Liu, and J. Popovic. Artist-

directed dynamics for 2D animation. ACM Transactions on
Graphics, 35(4):1–10, July 2016. 2

[2] T. Brox and J. Malik. Large displacement optical flow: de-
scriptor matching in variational motion estimation. IEEE
transactions on pattern analysis and machine intelligence,
33(3):500–513, 2011. 4

[3] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A
naturalistic open source movie for optical flow evaluation.
In European Conf. on Computer Vision (ECCV), pages 611–
625, Oct. 2012. 2, 3

[4] B. K. Horn and B. G. Schunck. Determining optical flow.
Artificial intelligence, 17(1-3):185–203, 1981. 4

[5] T.-W. Hui, X. Tang, and C. C. Loy. Liteflownet: A
lightweight convolutional neural network for optical flow es-
timation. In CVPR, pages 8981–8989, 2018. 4

[6] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.
Epicflow: Edge-preserving interpolation of correspondences
for optical flow. In CVPR, pages 1164–1172, 2015. 4

[7] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow
estimation and their principles. In CVPR, pages 2432–2439.
IEEE, 2010. 4

[8] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. Pwc-net: Cnns
for optical flow using pyramid, warping, and cost volume.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8934–8943, 2018. 4

[9] D. Sýkora, J. Dingliana, and S. Collins. As-rigid-as-
possible image registration for hand-drawn cartoon anima-
tions. ACM, New York, New York, USA, Aug. 2009. 2

[10] B. Whited, G. Noris, M. Simmons, R. W. Sumner, M. H.
Gross, and J. Rossignac. BetweenIT: An Interactive Tool for
Tight Inbetweening. Comput. Graph. Forum (), 29(2):605–
614, 2010. 2

[11] J. Xing, L.-Y. Wei, T. Shiratori, and K. Yatani. Autocomplete
hand-drawn animations. ACM Trans. Graph., 34(6):1–11,
2015. 2

[12] J. Xu, R. Ranftl, and V. Koltun. Accurate Optical Flow via
Direct Cost Volume Processing. In CVPR, 2017. 4




