
Doubly Efficient Proof Systems

Ziyang Jin1

Department of Computer Science
University of Toronto

ziyang@cs.toronto.edu

Abstract. This note is prepared for presenting the paper Delegating
Computation: Interactive Proofs for Muggles [1] (a.k.a [GKR ’08]) in
the derandomization course taught by Prof. Roei Tell at the University
of Toronto in winter 2024. We call it a doubly efficient proof system
since the prover runs in polynomial time, and the verifier runs in quasi-
linear time. We will mainly present the protocol in the GKR paper. The
structure follows the ECCC version of this paper [2].

Keywords: Complexity · Interactive Proofs · low-degree extension ·
sum-check protocol

1 Motivation

In the definition of standard interactive proof systems, the prover (Merlin) is usu-
ally assumed to have unbounded computational power, and the verifier (Arthur)
runs in probabilistic polynomial time. The GKR paper studies interactive proof
systems for tractable languages, where the prover runs in polynomial time, in
other words, a “muggle” (compared to powerful mage Merlin). It would not
be very interesting for the verifier to also run in polynomial time since in this
case, the verifier can do all the computation himself without interacting with the
prover. So we require verifier to run in quasi-linear time, for example, O(n log n)
time where n is the size of the input.

Doubly efficient proof systems can be used for delegating computation: a
server in the cloud can run the computation in polynomial time and send the
result to the client (e.g. your smart watch). However, the server can cheat by
sending a wrong answer or randomly guessing an answer without actually per-
forming the computation. Thus, it is important that the client can verify the
correctness of the answer without running the entire computation himself. The
GKR protocol allows the verifier to check the correctness of the result in quasi-
linear time to the size of input and proportionally to the depth of the circuit.

2 Main Theorem

Suppose the verifier would like the prover to compute some function f : {0, 1}n →
{0, 1} on some input x ∈ {0, 1}n. Note that any boolean function can be trans-
lated to a boolean circuit C : {0, 1}n → {0, 1}. For simplicity, assume the boolean

2 Ziyang Jin

circuit only has NAND gates with fan-in 2 (any circuit can be translated to a
circuit in this form with at most polynomial blow-up in size). Without loss of
generality, suppose C(x) = 0. Thus, the goal of the protocol is to convince the
verifier that C(x) = 0.

Let x ∈ {0, 1}n be the input. Let S be the size of the circuit and let d be the
depth of the circuit. Roughly, we have S = poly(n), and d needs to be asymp-
totically smaller than S to be interesting (typically, we take d = polylog(S) =
polylog(n)).

Theorem 1 (Goldwasser-Kalai-Rothblum ’08). Let L be a language that
can be computed by a family of O(log(S))-space uniform boolean circuits of size
S and depth d. L has an interactive proof where:

1. The prover runs in time poly(S). The verifier runs in time n · poly(d, logS)
and space O(log(S)).

2. The protocol has perfect completeness and soundness 1/100.
3. The protocol is public-coin, with communication complexity d · polylog(S).

One caveat here is that it restricts the computation here to be logspace
uniform boolean circuits. The reason is that we need the verifier to have efficient
access the circuit structure (i.e. asking if one gate is the parent of another two
gates) without the prover sending the entire circuit. To achieve this, the circuit
needs to be very structured. The authors find that circuits that are generated by
logspace Turing machines can be very structured such that we could have short
representations of the circuit structure. In genereal, we do not know how to do
it for circuits that are generated by polynomial time Turing machines.

In this presentation, we abstract the efficient computation of the circuit struc-
ture by an oracle. We assume that both the prover and the verifier have oracle
access to a circuit structure function ϕ(g1, g2, g3) that returns 1 if and only if gate
g1 is the parent gate of g2 and g3. Section 4 of the GKR paper talks about how
to let the verifier compute this oracle efficiently, and later Goldreich presented
a simpler construction. This will not be the main part of our presentation.

3 A Naive Approach

We model the circuit to have a layered structure. Any circuit can be converted
to this layered structure with at most a polynomial blow-up in size. The circuit
has depth d, so there will be d+ 1 layers. We label the output of the circuit as
layer 0, and one layer below as layer 1, and continue downwards. The bottom
layer that consists of the input bits will be layer d. Every gate is a NAND gate
with fan-in 2, and the input of any gate can only come from one layer below it,
i.e. no wires can cross more than one layer.

If an honest prover evaluates this circuit on input x, then he can note down
the output of every gate in every layer in this circuit. The top layer only has one
gate, and its output is 0 since we assumed C(x) = 0.

Here is how we model the game between the prover and the verifier in the
naive way. The prover tells the verifier that in the top layer (layer 0), C(x) = 0,

Doubly Efficient Proof Systems 3

and the verifier asks what are the two inputs in the layer below (layer 1). The
provers says, for example, that they are the first and the fifth gate, and the
values are 1 and 1, respectively. Then the verifier continues to ask what are the
four values in layer 2 that makes the output 1 and 1 in layer 1, and so on. In the
end, when the verifier reaches layer d, i.e. the input layer, since the verifier has
the input, he can check himself if the values in the input layer reported by the
prover is correct.

For the naive approach above, completeness is guaranteed. Since an honest
prover will always report the true output of every gate. Runtime is bad since the
number of gate outputs that the verifier needs to ask grows exponentially with
the layer.

One (still naive) way to reduce the runtime is to let the verifier randomly pick
one out of two gates in the layer below to check. This way hurts the soundness of
this proof system. Here is a simplified picture: suppose C(x) = 1 and the prover
tries to convince the verifier that C(x) = 0. We assume the worst adversary such
that the prover just need to lie about a single gate in the entire circuit, and the
gate is in layer d − 1. The probability for the verifier to catch the “lying gate”
would be 1/2d, which is terrible for soundness. We might come up with other
protocols that are more complicated than this, but many of them would still
have bad soundness. We will not go into too much details in this.

To summarize, with the first naive approach, the challenge is to reduce the
runtime, but soundness is great; with the second naive approach, the challenge
is to improve the soundness, but the runtime is great. The GKR paper starts
from the second naive approach, and improves the soundness by applying an
error correcting code to each layer. The intuition behind using error correcting
code is natural. In the naive protocol above, we randomly choose one out of two
gate outputs in the next layer, and that does not give a good probability to
catch the cheating prover. Now in every layer, we encode the gate outputs as an
error correcting code, such that the codeword of wrong gate outputs disagrees
with the codeword of true gate outputs in most places, and we will have much
higher probability in catching the cheating prover by randomly choosing one in
the codeword space.

However, once they have done that, the nice downward self-reducibility is
ruined, and now the verifier is inefficient in finding the circuit structure. To
solve this problem, they use a specially-designed low-degree extension, and add
sum-check sub-protocols along with a “2-to-1 trick”, to make the verifier efficient
again.

4 Setup of the Protocol

4.1 Padding the outputs in each layer

We model the circuit the same way (the layered structure) as we did in the naive
approach. The prover writes the output of the gates layer by layer. Here is a toy

4 Ziyang Jin

illustration:
layer 0 : 0 (output)
layer 1 : 1 1
layer 2 : 1 0 0 1

...
...

layer i : 0 0 1 0 0 0 . . .
layer i+ 1 : 1 1 1 1 0 0 . . . 0

...
...

layer d : 0 1 1 0 1 1 . . . 1 (input)

Now we pad zeros in each layer 0 ≤ i ≤ d−1 such that each layer now has width
exactly S. Note that we do not pad the input layer.

layer 0 : 0 0 0 0 0 0 . . . 0
layer 1 : 1 1 0 0 0 0 . . . 0
layer 2 : 1 0 0 1 0 0 . . . 0

...
...

layer i : 0 0 1 0 0 0 . . . 0
layer i+ 1 : 1 1 1 1 0 0 . . . 0

...
...

layer d : 0 1 1 1 1 1 . . . 1

Now each layer (except the input layer) is a binary array of size S. Layer 0 is
now a vector (0, 0, 0, ..., 0) (S zeros). We can encode this array as a function from
the index to the truth value, i.e., for layer i, we have function αi : [S] → {0, 1}.
Since we assume C(x) = 0, we have α0(0) = 0. In the input layer (layer d), we
have αd(j) = xj where j is the index of the jth bit in the input x.

4.2 Low-degree extension

Normally, the index j ∈ [S] is represented as a binary string. So we can represent
the index in log2(S) bits and think of the function as αi : {0, 1}logS → {0, 1}.
But binary does not need to be the only representation of a number if we work in
finite fields. We could equivalently write the index j as base 3, then we can think
of the function as αi : Fk

3 → {0, 1}, where F3 is a finite field containing elements
{0, 1, 2}, and 3k = S. All we are doing here is just changing the representation
of the index. Now we choose to represent the index in base |H| where |H|m = S
and H is an extension field of GF[2]. Jumping ahead, the choice of |H| and m
will affect the runtime of the verifier. We will choose |H| and m later. Right now,
all we care about is that |H|m = S and now we fix αi : Hm → {0, 1}.

Now we apply a linear error correcting code called low-degree extension to
every αi, denoted by α̃i : Fm → F. Note that we expand the domain from Hm

to Fm, and range from {0, 1} to F. We require F to be an extension field of H
(thus H ⊆ F), and we require |F| = poly(|H|). In general, we want F to be big
such that the error correcting code will have good distance. Jumping ahead, for

Doubly Efficient Proof Systems 5

people who are familiar with techniques involving error correcting code, |F| will
be the denominator in the Schwartz-Zippel lemma. A low-degree extension α̃i is
a m-variate polynomial of individual degree δ that agrees with αi : Hm → {0, 1}
on all points p ∈ Hm. For any points q ∈ Fm \ Hm, α̃i(q) can “go crazy” and
take any value in F.

Claim. If α̃i has individual degree at most |H|−1, then the low-degree extension
is unique, i.e., there exists a unique polynomial α̃i : Fm → F that agrees with αi

on Hm and has individual degree |H| − 1.

We will not prove this claim here; a proof can be found in [3]. If you have
worked with polynomials and finite fields long enough, this claim should be quite
convincing. In the GKR paper, for α̃i, they obtain an individual degree δ to be
slightly bigger than |H| − 1 due to the specific construction in section 4 of their
paper. Thus, the extension is not unique, but the degree δ should still be low
enough. Typically, we require δ ≥ |H| − 1 and mdδ ≪ |F|. For example, we can
take |H| = n0.01, and note that S = poly(n), so m is just a big constant. We
usually consider d = polylog(n).

I understand it is a bit annoying to not tell you the explicit variables and
coefficients of the low-degree polynomial. I intentionally choose to hide it since
there is a standard way to construct a low-degree extension; however, the GKR
paper uses a different way to describe the low-degree extension. The best way
to move on is to view it as an abstraction, i.e., α̃i : Fm → F is a low-degree
polynomial that agrees with αi on Hm.

4.3 Oracle for the circuit structure

Let g1, g2, g3 ∈ [S] be the index of three gates, where g1 is at layer i − 1 and
g2, g3 are gates at layer i. Define function ϕi(g1, g2, g3) : [S]

3 → {0, 1} such that
it evaluates to 1 if g1 is the parent gate of g2 and g3, and evaluates to 0 otherwise.
Note that instead of looking at the entire circuit, we can just query ϕi to obtain
the local connectivity between gates in layer i− 1 and layer i. Therefore, the set
of functions {ϕ1, ..., ϕd} describes the entire circuit structure. Ideally, we want
to provide {ϕ1, ..., ϕd} as the oracle to the verifier. However, since we work in
the space of codewords, we need low-degree extensions of ϕi’s.

Let ϕ̃i(z1, z2, z3) : F3m → F be a low-degree extension of ϕi, which is a
polynomial of 3m variables, with individual degree at most δ where |H|−1 ≤ δ ≪
|F|. We can think of z1, z2, z3 ∈ Fm as virtual gates. When z1, z2, z3 ∈ Hm, then
z1, z2, z3 corresponds to actual gates g1, g2, g3 in each (padded) layer. We require
that ϕ̃i(z1, z2, z3) agrees with ϕi(g1, g2, g3) when z1, z2, z3 ∈ Hm and corresponds
to g1, g2, g3 ∈ [S]. If any of z1, z2, z3 is in Fm \Hm (i.e. not corresponding to an
actual gate), then ϕ̃i(z1, z2, z3) can “go crazy”.

Define F = {ϕ̃i : 1 ≤ i ≤ d}. We call F the oracle that describes the circuit
structure of C, and we give F to both the prover and the verifier. Note that in
section 4 of the GKR paper, they remove this oracle assumption and explain how
the verifier can compute each ϕ̃i efficiently. In this note we will just abstract ϕ̃i

6 Ziyang Jin

away as oracles, and in section 8 of this note we will briefly describe Goldreich’s
construction, which is believed to be simpler than the original construction in
the GKR paper.

5 The GKR Protocol

Let us recap the setup we have done in the previous section. We have the prover
P and the verifier V that both have input x, where |x| = n. The prover has a
layered circuit C, whose size is S and depth is d. The prover wants to convince
the verifier that C(x) = 0.

The prover and the verifier are both given oracle access to F , which describe
the circuit structure. Since F is a set of low-degree extensions. Both the prover
and the verifier knows the parameters H,m,F, δ that define the low-degree ex-
tension, where |H|m = S, |F| = poly(|H|).

Now the prover evaluates the circuit on input x and writes down the output
of every gate in every layer, and we do the same padding as defined in section
4.1. Recall the function αi : [S] → {0, 1} we defined in section 4.1 and its low-
degree extension α̃i we defined in section 4.2. We call a point z ∈ Fm a virtual
gate, and if z ∈ Hm, it corresponds to an actual gate. Let z0 = (0, 0, ..., 0) ∈ Fm

correspond to the first gate in the top layer. Proving C(x) = 0 is now equivalent
to proving α̃0(z0) = 0.

The protocol (PF (x),VF (x)) is done in d phases. In the ith phase (1 ≤ i ≤ d),
the prover reduces that task of proving that α̃i−1(zi−1) = ri−1 to the task of
proving that α̃i(zi) = ri, where zi is a random “virtual gate” determined by the
verifier (z0 = (0, ..., 0) and r0 = 0). This is achieved by running a sum-check
protocol followed by a “2-to-1 trick” which we will describe in detail. In the end,
after the dth phase, it reduces to checking α̃d(zd) = rd, where zd is a “virtual
index” of some bit in the input. At this stage, the verifier needs to compute a
low-degree extension of the input x himself and compare the result.

5.1 The ith phase

The prover sends ri−1 to the verifier, and the prover wants to convince the
verifier that α̃i−1(zi−1) = ri−1. Our task is to reduce proving α̃i−1(zi−1) = ri−1

to proving that α̃i(zi) = ri.

For every zi−1 ∈ Fm, we can express α̃i−1(zi−1) in terms of values in α̃i as
follows:

α̃i−1(zi−1) =
∑

w1,w2∈Hm

ϕ̃i(zi−1, w1, w2) · ˜NAND(α̃i(w1), α̃i(w2)). (1)

Note that ˜NAND : F2m → F is an arithmetization of the NAND gate. For
x, y ∈ Fm, ˜NAND(x, y) = 1 − xy. Note that when x, y ∈ {0, 1}, ˜NAND(x, y)
outputs 0 or 1 according to the NAND gate; when x, y ∈ F \ {0, 1}, the value of

Doubly Efficient Proof Systems 7

˜NAND(x, y) can “go crazy”. To simplify, we define the function fz : F2m → F
as follows:

fz(w1, w2) := ϕ̃i(zi−1, w1, w2) · ˜NAND(α̃i(w1), α̃i(w2)). (2)

Note that w1, w2 ∈ Fm, so fz can be seen as a 2m-variate polynomial with
individual degree at most δ + |H| − 1 ≤ 2δ. The number of coefficients of fz is(
m+δ
m

)
(stars and bars). Since we treat m to be a big constant, this is ¡ O(δm).

Thus, we can represent any such polynomial with at most O(δm) field elements,
so in total O(δm log |F|) bits. Note that δ ≥ |H| − 1, and if we take |H| = n0.01,
then the size of fz is poly(S). Thus, we have

α̃i−1(zi−1) =
∑

w1,w2∈Hm

fz(w1, w2).

Therefore, proving that α̃i−1(zi−1) = ri is equivalent to proving that

ri−1 =
∑

w1,w2∈Hm

fz(w1, w2).

Note that it will not work if the prover just sends the polynomial fz to the
verifier and let the verifier sum over all choices of w1, w2. This is because the
verifier needs to compute on all O(|H|2m) tuples of (w1, w2), which is way above
the verifier’s time budget: note that |H|m = S and we want the verifier to run in
time much less than the circuit size. To solve this problem, we use a sum-check
protocol.

The sum-check protocol We will shift the notation a little bit here for
disambiguation. Instead of using zi−1, w1, w2 ∈ Fm, we now denote them by
z⃗i−1, w⃗1, w⃗2 ∈ Fm to emphasize they are vectors of m elements, and we define

α̃i−1,0 =
∑

w⃗1,w⃗2∈Hm

fz(w⃗1, w⃗2), (3)

and
α̃i−1,1(x) =

∑
w1,2,..,w1,m∈H,w⃗2∈Hm

fz(x,w1,2, ..., w1,m, w⃗2).

Note that z⃗i−1 is a fixed value given in the beginning of the phase. It is not
a variable. So α̃i−1,0 = ri−1 is a fixed value. And α̃i−1,1(x) is a univariate
polynomial with degree at most 2δ.

Define ri−1,0 = ri−1. The prover computes the polynomial α̃i−1,1(x) and
sends to the verifier. Then the verifier checks if∑

x∈H
α̃i−1,1(x) = ri−1,0.

If they are not equal, reject. Otherwise, the verifier picks a random w1,1 ∈ F and
sends to the prover. The verifier also computes

ri−1,1 := α̃i−1,1(w1,1).

8 Ziyang Jin

Note that the prover also knows ri−1,1 since upon receiving w1,1, the prover can
compute ri−1,1 himself.

Now the prover computes

α̃i−1,2(x) =
∑

w1,3,..,w1,m∈H,w⃗2∈Hm

fz(w1,1, x, w1,3, ..., w1,m, w⃗2).

Note that w1,1 is a fixed value now, so α̃i−1,2(x) is a univariate polynomial. The
prover sends α̃i−1,2(x) to the verifier. The verifier checks if∑

x∈H
α̃i−1,2(x) = ri−1,1.

If not, reject. Otherwise, the verifier picks a value w1,2 ∈ F and computes

ri−1,2 := α̃i−1,2(w1,2)

and the verifier sends w1,2 to the prover. The prover computes (fixing w1,1, w1,2)

α̃i−1,3(x) =
∑

w1,4,..,w1,m∈H,w⃗2∈Hm

fz(w1,1, w1,2, x, w1,4, ..., w1,m, w⃗2).

and sends to the verifier, and the verifier checks if∑
x∈H

α̃i−1,3(x) = ri−1,2

and so on. We repeat this process until all elements in w1,1, ..., w1,m, w2,1, ..., w2,m

have been chosen by the verifier. Particularly, we want to show the last iteration.
The prover computes univariate polynomial (fixing w1,1, ..., w1,m, w2,1, ..., w2,m−1)

α̃i−1,2m(x) = fz(w1,1, ..., w1,m, w2,1, ..., w2,m−1, x)

and sends it to the verifier, the verifier checks if∑
x∈H

α̃i−1,2m(x) = ri−1,2m−1.

If the check passes, the verifier picks the last element w2,m ∈ F uniformly at
random, and send it to the prover. The verifier defines

ri−1,2m := α̃i−1,2m(w2,m).

Therefore, over all the iterations within the sum-check protocol, the verifier has
picked random w⃗1, w⃗2 ∈ Fm bit by bit.

Finally, the verifier wants to check if

fz(w⃗1, w⃗2) = ri−1,2m.

Doubly Efficient Proof Systems 9

Substituting the definition of fz in (2), the verifier wants to check if

ϕ̃i(z⃗i−1, w⃗1, w⃗2) · ˜NAND(α̃i(w⃗1), α̃i(w⃗2)) = ri−1,2m. (4)

Note that ϕ̃i is given as an oracle, which is a low-degree polynomial that spec-
ifies the circuit structure. ˜NAND is also a low-degree polynomial which can be
computed efficiently. So it comes down to computing α̃i(w⃗1) and α̃i(w⃗2).

Let’s summarize what we have done so far. In the beginning of the ith phase,
our goal is to check α̃i−1(z⃗i−1) = ri−1. By running a sum-check protocol, the
verifier picks random w⃗1, w⃗2 ∈ Fm such that the task is reduced to checking
(4). Now the prover sends two values v1, v2 to the verifier and claiming they are
the values of α̃i(w⃗1) and α̃i(w⃗2) respectively. The verifier can first check if (4)
holds by plugging in v1, v2 sent by the prover, and reject if (4) does not hold.
However, the verifier cannot trust that the two values sent by the prover are the
true α̃i(w⃗1) and α̃i(w⃗2).

Now we switch the notation from z⃗i−1, w⃗1, w⃗2 ∈ Fm back to zi−1, w1, w2 ∈
Fm. So far, we have reduced the task of checking α̃i−1(zi−1) = ri−1 to checking if
α̃i(w1) = v1 and α̃i(w2) = v2. This is still not good, as the number of points the
verifier needs to ask still grows exponentially with the depth of the circuit. We
eventually want to reduce checking that α̃i−1(zi−1) = ri−1 to checking a single
point α̃i(zi) = ri. The GKR paper introduces a protocol that reduces checking
two points to checking one point, which is commonly referred as “2-to-1 trick”.
Note that the authors did not invent the 2-to-1 trick. It has been used commonly
in many PCP proofs, but the application of the 2-to-1 trick in this context was
credited to GKR.

The 2-to-1 trick We want to reduce from proving α̃i(w1) = v1 and α̃i(w2) = v2
to proving a single point α̃i(zi) = ri. Here is how it goes:

1. Let t1, t2 ∈ F be two distinct fixed elements known to both the prover and the
verifier. The prover and the verifier can determine t1, t2 in the beginning of
the whole GKR protocol. Think of t1, t2 ∈ F corresponds to the fixed number
0 and 1 respectively. Let γ : F → Fm be the unique line (i.e. polynomial of
degree at most 1) such that γ(t1) = w1 and γ(t2) = w2. We know two points
determine a line, so the line γ is unique. For example, we can define it as
γ = {(1 − t) · w1 + t · w2}t∈F. Note that the domain of γ is F, so there are
another |F| − 2 elements other than t1, t2 that maps to some points in Fm.
Note that γ can be computed by both the prover and the verifier in time
polylog(|F|,m) (since we assume field operations can be done in polylog(|F|))
and space O(log(|F|) ·m).

2. The prover sends the function f := α̃i ◦ γ : F → F to the verifier. The
function composition α̃i ◦ γ : F first applies γ then applies α̃i.

3. Upon receiving f from the prover, the verifier checks that if f is a polynomial
of degree at most m · δ (the degree comes from the ϕ̃i) and that f(t1) = v1
and f(t2) = v2. If these tests pass, then the verifier chooses a random element
t ∈ F and send it to the prover.

10 Ziyang Jin

4. The prover and the verifier continue to Phase i + 1 with zi = γ(t) and
ri = f(t).

5.2 The dth phase and final verification

The dth layer is the input layer. In the dthe phase, we want to reduce the task
of checking that α̃d−1(zd−1) = rd−1 to checking α̃d(zd) = rd. We still do the
sum-check protocol and the 2-to-1 trick. The key difference here is α̃d, which
is the low-degree extension of the dth layer. There is no gates in the dth layer,
thus we do not need the ϕ̃ oracle. The honest prover should compute α̃d, i.e. the
low-degree extension of x (padded with zeros such that the length is S), in
the standard way. This means the polynomial α̃d has individual degree at most
|H| − 1 so it is unique. When the verifier picks a t as the last step of the 2-to-1
trick, we have zd = γ(t) ∈ Fm and rd = f(t) ∈ F.

Here is the final verification. The verifier knows zd and rd. The verifier com-
putes the low-degree extension x̃ of x (padded with zeros) himself (with respect
with H,F,m). Note that x̃ should have individual degree at most |H| − 1 so the
low-degree extension is unique. This is the heaviest computation for the verifier
in the entire GKR protocol. And the verifier checks that if x̃(zd) = rd. Since
the low-degree extension is unique, x̃ should be exactly the same as α̃d if α̃d is
computed by an honest prover.

Note that if the verifier has access to an oracle that gives the low-degree
extension of x, then the verifier just needs a single query on zd.

6 Proof of Soundness

Note that completeness is trivial since if the prover honestly computes the cir-
cuit and honestly computes every polynomial in the sum-check protocol and
2-to-1 trick, the verifier should accept with probability 1. We mainly prove the
soundness here.

Suppose that C(x) = 1 and there exists a cheating prover P∗ such that

Pr[(P∗F ,VF) = 1] = s

for some 0 < s < 1. We would like to show s ≤ 1
100 as claimed in Theorem 1.

The protocol consists of d phases. Each phase consists of a sum-check followed
by a 2-to-1 trick. We define the events below:

– Let A denote the event (P∗F ,VF) = 1, i.e., the verifier eventually accepts.

– Let Ti denote the event that indeed α̃i(zi) = ri, where 0 ≤ i ≤ d. Thus,
C(x) ̸= 0 means ¬T0. Note that α̃i(zi) means the true polynomial for layer
i computed by an honest prover. The cheating prover will give the verifier a
fake polynomial g̃i (actually g̃i,0, ..., g̃i,2m in the sum-check, and g̃i ◦ γ in the
2-to-1 trick).

Doubly Efficient Proof Systems 11

– Let Ei denote the event that indeed α̃i(w1) = v1 and α̃i(w2) = v2, for
i ∈ [d]. A cheating prover can send v1, v2 such that it matches g̃i(w1) = v1
and g̃i(w2) = v2 but not α̃i(w1) = v1 and α̃i(w2) = v2. The verifier does not
know the true α̃i.

Note that

s = Pr[A ∧ ¬T0 ∧ Td] ≤ Pr[∃i ∈ [d], A ∧ ¬Ti−1 ∧ Ti] ≤
d∑

i=1

Pr[A ∧ ¬Ti−1 ∧ Ti]

where A ∧ ¬T0 ∧ Td means that the verifier accepts, and the true polynomial
α̃0(z0) should be 1, but the prover gives a fake one g̃0(z0) that equals 0. However,
the last unique low-degree extension is also computed by the verifier, where the
prover cannot cheat, so we have the event Td. We must have Td for the verifier
to accept.

The event A ∧ ¬T0 ∧ Td has probability less than or equal to the event
∃i ∈ [d], A∧¬Ti−1 ∧ Ti: at some phase i, the true polynomial α̃i−1(zi−1) ̸= ri−1

but the prover sends a fake one g̃i−1(zi−1) = ri−1 and the verifier accepts since
the prover gets lucky that α̃i−1 and g̃i−1 happen to agree on zi−1, so the prover
cheats successfully in this phase such that in the following phases the prover does
not need to lie and just honestly computes the true polynomials α̃i following that
path.

By law of total probability, we have

Pr[A ∧ ¬Ti−1 ∧ Ti] = Pr[A ∧ ¬Ti−1 ∧ Ti ∧ Ei] + Pr[A ∧ ¬Ti−1 ∧ Ti ∧ ¬Ei] (5)

For the Pr[A ∧ ¬Ti−1 ∧ Ti ∧ Ei] part, note that

Pr[A ∧ ¬Ti−1 ∧ Ti ∧ Ei] ≤ Pr[A ∧ ¬Ti−1 ∧ Ei]

The event A∧¬Ti−1∧Ei means that the true polynomial α̃i−1(zi−1) ̸= ri−1 so the
cheating prover keeps sending fake polynomials in the sum-check protocol, and
at the end of the sum-check protocol, the prover sends v1, v2 where α̃i(w1) = v1
and α̃i(w2) = v2. I.e. the prover successfully cheats the sum-check protocol. The
soundness of the sum-check protocol implies that

Pr[A ∧ ¬Ti−1 ∧ Ei] ≤
4mδ

|F|
(6)

since fz has individual degree at most 2δ and fz has 2m variables. By the
Schwartz-Zippel lemma, we have the probability ≤ 2m·2δ

|F| .

For the Pr[A ∧ ¬Ti−1 ∧ Ti ∧ ¬Ei] part, note that

Pr[A ∧ ¬Ti−1 ∧ Ti ∧ ¬Ei] ≤ Pr[A ∧ Ti ∧ ¬Ei] ≤
mδ

|F|
. (7)

It is better to read this event as A ∧ ¬Ei ∧ Ti. Note that ¬Ei is α̃i(w1) ̸= v1
OR α̃i(w2) ̸= v2. So the cheating prover is giving a different polynomial g̃i ̸= α̃i

12 Ziyang Jin

such that g̃i(w1) = v1 and g̃i(w2) = v2. And Ti means α̃i(zi) = ri so g̃i needs to
agree with α̃i on zi pass the check. Thus, the probability bound is due to any
fake polynomial g̃i with degree mδ can agree with the true polynomial α̃i on at
most mδ points.

Plugging (6) and (7) into (5), we get

Pr[A ∧ ¬Ti−1 ∧ Ti] ≤
4mδ

|F|
+

mδ

|F|
≤ 5mδ

|F|
.

Hence, by union bound on all d phases, we get that

s = Pr[A ∧ ¬T0 ∧ Td] ≤
5mdδ

|F|
.

Taking F such that |F| ≥ 500mdδ = poly(|H|), we get s ≤ 1
100 as stated in

Theorem 1.

7 Complexity of the Protocol

We analyse the complexity in a single phase. Suppose d = polylogn but we can
also generalize.

1. The prover needs to compute the polynomials in the sum-check protocol
which takes poly(|F|m) = poly(S) time.

2. The verifier runs in time poly(|H|, log |F|,m) both in the sum-check protocol
and the 2-to-1 trick. We take |H| = n0.01 and |F| = poly(|H|) and we make
sure |F| = o(n) (e.g. |F| = n0.2, so m is a big constant.
The space used by the verifier is O(log(|F|)·m), both in sum-check and 2-to-1
trick. Going to the next phase, the verifier only needs to remember i, zi, ri,
which is also an O(log(|F|) ·m) overhead.

8 Golderich’s construction

Constructing the oracle efficiently:
Let Cn be a circuit that computes some function f . We want to construct a

polynomial ϕ̂ that encodes the circuit structure of Cn. Here is the requirement
for our construction:

1. ϕ̂(w⃗, u⃗, v⃗) = 1[u, v feed into w] is a polynomial that encodes the circuit struc-
ture.

2. deg(ϕ̂) is low

3. ϕ̂ can be computed in linear time (say n where n is the size of input).

It would be ideal if we could do it for P -uniform circuits, but people still don’t
know how to do it. However, people knows how to do it for logspace-uniform
circuit. Let M be the logspace TM that on input 1n constructs the circuit. The
circuit will have depth d and size S where S = poly(n).

Doubly Efficient Proof Systems 13

Here is how we do it. First, we take the matrix M of of the TMM. This is the
matrix where each row is a configuration of the TM. Since the TM is logspace,
the number of rows will be poly(n). Each column is also a configuration of the
TM, and the entry M [i, j] = 1 means that configuration i goes to configuration
j in the next step of the TM’s execution. Since this is a deterministic TM, each
configuration can only go to 1 next configuration. So each row has only one 1.
Now consider ((M2)2)2.. squaring the matrix O(log n) times, this will reach the
final configuration of the execution. We only care about the first row, which the
row indicates the initial configuration, and the column that has 1 in it indicates
the final configuration. In this final configuration, it has the circuit Cn written
on the output tape (since the TM’s task is to output the circuit on the tape).
Use a universal circuit Un to combine Cn and x such that Un(Cn, x) = Cn(x).
Call the final combined circuit C ′

n. Then we have three properties of C ′
n:

1. C ′
n computes the same function as Cn on x

2. the size and depth of C ′
n not so much bigger than the size and depth of Cn

3. the circuit is extremely-uniform.

Since C ′
n is “super-duper-ultra-uniform”, there exists a Boolean formula of size

polylog(n) computing ϕ(w, u, v) : [S2]3 → {0, 1}, then it is easy to construct a

low-degree extension ϕ̂ : F6 → F.

9 A proof of IP=PSPACE

Note that this proof can also be converted to a proof of IP = PSPACE. For the
time sake, we leave it as an exercise.

10 Acknowledgement

I would like to thank Prof. Roei Tell to carefully and patiently explain every bit
of detail of the GKR paper to me.

References

1. Goldwasser, Shafi; Kalai, Yael Tauman; Rothblum, Guy N. Delegating computation:
interactive proofs for muggles. STOC’08, 113–122, ACM, New York, 2008.

2. Goldwasser, Shafi; Kalai, Yael Tauman; Rothblum, Guy N. Delegating computation:
interactive proofs for muggles. https://eccc.weizmann.ac.il/report/2017/108/

3. Tell, Roei. Mutilinear and Low-Degree Extensions. Unpublished manuscript:
https://sites.google.com/site/roeitell/Expositions (2019)

