
NIZK for 3-Colouring in the Random Oracle Model

Ziyang Jin

Department of Computer Science
University of Toronto

ziyang@cs.toronto.edu

We give a non-interactive zero-knowledge (NIZK) protocol for 3-Colouring in the Random Oracle Model.

1 The protocol

Let G = (V,E) be an undirected graph with n vertices where V = {1, ..., n}. We will also use n as the security
parameter. Let N := n · |E|. Let Com be a perfectly-binding, computationally-hiding commitment scheme.
Let ψ : V → {Red, Green, Blue} be a 3-colouring of G, provided as an auxiliary input to the prover. Below
is the description of the non-interactive zero-knowledge protocol:

1. For each i ∈ [N], the prover takes an independent random permutation πi of the colouring ψ such that
ϕi(j) = πi(ψ(j)) where j ∈ [n].

2. The prover computes the commitment ci,j = Com(ϕi(j)) for all i ∈ [N] and for all j ∈ [n].
3. The prover samples a random string s ← {0, 1}n and queries the random oracle to obtain a string of

edges e1||e2||...||eN ← O(G, c1,1, ..., cN,n, s) where || means concatenation.
4. The prover decommits the colouring of the endpoints of e1, ..., eN . Denote these decommitments by

decom(c1,j1), decom(c1,k1
), ..., decom(cN,jN), decom(cN,kN

) where ei = (ji, ki).
5. The prover sends e1, ..., eN , c1,1, ..., cN,n, s, and decom(c1,j1), decom(c1,k1

), ..., decom(cN,jN), decom(cN,kN
)

to the verifier.
6. The verifier first checks if e1||...||eN = O(G, c1,1, ..., cN,n, s), and then checks if the decommitments are

valid, and in the end checks if each ei has different colours on its endpoints. The verifier accepts if and
only if all checks pass.

For completeness, if G admits a 3-colouring, it is clear that the verifier will accept with probability 1. For
soundness, if G does not admit a 3-colouring, then no matter how the prover colours the graph, there is at
least one monochromatic edge. Thus, in every instance out of N instances, there is at least 1

|E| chance that

the edge ei returned by the oracle matches the monochromatic edge. Therefore, over all N instances, there

is at most
(
1− 1

|E|

)N

= 2−O(n) probability that none of e1, ..., eN matches a monochromatic edge in their

respective instances. Note that a cheating prover can query the oracle on his own to see what edges will
be decommitted for a given input. The prover is able to cheat if he finds a set of colourings of G for every
instance and a string s such that on input G, c1,1, ..., cN,n, s to the random oracle, none of the edges returned
matches a monochromatic edge. Suppose the cheating prover can make q queries before it interacts with the
verifier. By union bound, the prover will have at most q · 2−O(n) probability to cheat successfully. So the
soundness is q · 2−O(n). Note that the soundness is not negligible if we allow the computationally unbounded
prover to query the oracle exponentially many times.

Remark 1. We need the commitment scheme Com to be perfectly-binding such that even computationally
unbounded prover cannot cheat by opening the commitments to a different colour from what has been as-
signed in step 1.

Remark 2. There is also a notion called observability when we prove the soundness. Observability means
that the verifer can observe the queries made by the prover to the oracle.

2 Proof of Zero-knowledge

In order to prove zero-knowledge of the protocol, we need to use the programmability property of the random
oracle. Programmability means that the simulator intercepts all the communications between the verifier and

2 Z. Jin

the environment, and so the simulator can “program” the response of the random oracle and can respond to
the verifier on behalf of the random oracle.

We assume the verifier is malicious. To formally prove zero-knowledge, we need to show a simulator S such
that the output of the verifier in the real execution of the protocol is indistinguishable from the output of the
verifier interacting with the simulator. The output of the verifier depends on its view. The view of the verifier
includes the graph G, the commitments c1,1, ..., cN,n, the random string s, the edges e1, ..., eN , and the
opening of the commitments decom(c1,j1), decom(c1,k1), ..., decom(cN,jN), decom(cN,kN

) where ei = (ji, ki).
The simulator S runs as follows:

1. For each i ∈ [N], the simulator S independently samples a random edge ei ∈ E and colours ei’s endpoints
with distinct random colours; for other vertices in the graph, the simulator assigns the same colour (say
Red) to them. Call this colouring ϕi for i ∈ [N].

2. The simulator computes the commitment ci,j = Com(ϕi(j)) for each i ∈ [N] and j ∈ [n].
3. The simulator programs the random oracle O on input (G, c1,1, ..., cN,n, s) to return the edges sam-

pled previously , which is e1||e2||...||eN . If the verifier has already queried the oracle with exactly
(G, c1,1, ..., cN,n, s) before, then the simulator aborts.

4. The simulator decommits the colouring of the endpoints of e1, ..., eN . Denote these decommitments by
decom(c1,j1), decom(c1,k1

), ..., decom(cN,jN), decom(cN,kN
) where ei = (ji, ki).

5. The simulator sends e1, ..., eN , c1,1, ..., cN,n, s, and decom(c1,j1), decom(c1,k1
), ..., decom(cN,jN), decom(cN,kN

)
to the verifier.

Throughout the simulation, if the verifier sends new queries to the random oracle, the simulator samples a
random output from the oracle’s range and responds back to the verifier. If the verifier sends previously-asked
queries, then the simulator answers with previous answers.

Note that the maclicious verifier can query the oracle on her own before she interacts with the prover.
Suppose the verifier queries the oracle q′ times before the simulator programs the oracle, then the probability
that the verifier queries the oracle with exactly (G, c1,1, ..., cN,n, s) as input is at most q′ · 2−O(n) since there
is 1/2n chance the verifier guesses the random string s ∈ {0, 1}n correctly.

Lemma 1. The output of the verifier in the real execution is indistinguishable from the output of the verifier
interacting with the simulator S. We use the same definition as in Lindell’s tutorial [Lin17]:

{outputV ∗(P (G,ψ), V ∗(G, z))} c≡ {SV
∗(G,z,r,·)(G)}

where P is the prover, V ∗ is a non-uniform probabilistic polynomial time verifier treated as a black-box, and
z is an auxiliary input to V ∗, and r is uniformly distributed and V ∗(G, z, r, ·) is the next-message function
of V ∗.

Proof. We prove by hybrid argument. Let Hyb0 be the scenario where the verifier V ∗ interacts with the real
prover P . Let Hyb1 be the scenario where the verifier V ∗ interacts with the real prover P with the following
changes in bold font:

1. The prover samples independent random edges e1, ..., eN . For each i ∈ [N], the prover takes an
independent random permutation πi of the colouring ψ such that ϕi(j) = πi(ψ(j)) where j ∈ [n].

2. The prover computes the commitments ci,j = Com(ϕi(j)) for all i ∈ [N] and j ∈ [n].
3. The prover samples s ← {0, 1}n and programs the oracle to return e1||...||eN if queried with

(G, c1,1, ..., cN,n, s). If the verifier has already queried the oracle with exactly the same input
as above, then the prover aborts.

Note that the prover programs the oracle only after it computes c1,1, ..., cN,n, and the malicious verifier can
send at most q′ queries to the oracle before it interacts with the prover. Thus, the probability that the prover
aborts is at most q′ ·2−O(n), which is negligible. If the prover does not abort, it means that (G, c1,1, ..., cN,n, s)
has never been queried to O. Since O is a random oracle, on any input that has not been queried previously,
it samples a random output. Therefore, the edges e1||...||eN ← O(G, c1,1, ..., cN,n, s) returned by the oracle in

Hyb0 is identically distributed as e1||...||eN uniformly sampled by the prover in Hyb1. Therefore, Hyb0
c≡ Hyb1.

We remark that the negligible difference between Hyb0 and Hyb1 comes only from the abort probability.
Define Hyb1+ℓ to be based on Hyb1, with only one difference described below:

NIZK for 3-Colouring in the Random Oracle Model 3

1. The prover samples independent random edges e1, ..., eN . For each i ∈ [N], the prover takes an indepen-
dent random permutation πi of the colouring ψ such that ϕi(j) = πi(ψ(j)) where j ∈ [n]. Let S be the
set of vertices that are endpoints for e1, ..., eN . For the first ℓ vertices that are not in S and
not assigned Red, the prover changes their colour assignment to Red.

Let K be the number of vertices that are not in S and not initially assigned Red. So the series of hybrids

described above are Hyb2, ...,Hyb1+K . We prove Hyb2
c≡ Hyb1+K by contradiction. Suppose Hyb2 and Hyb1+K

are distinguishable. Since K ≤ (n− 2)N = n(n− 2)|E| is polynomial in n, by the hybrid lemma, there must
exist an ℓ ∈ [K] such that Hybℓ and Hybℓ+1 are distinguishable. Between these two neighbouring hybrids, the
only difference is the colour of one vertex, and the commitment of that colour of that vertex. Note that Com
is a perfectly-binding, computationally-hiding commitment scheme. If there exists a distinguisher D that can
distinguish Hybℓ and Hybℓ+1, then we can use D to construct a distinguisher that breaks the computationally-
hiding commitment scheme (we leave the details to the reader as a simple exercise). Contradiction! Thus, we

have Hybℓ
c≡ Hybℓ+1 for all ℓ ∈ [K], which implies Hyb2

c≡ Hyb1+K .
Define HybS to be the verifier interacting with the simulator S. We claim that Hyb1+K ≡ HybS , i.e., they

are identical. To see why, note that the only difference is that in Hyb1+K , the prover first picks a random
proper colouring of the whole graph in each instance, then overrides the colours of other vertices that are not
endpoints of e1, ..., eN and not initially Red to Red; while in HybS , the simulator first assigns independent
distinct random colours to the endpoints of e1, ..., eN and then colours every other vertex to Red. Note that
the only difference in the final colouring can only happen in e1, ..., eN . We claim for any edge ei = (ji, ki)
between Hyb1+K and HybS , the probability of the colour assignments to its endpoints are the same, which is

Pr(ji = Red ∧ ki = Green) = Pr(ji = Green ∧ ki = Blue) = ... =
1

6
.

This is because if you get any proper 3-colouring for that graph, you can get 5 other proper colourings by
rotating the colour classes.

Hence, we have shown Hyb0
c≡ HybS as wanted. ⊓⊔

Remark 3. In 2021, Holmgren, Lombardi, and Rothblum showed that parallel repetition of commit-and-open
protocols (such as GMW) does not preserve zero-knowledge if we only assume LWE [HLR21].

4 Z. Jin

References

HLR21. Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat-Shamir via list-recoverable codes (or: parallel
repetition of GMW is not zero-knowledge). In STOC ’21—Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 750–760. ACM, New York, [2021] ©2021.

Lin17. Yehuda Lindell. How to Simulate It – A Tutorial on the Simulation Proof Technique, pages 277–346. Springer
International Publishing, Cham, 2017.

	NIZK for 3-Colouring in the Random Oracle Model

