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Information extracted from aerial photographs has found applications in a wide range

of areas including urban planning, crop and forest management, disaster relief, and

climate modeling. At present, much of the extraction is still performed by human

experts, making the process slow, costly, and error prone. The goal of this thesis is to

develop methods for automatically extracting the locations of objects such as roads,

buildings, and trees directly from aerial images.

We investigate the use of machine learning methods trained on aligned aerial

images and possibly outdated maps for labeling the pixels of an aerial image with se-

mantic labels. We show how deep neural networks implemented on modern GPUs can

be used to efficiently learn highly discriminative image features. We then introduce

new loss functions for training neural networks that are partially robust to incom-

plete and poorly registered target maps. Finally, we propose two ways of improving

the predictions of our system by introducing structure into the outputs of the neural

networks.

We evaluate our system on the largest and most-challenging road and building

detection datasets considered in the literature and show that it works reliably under

a wide variety of conditions. Furthermore, we are releasing the first large-scale road

and building detection datasets to the public in order to facilitate future comparisons

with other methods.
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Chapter 1

Introduction

Aerial image interpretation is the process of examining aerial imagery for the purposes

of identifying objects and determining various properties of the identified objects. The

process originated during the First World War when photos taken from airplanes were

examined for the purpose of reconnaissance. In its near one hundred year history,

aerial image interpretation has found applications in many diverse areas including

urban planning, crop and forest management, disaster relief, and climate modeling.

Much of the work, however, is still performed by human experts.

Examining large amounts of aerial imagery by hand is an expensive and time

consuming process. First attempts at automation using computers date back to

the late 1960s and early 1970s [Idelsohn, 1970, Bajcsy and Tavakoli, 1976]. While

significant progress has been made in the past thirty years, only a few semi-automated

systems that work in limited domains are in use today and no fully automated systems

currently exist [Baltsavias, 2004, Mayer, 2008].

The recent explosion in the availability of high resolution imagery underscores

the need for automated aerial image interpretation methods. Such imagery, having

resolution as high as 100 pixels per square meter, has greatly increased the number of

possible applications but at the cost of an increase in the amount of required manual

processing. Recent applications of large-scale machine learning to such high-resolution

imagery have produced object detectors with impressive levels of accuracy [Kluckner

and Bischof, 2009, Kluckner et al., 2009, Mnih and Hinton, 2010, 2012], suggesting

that automated aerial image interpretation systems may be within reach.

In machine learning applications, aerial image interpretation is usually formulated

as a pixel labeling task. Given an aerial image like the one shown in Figure 1.1, the

1



Chapter 1. Introduction 2

Figure 1.1: An aerial image of the city of Boston.

goal is to produce either a complete semantic segmentation of the image into classes

such as building, road, tree, grass, and water [Kluckner and Bischof, 2009, Kluckner

et al., 2009] or a binary classification of the image for a single object class [Dollar

et al., 2006, Mnih and Hinton, 2010, 2012].

While image labeling or parsing of general scenes has been extensively studied [He

et al., 2004, Shotton et al., 2008, Farabet et al., 2012], aerial images have a few distinct

characteristics that make aerial image labeling an easier task. First, by restricting

ourselves to overhead imagery with known ground resolution both the viewpoint

and the scale of objects can be assumed to be fixed. Having a fixed viewpoint and

scale reduces the possible variations in object appearance and makes the priors on

object shape less broad than in general image labeling. This suggests that it should

be possible to incorporate strong shape dependencies into an aerial image labeling

systems. Finally, the amount of both unlabeled and labeled aerial imagery is massive

compared to the datasets available for general image labeling tasks. Methods that are

able to effectively learn from massive amounts of labeled data should have a distinct

advantage on aerial image labeling tasks over methods that can’t.

The goal of this thesis is to develop new machine learning methods that are par-

ticularly well suited to the task of aerial image labeling. Namely, this thesis focuses
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on what we see as the three main issues in applying image labeling techniques to

aerial imagery:

• Context and Features: The use of context is important for successfully label-

ing aerial images because local colour cues are not sufficient for discriminating

between pairs of object classes like trees and grass, and roads and buildings.

Additionally, occlusions and shadows caused by trees and tall buildings often

make it impossible to classify a pixel without using any context information.

Since the number of input features grows quadratically with the width of an

input image patch, the number of parameters and the amount of computation

required for a naive approach also increases quadratically. For these reasons,

efficient ways of extracting discriminative features from a large image context

are necessary for aerial image labeling.

• Noisy Labels: When training a system to label images, the amount of labeled

training data tends to be a limiting factor. The most successful applications of

machine learning to aerial imagery have relied on existing maps. These provide

abundant labels, but the labels are often incomplete and sometimes poorly

registered, which hurts the performance of object detectors trained on them. In

order to successfully apply image labeling to buildings and other object types

for which the amount of label noise is high, new learning methods that are

robust to noise in the labels are required.

• Structured Outputs: Labels of nearby pixels in an image exhibit strong

correlations, and exploiting this structure can significantly improve labeling

accuracy. Due to the restricted viewpoint and fixed scale of aerial imagery,

the structure present in the labels is generally more rigid than that in general

image labeling, with shape playing an important role. In addition to being able

to handle shape constraints, a structured prediction method suited to aerial

imagery should also be able to deal with large datasets and noisy labels.

The main contribution of this thesis is a coherent framework for learning to label

aerial imagery. The proposed framework consists of a patch-based formulation of

aerial image labeling, new deep neural network architectures implemented on GPUs,

and new loss functions for training these architectures, resulting in a single model

that can be trained end-to-end while dealing with the issues of context, noisy labels,

and structured outputs.
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Fully embracing the view of aerial image labeling as a large scale machine learning

task, we assemble a number of road and building detection datasets that far surpass

all previous work in terms of both size and difficulty. In addition to releasing the

first publicly available datasets for aerial image labeling we perform the first truly

large-scale evaluation of an aerial image labeling system on real-world data. When

trained on these road and building detection datasets our models surpass all published

models in terms of accuracy.

The rest of the thesis is organized as follows:

• Chapter 2 presents a brief overview of existing work on applying machine learn-

ing to aerial image data. Some related work on general image labeling that has

not been applied to aerial imagery is also covered.

• Chapter 3 presents our formulation of aerial image labeling as a patch-based

pixel labeling task as well as an evaluation of several different proposed architec-

tures. The main contribution is a GPU-based, deep convolutional architecture

that is capable of exploiting a large image context as well as learning discrim-

inative features. This chapter includes work previously published in Mnih and

Hinton [2010] and Mnih and Hinton [2012].

• Chapter 4 addresses the problem of learning from incomplete or poorly regis-

tered maps. The main contributions are loss functions that provide robustness

to both types of label noise and are suitable for training the architectures pro-

posed in Chapter 3. This work has been previously published in [Mnih and

Hinton, 2012].

• Chapter 5 explores ways of taking advantage of the structure present in the la-

bels. We investigate two complementary ways of performing structured predic-

tion – post-processing neural networks and Conditional Random Fields (CRFs).

We argue that neural networks are good at learning high-level structure while

CRFs are good at capturing low-level dependencies, with the combination of

the two approaches being particularly effective. We also show how to combine

a noise model from Chapter 4 with the proposed structured prediction models.

This chapter includes work previously published in Mnih et al. [2011] and Mnih

and Hinton [2012].
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• Chapter 6 introduces the first large-scale publicly available datasets for road

and building detection which are both much larger and more challenging than

any datasets previously used in the literature. We evaluate our most promis-

ing models on the new datasets giving an indication of how well the proposed

algorithms work in the wild.

• Chapter 7 summarizes our most important findings and offers a discussion of

the most promising directions for improving our system.



Chapter 2

An Overview of Aerial Image

Labeling

This chapter aims to present a general overview of aerial image labeling methods. In

particular, we focus on approaches that make use of machine learning as opposed to

ad-hoc and knowledge-based approaches [Idelsohn, 1970, Bajcsy and Tavakoli, 1976,

Kettig and Landgrebe, 1976, Jr. et al., 1985] which account for much of the early

work on automating aerial image interpretation. While knowledge-based approaches

have led to some operational systems in limited domains, machine learning has led

to much of the recent progress in aerial image interpretation as well as progress on

related computer vision problems such as semantic image labeling [Shotton et al.,

2008].

We will use the term aerial imagery to refer to any type of two dimensional and

possibly multi-band data collected by an airborne sensor. In addition to imagery

taken by sensors that measure visible light, this includes sensors that measure other

kinds of electromagnetic radiation, such as infrared and hyperspectral sensors, as well

as sensors that do not measure electromagnetic radiation, such as airborne LIDAR,

which measures the distance to objects from the sensor.

6
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2.1 Early Work - Simple Classifiers and Local Fea-

tures

Some of the first applications of machine learning to aerial imagery considered the

task of classifying land cover, or terrain, into different classes, such as forest, water,

agricultural land, and built-up land. Early approaches tried to predict the discrete

class label ci at a pixel i from a vector xi of features at i [Decatur, 1989, Benediktsson

et al., 1990, Bischof et al., 1993, Paola and Schowengerdt, 1995], with the features

typically just taken to be the values at the different spectral bands at pixel i.

The Bayes’ classifier is one of simplest and most popular approaches to terrain

classification. The Bayes’ classifier makes explicit assumptions about the class condi-

tional distributions p(xi|ci = k) and the prior class probabilities P (ci = k) and uses

Bayes’ rule to obtain the posterior class probabilities P (ci = k|xi). Typically, the

class conditional distribution p(xi|ci = k) is assumed to have a multivariate normal

distribution with mean µk and covariance Σk. Various simplifying assumptions lead

to other popular classifiers. For example, assuming that Σk is diagonal leads to the

Naive Bayes classifier for continuous inputs while assuming that P (ci = k) = 1/K

leads to what is known in the remote sensing literature as the maximum likelihood

classifier [Paola and Schowengerdt, 1995].

The main drawback of the Bayes’ classifier is the need to explicitly specify the

class-conditional distribution p(xi|ci = k). Since the multivariate normal distribu-

tion is typically used for the class-conditional distributions, only linear or quadratic

decision boundaries can be learned by such a model. Neural networks became a pop-

ular alternative to the Bayes’ classifier because they directly model p(ci|xi = k) as a

differentiable function whose parameters are learned [Decatur, 1989, Lee et al., 1990,

Bischof et al., 1993]. This both sidesteps the need to specify p(xi|ci = k), and allows

for richer, non-linear decision boundaries to be learned when at least one hidden layer

of units with a non-linear activation function is used. Due to the ability to learn non-

linear decision boundaries neural networks tend to give higher classification accuracies

than various forms of the Bayes’ classifier [Decatur, 1989, Benediktsson et al., 1990].

Bischof et al. [Bischof et al., 1993] and Boggess [Boggess, 1993] explored adding

contextual information by using spectral values from a small patch centered at the

pixel of interest as the input to a neural network, allowing it to learn some contex-

tual features. However, such features were still very local since they used at most
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a 7 by 7 window for context. Others aimed to improve classification accuracy by

using hand-designed features that encode local textural information [Haralick et al.,

1973, Haralick, 1976, Lee et al., 1990]. Haralick et al. [Haralick, 1976] introduced

a popular set of features derived from gray level spatial dependence matrices Hd,θ,

where H(i, j)d,θ specifies the frequency at which gray level values i and j co-occur

at distance d and angle θ. Statistical quantities derived from Hd,θ were shown to be

good for discriminating between different types of textures. For example, the sum of

squares of the entries of Hd,θ can be used to discriminate coarse textures from fine

textures because the sum of squares should be higher for coarse textures than for fine

textures when d is small.

Since such systems were generally applied to low resolution imagery, with a single

pixel representing as much as 30x30 meters, local spectral cues were sufficient for

discriminating between broad classes of interest, such as forest and farmland, with

reasonably high accuracy. For example Bischof et al. [Bischof et al., 1993] report

accuracies in the range of 85% on a four class classification task using only the values

of seven spectral bands as input.

However, with increasing availability of higher resolution data, the focus shifted

to classifying aerial imagery into finer object classes, such as roads, cars, and trees.

At resolutions higher than one pixel per square meter, differences in object type,

shape and material as well as variations in weather and lighting conditions make it

impossible to accurately classify objects based on local cues alone.

2.2 Move to High-Resolution Data

The Ikonos and Quickbird satellites, launched in 1999 and 2001 respectively, began

acquiring panchromatic images of the surface of the Earth at resolutions of roughly

one square meter per pixel, significantly increasing the number of possible applications

of aerial image interpretation systems. Since at this resolution the classes of interest

are man-made objects such as buildings, roads, and cars, the approach of training

simple classifiers on very local spectral and textural features that was moderately

successful on low resolution images no longer leads to acceptable accuracy levels.

The approaches discussed in the previous section no longer work because they were

generally designed to do local texture classification, but the problem of classifying

high-resolution imagery is much more complex, requiring knowledge of shape and
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context in addition to texture.

During the move from low-resolution to high-resolution image labeling the most

notable trends were:

1. The switch to more powerful or sophisticated classifiers such as AdaBoost,

SVMs, and random forests.

2. The use of more spatial context and richer input features.

3. The use of much more data for training and testing.

4. The use of structured prediction methods such as Conditional Random Fields.

We will discuss the first three trends in some detail in the following subsections and

delay the discussion of structured prediction methods to a later, separate section.

2.2.1 Better classifiers

Discriminating between object classes with similar texture, such as roads and build-

ings, requires some knowledge of shape and context, which in turn leads to much

more complex decision boundaries than the ones required for discriminating between

wooded and built up areas in low-resolution imagery. Due to the need to learn such

highly nonlinear decision boundaries, applications of machine learning to high reso-

lution imagery have relied on more sophisticated classifiers such as SVMs, random

forests and various types of boosting.

While neural networks are able to learn nonlinear decision boundaries and have

been widely used in remote sensing applications, many researchers found them difficult

to train due to the presence of local optima [Benediktsson et al., 1990]. Support Vector

Machines presented an attractive alternative to neural networks because, like neural

networks, they are able to learn nonlinear decision boundaries, but, unlike neural

networks, SVMs optimize a convex loss function and do not suffer from the problem

of local optima. Since SVMs are essentially sophisticated template matchers and have

been shown to work poorly when applied as classifiers to raw image patches [LeCun

et al., 2004], they are generally used in combination with higher level features in

the computer vision community [Lazebnik et al., 2006]. Applications of SVMs to

aerial image interpretation have been much more primitive than in the computer
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vision community, with most papers using SVMs to classify pixels using only low-

level features [Huang et al., 2002, Song et al., 2005].

Some of the more successful approaches to labeling high resolution aerial imagery

have relied on various ensemble methods, with boosting and random forests being

particularly popular. Porway et al. [2008] developed a hierarchical model for aerial

image parsing that relied on bottom up detectors for cars, roads, parking lots and

buildings that were trained using different types of boosting. Other notable applica-

tions of boosting include the work of Dollar et al. [Dollar et al., 2006], who developed

a general framework for learning to detect image boundaries using a boosted pixel

classifier and presented some qualitative results on road detection, and the work of

Nguyen et al. [Nguyen et al., 2007] who used online boosting to learn a car detector.

A common reason for using boosting in these applications is its ability to perform

feature selection from a very large pool of features when the set of weak learners is

restricted to learners that look at a single feature. Dollar et al. [2006] were able to

use a pool of 50,000 filter responses as features for their edge classifier.

A random forest is another tree-based ensemble method that has been widely

used in image labeling applications. A random forest classifier consists of a number

of decision trees whose predictions are typically combined using majority voting. The

goal of the training procedure is to reduce the variance of the ensemble by trying to

produce decorrelated trees. This is achieved by learning each tree on a random subset

of the dataset and using a random subset of the input variables. A number of papers

by Kluckner et al. [Kluckner et al., 2009, Kluckner and Bischof, 2009] use random

forests for performing semantic classification of aerial images with impressive results.

While random forests and boosting of tree classifiers both construct ensembles of

trees, they do so in completely different ways, leading to clear advantages and dis-

advantages that may make one more suitable to aerial imagery applications. While

boosting has been found to perform better than random forests in several bake offs,

algorithms such as AdaBoost are known to perform poorly in the presence of outliers

or mislabeled training cases because they tend to emphasize the difficult cases during

training. This may be a serious limitation in the context of aerial image interpreta-

tion because perfectly registered and up-to-date label information is rarely available.

Random forests, on the other hand, are much less affected by mislabeled data because

each tree is built on a random subset of the training data using a random subset of

the input features and no special emphasis is placed on the difficult training cases.
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Additionally, random forests are embarrassingly parallelizable while boosting is much

more difficult to parallelize due to its sequential nature. Given these reasons random

forests seem to be somewhat better suited to aerial image classification.

2.2.2 Better features

The approach of using the values of multiple bands at a single pixel, or even a window

of a small size such as 5x5, as input to a classifier is hopeless on high resolution

imagery because the input simply does not contain enough information to discriminate

between object classes. The simplest way of addressing this problem is to use a larger

input window as input. Mnih and Hinton [Mnih and Hinton, 2010] showed that

increasing the size of the input patch from 24 by 24, which is already a large context

size compared to other work, to 64 by 64 significantly improves precision and recall

on a road detection task.

Simply using a large image patch for input can be slow even on modern computers

because the computational cost of applying a linear filter to a square patch scales

quadratically with the width of the patch. For this reason recent work has relied on

efficiently computable features in order to scale up to large context sizes [Kluckner

and Bischof, 2009, Nguyen et al., 2007, Dollar et al., 2006]. The most widely used class

of efficiently computable image features is the set of features that can be expressed

as a linear combination of sums of rectangular regions of the image [Viola and Jones,

2001]. To compute such filters efficiently, let I(x, y) be the value of the image intensity

of a single channel at location (x, y) and define

S(x, y) =
∑
x′≤x

∑
y′≤y

I(x′, y′). (2.1)

S is known as the integral image of I and can be computed in time linear in the

number of pixels in the image. Once S is computed, the sum of any sub-rectangle of

I can be computed in constant time. For example, the sum of I over the rectangle

[a, b]× [c, d] can be computed as S(b, d)−S(b, c)−S(a, d)+S(a, c). Features that can

be computed efficiently using the integral image trick include special cases of Haar

wavelets [Viola and Jones, 2001] and histograms of oriented gradients.

Typically, people rely on filters from one or more popular filter banks for obtaining

input representations. Filters in the Haar basis, shown in Figure 3.10 (top), consist
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Figure 2.1: Filters from widely used filter banks. Top) Haar. Middle) Oriented
Gaussian derivatives. Bottom) Oriented Gabors.

of axis aligned rectangles and produce the largest outputs when strong edges in the

image align with the edges in the filter. In order to detect non-axis aligned edges more

easily, filters based on oriented derivatives of Gaussians have been used. The popular

filter bank proposed by Leung and Malik uses oriented first and second derivatives

of a Gaussian at three scales and six orientations, shown in Figure 3.10 (middle).

Filters based on oriented Gabor wavelets, shown in Figure 3.10 (bottom), are good

at detecting parallel oriented edges and are commonly used for exploiting textural

information. Since computing a large number of such features for each image patch

can be expensive, either a small number of filters tend to be used, such as in the

Leung and Malik filter bank, or a feature selection approach, such as boosting, is

used to select a few of the filters from a large pool of candidate filters. Dollar et al.

[2006] replicated a filter bank similar to the one pictured in Figure 3.10 over multiple

locations of a 50x50 patch for a total of over 50000 filters and used boosting to select

a small subset of them. When no feature selection is performed, specialized hardware,

such as GPUs, can be used for learning with a large number of features [Mnih and

Hinton, 2010] because such hardware tends to be much faster than modern CPUs at

performing dense linear algebra operations.

A more recent trend in aerial image labeling is the use of unsupervised feature

learning methods such as sparse coding and Restricted Boltzmann Machines [Mnih

and Hinton, 2010]. Using features learned by a Restricted Boltzmann Machine to

initialize a neural network trained on a road detection task has been shown to signifi-

cantly improve both precision and recall over training a neural network from random

initialization [Mnih and Hinton, 2010]. Rigamonti et al. [2011] used a variant of sparse

coding to learn features for several linear structure segmentation tasks. While their

qualitative results on road detection are not very good, their system obtains state-of-
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the-art performance on a retinal blood vessel segmentation task. Such unsupervised

feature learning approaches tend to learn filters that resemble oriented edge detectors

and Gabor wavelets [Mnih and Hinton, 2010, Rigamonti et al., 2011] and have the

advantage of potentially being able to learn the best filters for the task at hand as

opposed to just selecting the best ones from a pool of features that appear at only a

few scales and orientations.

A different type of feature that has been shown to be immensely useful for aerial

image interpretation is height information. Kluckner et al. [Kluckner et al., 2009]

showed that using height in addition to rich appearance-only features boosts classifi-

cation accuracies by 10 to 20%. The result should not be surprising because height

information can help discriminate between very confusable pairs of objects such as

roads/buildings and grass/trees. Height information can either be derived directly

from LIDAR data or from overlapping image pairs using stereo techniques. While

extremely helpful, height information may be difficult to obtain because LIDAR data

is less widely available and more expensive than aerial imagery, and most aerial im-

agery comes in the form of non-overlapping orthorectified image tiles which do not

contain stereo information.

2.2.3 Larger datasets

In early work on aerial image labeling it was common to use a single image for both

training and testing [Bischof et al., 1993, Bruzzone and Prieto, 2000]. Such a small

amount of data cannot possibly cover a large range of variations in the appearance

of various objects leading to classifiers that are unlikely to work well on unseen data.

The limited size of the test set as well as its similarity to the training data means

that the accuracy levels reported in earlier work are unlikely to translate to larger

datasets. Recent applications of machine learning to high-resolution aerial imagery

have used much more training data. For example, Porway et al. [2008] used 120 images

ranging in size from 640x480 to 1000x1000 for training their hierarchical probabilistic

grammar model of aerial image annotations. Kluckner et al. [Kluckner et al., 2009,

Kluckner and Bischof, 2009] used three datasets of roughly 100 images with each

dataset covering between 5 and 8 square kilometers to train a random forest classifier,

while Mnih and Hinton [Mnih and Hinton, 2010] trained a large neural network on

130 large images that cover an area of roughly 500 square kilometers at a resolution of
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0.7 pixels per square meter. Datasets of this size are more likely to contain significant

variations in the appearance of objects and, when used for training, these datasets

make it much harder for powerful classifiers to overfit.

2.3 Structured Prediction

The labels of nearby image pixels tend to be highly dependent due to the spatial

coherence of images and incorporating such knowledge into a predictor should improve

its accuracy. This idea of exploiting structure in the output labels was used in some of

the earliest work on aerial image labeling [Kettig and Landgrebe, 1976] and continues

to be important. This section provides an overview of the three main approaches

to structured prediction, namely segmentation, post-classification, and probabilistic

approaches.

2.3.1 Segmentation

Segmentation-based approaches work by first segmenting an image and then classify-

ing entire regions instead of individual pixels. Such approaches were among the first

to be proposed and are still in use today, usually in combination with a probabilistic

approach. In early work, Kettig and Landgrebe [Kettig and Landgrebe, 1976] pro-

posed a procedure that first classified non-overlapping aerial image patches of size

4 by 4 into homogeneous and non-homogeneous regions. The non-homogeneous re-

gions were then classified pixel-by-pixel, while homogeneous regions were merged into

larger regions and then classified using a region classifier. The standard approach is

to oversegment the image into what are known as superpixels and then classify the

superpixels individually [He et al., 2006, Huang and Zhang, 2009]. A statistical ap-

proach such as a Conditional Random Field can then be used to exploit dependencies

in neighbouring superpixel labels, as was done by He at al. [He et al., 2006].

While initially used as a structured prediction method, more recently segmentation-

based methods have been used for reducing the complexity of image labeling prob-

lems [He et al., 2006]. Labeling a few hundred superpixels per image can be a lot

less computationally demanding than labeling thousands of pixels, allowing for more

complex models to be used. The main drawback of segmentation-based approaches

to structured prediction is that they are usually unable to recover from incorrect seg-
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mentations, which can be particularly problematic in the aerial image setting where

occlusion of objects by trees or buildings is common. Some extensions of this approach

can reduce such failures by generating multiple oversegmentations using different pa-

rameter settings and combining classifications of the different segmentations into a

single classification of the pixels [Kohli et al., 2009].

2.3.2 Post-classification

Post-classification approaches aim to let predictions at one pixel indirectly influence

predictions at nearby pixels. For example, salt and pepper noise can be reduced

without any learning by applying a majority vote filter to the outputs of a local

classifier. Alternatively, some classifier is used to obtain preliminary labels for all the

pixels and a second classifier is then trained to predict a new label for each pixel based

on the preliminary labels of nearby pixels. The hope is that this second classifier will

be able to clean up the output of the first classifier. Bischof et al. [Bischof et al.,

1993] trained a neural network that looks at a 5x5 window of predictions to predict a

new label for the middle pixel, improving classification accuracy by several percent.

Mnih and Hinton [Mnih and Hinton, 2010] used a neural network with a 64x64 input

window to clean up predictions of another neural network on a road detection task,

significantly improving both precision and recall.

2.3.3 Probabilistic Approaches

Probabilistic approaches directly model the conditional probability P (y|x) of the la-

bels y given the image x. By far the most widely used probabilistic model for struc-

tured prediction is the conditional random field, which models P (y|x) as a Markov

random field over the labels y that is globally-conditioned on the image x. More

precisely

P (y|x) = exp

(
−
∑
c∈C

fc(yc,x)

)
/Z(x), (2.2)

where C is a set of cliques over y, fc’s are potential functions, and Z(x) is the partition

function.

The most widely used form of CRFs in both aerial imaging applications and

the field of computer vision in general is the pairwise CRF, for which the model
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distribution takes the form

P (y|x) = exp

−∑
i

U(yi,x)−
∑
i

∑
j∈N(i)

Iij(yi, yj,x)

 /Z(x), (2.3)

where i indexes the label sites and N(i) gives the neighbouring sites for site i. The

model has two types of potentials. Ui is the unary potential which determines how

well label yi agrees with the image x, while Iij is an interaction potential which

determines how well the labels at sites i and j agree with each other and, possibly,

the image x.

In image labeling applications of CRFs the graphical structure of the model is

almost always either a lattice or a tree. In a typical lattice the sites are laid out on

a grid with each site connected to either its 4 or 8 neighbours, depending on whether

the diagonal neighbours are connected. The lattice structure is generally used when

the pixels themselves or rectangular sets of pixels are used as the labeling sites. Such

CRFs have been applied to urban area detection [Zhong and Wang, 2007] and LIDAR

point classification [Niemeyer et al., 2008]. Tree structured CRFs are typically used

when the labeling sites are regions obtained by first segmenting the image. This

technique is often used for significantly reducing the number of random variables

over which the CRF is defined in order to speed up inference and learning [Modestino

and Zhang, 1989].

Pairwise CRFs are appealing for their simplicity, but since they use only pairwise

interaction potentials they seem to restrict one to only being able to encourage label

smoothness constraints. While smoothness is probably the most important constraint

for aerial image labeling applications, being able to include other types of constraints

is desirable. For example, the fact that roads tend to have different shape than

buildings is a very strong cue for distinguishing between roads and buildings. In

order to incorporate such knowledge into a model one would need to be able to

encode constraints on shape. Similarly, constraints based on layout could be useful

for detecting buildings because buildings tend to be next to roads. The multiscale

CRF model proposed by He et al. [2004] is an alternative to pairwise CRFs that

is able to learn the shape and layout of objects. For the case of binary labels y,

the CRF of He et al. [2004] is a conditional Restricted Boltzmann Machine with the
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model distribution given by

P (y|x) =
∑
h

exp
(
yTWh + hTbh + yT [bv + f(x)]

)
/Z(x), (2.4)

where h is a vector of stochastic latent variables, f(x) is the vector of features ex-

tracted from the image x, and the model parameters are W,bh, and bv. Each latent

variable hj corresponds to a single feature of the labels y and can encode possible

shapes of objects as well as different arrangements of objects.

Probabilistic approaches to structured prediction are the most principled since

they can directly enforce smoothness and other constraints on the labels. The ability

to model complex distributions, however, often makes exact or efficient inference

intractable. In the case of CRFs, the models for which exact inference is tractable

tend to be simple models such as tree-structured CRFs, or lattice-structured CRFs

with sub-modular potentials. When working with more expressive classes of CRFs

one generally has to resort to approximate inference and learning procedures, making

the application of such models difficult.

2.3.4 Discussion of Structured Prediction

Out of the approaches to structured prediction we have discussed, methods based

on segmentation are the weakest because of their rigidity. Due to this weakness,

segmentation-based methods are now rarely used without being combined with a

probabilistic model. Nevertheless, segmentations of an image can provide useful

contextual information and have been used to construct new high-level image fea-

tures [Shotton et al., 2008] for use in CRFs. Post-classification approaches can work

well when a large training set is available [Mnih and Hinton, 2010], but such meth-

ods only incorporate indirect dependencies between the labels through the cleanup

process and are not as principled as probabilistic approaches. The combination of a

post-classification approach with a probabilistic model, such as a CRF, offers an inter-

esting possibility. Since incorporating rich dependencies among the labels y generally

leads to intractable inference, applying a CRF in which exact inference is tractable to

the outputs of a classifier would allow for incorporating complex dependencies over

the outputs without having to resort to inefficient or approximate inference.
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2.4 Source of Supervision

One important, yet rarely discussed, aspect of using machine learning for aerial im-

age interpretation is the source of the data. The vast majority of papers rely on

hand-labeled data for both training and testing [Bischof et al., 1993, Nguyen et al.,

2007, Porway et al., 2008, Kluckner et al., 2009, Kluckner and Bischof, 2009, Nguyen

et al., 2010] and since labeling images is a very time consuming process, the datasets

have been small in both aerial image applications and general image labeling work.

A typical aerial image dataset covers a relatively small area of a single city, ranging

anywhere between one square kilometer and ten square kilometers [Kluckner et al.,

2009, Kluckner and Bischof, 2009], which seriously limits the variability due to archi-

tectural styles, weather conditions, and seasonal variations. Good results obtained

by training and testing an image labeling approach on such a small amount of data

will not necessarily translate to good performance on an entire city, especially if the

city is different from the one seen during training. Hence, obtaining good sources

of accurately labeled data is important for both evaluating existing approaches and

training systems that are likely to work under varying conditions.

In some domains hand-labeling data in order to train a classifier is not necessary

because the label information is often readily available. For example, in the case

of road detection the locations of existing roads are typically known because they

are useful for navigation and not just as target labels in a machine learning task.

The abundance of accurately labeled data for road detection makes it a very good

candidate for evaluating existing aerial image interpretation systems as well as the

application of machine learning techniques. While recent work on road detection

has largely switched to using large, freely-available sources of data, such as Google

Maps [Dollar et al., 2006, Huang and Zhang, 2009, Rigamonti et al., 2011], these

papers still do not use very much data for training and testing.

For buildings, Google Maps can provide the locations of a substantial portion of

the buildings in almost any major city. This type of data can act as a source of noisy

labels, which are correct with very high probability when they indicate the presence

of an object and with lower, but still high, probability when they indicate the absence

of an object. Training a classifier on large amounts of this type of noisy data with a

robust loss function can potentially produce a much better detector than by using a

much smaller set of accurate labels. At present, there seem to be no applications of
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robust estimators to aerial image data with noisy labels.

For object classes such as cars or areas for which Google Maps possesses neither

accurate nor complete map information, hand-labeling data seems to be the only

option. While the use of crowdsourcing tools like Amazon Mechanical Turk can make

it easier to collect label information, the process can still be expensive and time

consuming to set up. When only a limited amount of labeled data is available it

is often possible to generate new labeled data by transforming existing data. In a

classification task, small translations or rotations can be applied to the input images,

but in order to apply the same idea to image labeling one must be able to realistically

transform both the image and the labels. On a road detection task, applying rotations

to each training case before it is processed has been shown to help prevent overfitting

and drastically improve performance on cities not seen during training [Mnih and

Hinton, 2010]. Applying affine photometric transformations to training images has

been shown to improve performance in a general image labeling task [Shotton et al.,

2008], and can be potentially even more useful for aerial imagery, where this process

could simulate things like varying levels of sunlight.



Chapter 3

Learning to Label Aerial Images

This chapter presents our patch-based framework for learning to label aerial images

and is divided into three parts. The first part describes the general framework, how

we use neural networks within the framework, as well as issues relating to generating

data and training and evaluating the models. In the second part of the chapter we

attempt to answer the question of what is a good neural network architecture for

aerial image labeling tasks by performing an extensive experimental comparison of

different architectures. In the last part, we present a qualitative evaluation of the

best neural network architecture on road and building detection tasks and attempt

to shed some light on what the neural networks are actually learning.

3.1 Patch-Based Labeling Framework

The input to our aerial image labeling system is a list of aerial images S = (S(1), . . . ,S(N))

and a list of corresponding map images M = (M̃
(1)
, . . . , M̃

(N)
). The aerial images

S(n) are assumed to be rectangular images with c channels and can be anything from

gray scale or RGB aerial images to elevation maps and hyperspectral images. For

each n, the map or label image M̃
(n)

is an image of the same size as S(n) with M̃
(n)

i

denoting the label for the ith pixel of S(n). For binary image labeling tasks, M̃
(n)

will be either 1 or 0, typically representing the presence or absence of an object of

some class of interest. For multi-class problems, M̃
(n)

will take on values from a set

of possible labels {1, . . . , L}. Figure 3.1 shows an example of an aerial image on the

left and the corresponding map image denoting the locations of roads on the right.

The goal of this thesis is to develop methods that use the training data S and M to

20
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Figure 3.1: Sample aerial image (left) and a binary map (right) denoting the location
of roads.

learn to predict the label map for new unseen aerial images.

We propose a patch-based learning framework where the aim is to predict patches

of M̃
(n)

from patches of S(n). Before precisely defining the learning setup, we simplify

notation by dropping the indices (n) from S(n) and M̃
(n)

and instead refer to an aerial

image S and the corresponding map image M̃. Taking a probabilistic approach we

define the central problem of this thesis as one of learning a model of the distribution

P (n(M̃, i, wm)|n(S, i, ws)), (3.1)

where n(I, i, w) denotes the w × w patch of image I centered at pixel i. Hence, we

model the distribution of a wm×wm patch of labels conditioned on a larger, ws×ws
aerial image patch centered at the same pixel. Typically wm should be smaller than

ws because some context is required for predicting the labels. While wm can be set

to 1 to predict one label at a time, it is generally more efficient to predict a small

patch of labels from the same context. This approach of predicting patches of labels

is in contrast to the approaches of Dollar et al. [2006], Kluckner et al. [2009], which

make separate predictions for each pixel.

To further simplify notation, we will use vectors s and m̃ to denote an aerial
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image patch n(S, i, ws) and the corresponding map patch n(M̃, i, wm) respectively.

For now we will ignore the dependencies among nearby labels and assume conditional

independence of the map labels given the aerial image patch s. Using this assumption

and the simplified notation, Equation 3.1 can be rewritten as

P (m̃|s) =

w2
m∏

i=1

P (m̃i|s). (3.2)

We will refer to P (m̃|s) as the observed map distribution. While the probabilistic

formulation may seem unnecessary at first, its benefits will become apparent when

we consider the problem of dealing with noisy labels in Chapter 4.

We propose modeling the observed map distribution using neural networks. Neu-

ral networks are particularly well suited to aerial image labeling tasks because of

several distinct advantages. Most importantly, neural networks have been shown to

work particularly well on perceptual tasks with large amounts of labeled data, out-

performing expert-designed systems in multiple domains [Dahl et al., 2010, Sermanet

et al., 2012]. The large amounts of existing maps suggests that this success could

apply to tasks such as road and building detection, for which large labeled training

sets can be constructed. Another important benefit is the ease with which neural net-

works can be parallelized on modern GPUs, which will make it possible to efficiently

scale up our models to large input contexts and train them on large datasets.

We will use f to denote the functional form of our neural network model, which

maps an input aerial patch s to a distribution over the label patch m̃. f will always

have one input for each entry of s, but the number of outputs is determined by the

number of possible labels.

For binary labeling tasks, we use neural networks that have one output unit for

each pixel of the map patch m̃ with the output of unit i representing the predicted

probability that the ith label is 1. Since they encode probabilities, these output units

use the logistic activation function defined as σ(x) = 1/(1+exp(−x)). More formally,

fi(s) = σ(ai(s)) = P (m̃i = 1|s)

where fi is the value of the ith output unit and ai is the total input to the ith output

unit.

For multi-class labeling tasks, we use neural networks f with one softmax output
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unit for each map patch pixel. The ith softmax unit outputs a vector with L compo-

nents which encodes distribution over the possible labels for pixel i. If we let ail be

the total input to component l of softmax unit i, and fil be the predicted probability

that map pixel i has label j, then

fil(s) = exp(ail(s))/Z = P (m̃i = l|s),

where Z =
∑

l exp(ail)(s).

In order to simplify the presentation for the remainder of the thesis we will only

consider binary aerial image labeling tasks. Most of the techniques we will present

can be trivially extended to the multi-class setting by replacing sigmoid outputs with

softmax outputs, but we will provide the necessary details whenever the extension of

a technique to the multi-class setting is not obvious.

3.1.1 Learning

We learn the parameters of the neural networks by minimizing the negative log like-

lihood of the training data under our model. For binary data, the negative log

likelihood under the model in Equation 3.2 takes the form of a cross entropy between

the map patch m̃ and the predicted label probabilities fi(s)

L(S,M) =
∑

allpatches

w2
m∑

i=1

(m̃i ln fi(s) + (1− m̃i) ln(1− fi(s))) . (3.3)

The outer sum of the objective L is over all possible patches in the training data.

Since there is a very large number of patches in our dataset we use stochastic gradient

descent with minibatches for optimizing L. For datasets that fit in memory, we

generate minibatches by repeatedly selecting a random pair (S(n), M̃
(n)

) and sampling

a random patch from (S(n), M̃
(n)

). For datasets that don’t fit in memory, we keep

a buffer of N ′ pairs of image/label images in memory and generate minibatches by

sampling patches at random from this buffer. By periodically replacing one of the N ′

pairs in the buffer with one of the N − N ′ pairs outside the buffer we approximate

random sampling of patches from the entire dataset.
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Preprocessing

We have not explored the issue of preprocessing with the exception of relatively simple

contrast normalization. We normalize each input patch by subtracting the average

value computed over the patch and dividing by the standard deviation computed

over the entire dataset. Using more sophisticated types of preprocessing, such a local

contrast normalization is likely to lead to additional improvements in performance.

Adding Rotations

We found that it is useful to rotate each pair of image and label patches by a random

angle during learning. Since many cities have large areas where the road network

forms a grid, training on data without rotations will result in a model that is better at

detecting roads and buildings at certain orientations. Figure 3.3 shows three patches

taken from the Toronto Roads dataset with a clear bias in the orientations of the

roads. By randomly rotating the training cases the resulting models do not favour

objects in any particular orientation. The improvement is particularly noticeable on

infrequently appearing objects like highways, for which the orientation bias can be

even stronger than for normal roads.

Tuning Hyperparameters

When training neural nets with stochastic gradient descent one generally has to set a

number of hyper parameters including the learning rate, the amount of momentum,

the type and amount of weight decay, the mini batch size, and possibly others. We

did not separately tune these parameters for each architecture because doing so would

require a massive amount of computation. We chose the values of hyperparameters

shared by all models by selecting the values that maximize the performance of a shal-

low fully-connected network on the validation set of the Toronto Roads dataset. In

the few cases where we tried tuning the values of these hyperparameters for individ-

ual models or architectures we saw slight improvements in precision and recall, but

the order of models in terms of performance remained the same as for fixed hyperpa-

rameters. For this reason we believe that using the same values for hyperparameters

shared by all models is a reasonable thing to do when comparing models. Table 3.1

shows the hyperparameter values used for the comparisons in this chapter.
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Hyperparameter Value Comments
Learning rate 5 · 10−4

Momentum 0.9 We did not try other amounts of momentum.
Type of weight decay L2
Amount of weight decay 0.0002 Had little influence on performance.

Table 3.1: The values of hyperparameters used for the comparisons in this chapter.

3.1.2 Generating Labels

In order to train our labeling system, we need an abundant source of aerial images

with pixel-level labels. While high-resolution imagery of many parts of the world

is easy to obtain, per-pixel labels are scarce because they are mostly of interest as

labels in a machine learning task. Hence per-pixel labels must be derived from other

types of data. As we discussed in Chapter 2 the locations of many roads, buildings,

and other objects are freely available through the OpenStreetMap project in vector

format. While this data is often incomplete and noisy, it is still the largest freely

available source of such information which can be used to construct approximate

per-pixel labels for training our systems.

We must decide on a way of converting vector maps to pixel-level labels before

we can use vector maps to train a pixel labeling system. The way vector labels are

rasterized will clearly have some effect on how well a system learns to label images,

but in order to evaluate how good the rasterization procedure is one needs access

to accurate per-pixel labels. Since we do not have access to such data we resort to

using rasterized labels for both training and evaluation purposes. This means that

our rasterization procedure ends up as a somewhat arbitrary choice and there are

likely other, better ways of converting vector labels to pixel-labels. Nevertheless, by

visualizing the predictions of different models trained with our rasterization procedure

we found that large differences in our evaluation metrics correspond to noticeable

visual qualitative differences in the predictions and that the best systems indeed

produce very good quality predictions.

We now describe our rasterization procedure. Vector maps consist of three types

of objects: polygons, lines, and points. Polygons are generally used to provide rea-

sonably accurate outlines of parks and building footprints, and hence they can simply

be rasterized to obtain a per-pixel label map M̃. Some care must be taken with lines,

which tend to represent structures like roads and rivers, and points, which tend to
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represent small objects like houses and trees, because the vector representations do

not provide per-pixel information. We attempt to generate reasonable soft per-pixel

labels by applying simple smoothing to the rasterized objects. We define the label

map M̃ for linear or point features as

M̃i = e−
d(i)2

σ2 , (3.4)

where d(i) is the Euclidean distance, in pixels, between location i and the nearest

object in the map. The smoothing parameter σ depends on the scale of the aerial

images being used as well as the type of object being rasterized. For example σ should

probably be higher for roads than for trees. This soft weighting scheme accounts for

some uncertainty in the location and shape of objects represented by lines and points.

3.1.3 Evaluating Predictions

The most common metrics for evaluating road detection systems are precision and

recall, which are known as correctness and completeness in the remote sensing litera-

ture [Wiedemann et al., 1998]. The precision is the fraction of predicted road pixels

that are true roads , while the recall of a set of predictions is the fraction of true road

pixels that were correctly detected.

Since the the vector maps we use to generate pixel labels are only accurate up

to a few pixels we compute relaxed precision and recall scores instead of exact ones.

Namely, in our experiments recall represents the fraction of true road pixels that

are within ρ pixels of a predicted road pixel, while precision represents the fraction

of predicted road pixels that are within ρ pixels of a true road pixel. Relaxing the

completeness and correctness measures in this manner is common practice when eval-

uating road detection systems [Wiedemann et al., 1998]. The slack parameter ρ was

set to 3 pixels for all experiments performed in this thesis.

Since the methods presented in this thesis predict the probability of each label

belonging to the class of interest, it is possible to trade off precision for recall by

varying the threshold for making a concrete prediction. One common way of evalu-

ating probabilistic binary classifiers is using precision-recall curves, which show the

trade-off between precision and recall for all threshold values. We use precision-recall

curves for presenting quantitative comparisons involving a small number of models

because presenting entire curves conveys the most information.
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Figure 3.2: Three example precision-recall plots with their breakeven points marked
by ”x”’s.

When making comparisons involving more than a few models, we opt for pre-

senting plots or tables of summary statistics because precision-recall plots involving

a large number of models can be difficult to interpret. While there are many well

known summary statistics for precision-recall curves, including F1-measure, breakeven

point, or precision at a fixed recall level, they all lose information compared to com-

plete curves. However, we found that in our experiments sorting the models by their

performance on most reasonable summary statistics usually lead to the same order

of models. This occurred because if one model achieved higher precision at one recall

level than another model it often achieved higher precision at all recall levels, domi-

nating the other model. Due to this fact the choice of the summary statistic used to

compare models was not particularly important because it had almost no impact on

the ordering of models. In the end we chose to report the point on the precision-recall

curve where precision is the same as recall, also known as the breakeven point, as the

summary statistic. Figure 3.2 shows three precision-recall curves and their breakeven

points.

3.2 Datasets

Due to the lack of aerial image datasets that are suitable for evaluating machine

learning methods, we constructed several large and challenging datasets using aerial
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images of the Greater Toronto Area. We used these datasets for all experiments

performed in Chapters 3, 4, and 5. Unfortunately, the imagery used to construct these

datasets is not publicly available because we were not aware of several repositories

of free high-resolution aerial imagery at the time. Chapter 6 will present the first

large-scale publicly available datasets for road and building detection along with

benchmarks of the most promising models developed in this thesis. We now describe

the characteristics of the proprietary datasets used in the next three chapters.

Toronto Roads Dataset

The Toronto Roads dataset consists of roughly 500 square kilometers of training data,

48 square kilometers of test data, and 8 kilometers of validation data at a resolution

of 1.2m per pixel. This dataset contains both urban and suburban areas of Toronto.

The target road map for the Toronto Roads dataset contains some omitted roads but

has only minor registration problems.

Hamilton Roads Dataset

The Hamilton Roads dataset consists of a training set of roughly 250 square kilometers

of the city of Hamilton at a resolution of 1.2m per pixel. The target road map for

this dataset contains frequent registration errors in addition to some omitted roads

and for this reason we only used it to study the effectiveness of the robust losses

introduced in Chapter 4. Figure 4.7(a) shows a representative subset of the Hamilton

Roads dataset.

GTA Buildings Dataset

The GTA Building dataset consists of roughly 600 square kilometers of imagery of

the Greater Toronto Area. The target map contains significant omission errors and

includes mostly large buildings, with most but not all houses unlabeled. Due to the

presence of noise in the targets, we used only 8 square kilometers of hand-labeled

data for validation.
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Figure 3.3: Three sample input patches from the Toronto Roads dataset. The red
square denotes the region for which labels are predicted.

3.3 Architecture Evaluation

We now proceed to an evaluation of different neural network architectures on the task

of road detection. We train the neural networks to predict 16× 16 map patches from

64 × 64 input aerial image patches in the Toronto Roads dataset. Figure 3.3 shows

three example input patches, with a red square denoting the region for which label

predictions are to be made. In the Toronto Roads dataset each pixel corresponds to

1.44 square meters, making a 64× 64 input patch contain sufficient information for a

human to correctly identify the objects in the target region.

We evaluate a number of architecture design choices, including the number of

layers, the connectivity pattern between layers, types of hidden units, and the use of

pooling. While several such studies have been conducted for the problem of object

recognition [Jarrett et al., 2009, Coates et al., 2011] it is unclear whether the same

conclusions apply for image labeling tasks. For example, max-pooling discards in-

formation about the location of features and while this may be beneficial for object

recognition it may not lead to similar improvements for image labeling, where the

precise location of objects needs to be predicted. Moreover, due to the small size of

most object recognition datasets design choices that help reduce overfitting seem to

provide substantial benefits, but as we will see later in this chapter overfitting is far

less of a problem for our datasets so it is unclear whether methods that aim to reduce

overfitting will offer any benefits at all.

3.3.1 One Layer Architectures

We first compare different neural networks with a single hidden layer. All the net-

works we compare have 3 ·642 inputs that correspond to a contrast-normalized 64×64
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RGB aerial image patch. The input is fed to a hidden layer that extracts roughly

12000 features and applies a nonlinearity, possibly followed by pooling. The number

of hidden units is held approximately the same in order to fix the size of the extracted

feature representation to be roughly the same. In all of the networks the hidden layer

is followed by a fully connected output layer of 256 logistic output units. We compare

the following one-layer architecture types differing only in the connectivity pattern of

the hidden layer:

Fully connected architecture: As the name suggests, this architecture has a fully

connected hidden layer. Since a fully connected network with 12000 hidden units has

roughly 150 million parameters it is slow to train even on a GPU. We instead use a

fully connected network with 4096 hidden units and roughly 50 million parameters,

making it somewhat more manageable.

Factored architecture: The hidden layer of a factored architecture approximates

a full m × n weight matrix as a dot product of two low rank matrices UTV where

U is an f ×m matrix and V is an f × n matrix. This low rank approximation can

greatly reduce the number of free parameters over the full weight matrix. We use a

factored hidden layer with 2048 factors f and 12000 hidden units. This architecture

has roughly the same number of parameters as the fully connected one but has three

times more hidden units.

Local untied architecture: The hidden layer of a locally connected architecture

drastically reduces the number of parameters over both fully connected and factored

architectures by only connecting each hidden unit to a small subpatch of the in-

put. To precisely define the connectivity pattern, assume that the input units of

a locally connected layer make up a win × win image consisting of multiple chan-

nels. The input image is divided into evenly spaced filter sites by moving a wf × wf
window over the image by a stride of wstr vertically and horizontally, for a total of

((win − wf )/wstr + 1)2 filter sites. A different set of f filters of size wf × wf and

consisting of the same number of channels as the input image is applied at each filter

site. Hence, a single locally connected layer results in f · ((win − wf )/wstr + 1)2 hid-

den units and f · ((win − wf )/wstr + 1)2 ·w2
f · c parameters, where c is the number of

input channels.
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Layer type
Unit type

Logistic ReLU
Fully connected 0.7596 0.8034
Factored 0.7939 0.8359
Local 0.6509 0.8126
Convolutional 0.7898 0.8673

Table 3.2: Precision and recall breakeven points for different layer and unit types.

Convolutional architecture: The hidden layer of a convolutional architecture is

simply a locally connected layer where the group of f filters applied at each location

is the same. Restricting the filters to be the same at each location further reduces

the number of parameters over a local untied architecture for a total of f · w2
f · c

parameters.

Layer and unit types

We first compare the different architecture types with two choices for the nonlinear-

ity/activation function in the hidden layer:

• Logistic: g(x) = 1/(1 + exp(−x)).

• Rectified linear: g(x) = max(x, 0).

The local untied and convolutional architectures both used 12× 12 filters and stride

4, while the other architectures are as described above. Table 3.2 shows the precision-

recall breakeven points for the four architectures and activation functions. The recti-

fied linear (ReL) activation function clearly outperforms the logistic activation func-

tion for all four architecture types. This result agrees with the findings of Jarrett

et al. [2009] and Nair and Hinton [2010] who reported substantial gains in perfor-

mance when using the ReL activation function on several object recognition tasks.

The best overall result is obtained by the convolutional architecture with ReL

hidden units followed by the factored architecture with ReL units, which somewhat

surprisingly outperformed the local untied architecture. One possible explanation for

this result is the fact that both the convolutional and factored architectures learn

a shared set of filters over the input, which could make learning more statistically

efficient.
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Figure 3.4: Plots showing precision-recall breakeven points for (a) different pooling
regions, (b) different filter sizes in the first hidden layer.

Nevertheless, it is still surprising that, even though the only difference between

the convolutional and the local architecture is that the filters of the convolutional

architecture are tied among all locations, the convolutional architecture substantially

outperforms the local architecture. We performed an additional experiment by ini-

tializing a local architecture with the weights of a convolutional architecture, which

corresponds to untying the weights of the convolutional architecture, and trained for

three more epochs. Training the local architecture with this initialization resulted

in a precision-recall breakeven point of 0.8695, which is an improvement over the

parameters used to initialize the model (0.8673). In comparison, training the convo-

lutional architecture for three more epochs without untying the weights improves the

breakeven point from 0.8673 to 0.8713. These results suggest that the tied weights

make convolutional networks easier to optimize than untied local networks.

While the above results show that the local untied architecture performed rela-

tively poorly, we will investigate it further along with the convolutional architecture

in the context of deep networks due to their computational efficiency when compared

to the fully connected and factored architectures.

The effect of max pooling

Max pooling has been shown to improve performance of convolutional architectures

on a number of object recognition tasks [Jarrett et al., 2009] and we observe similar

improvements for moderate amounts of pooling on both local untied and convolutional
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architectures on image labeling tasks. We evaluated the effects of max pooling when

placed on top of the hidden layers of local untied and convolutional architectures with

64 filters of size 12 and stride 4. We compared pooling over overlapping regions of

size 2 × 2, 3 × 3, and 4 × 4 with stride 1 The results shown in Figure 3.4(a) show

that max pooling helps both untied local and convolutional architectures, with the

best results obtained with 3 × 3 pooling regions. The fact that pooling over larger

regions leads to smaller improvements is not surprising given that the network needs

to maintain precise locations of certain features.

The effects of filter sizes and strides

We now look at the effect of filter size on the performance of local network archi-

tectures. Figure 3.4(b) shows the precision-recall breakeven points for networks with

filters of size 8, 12, 16, and 20 and filter stride 4. Both convolutional and untied

local networks seem to benefit from larger filter sizes, with larger improvements seen

for untied local networks. This positive dependence on filter size is the opposite of

what Coates et al. [2011] observed for unsupervised feature learning on object detec-

tion tasks. It is unclear whether the difference is due to our use of supervised feature

learning, differing filter strides, or simply the type of data we use. Since Coates et al.

[2011] used a stride of 1 for the filter size experiments we investigated the possibility

that smaller filters are better at smaller strides and found that this is not the case.

3.3.2 Two Layer Architectures

We now turn to a similar analysis of two layer architectures of untied local and con-

volutional layers with ReL hidden units. The first layer of both types of architectures

had 64 filters of size 12× 12 with stride 4. We investigated the effect of varying the

sizes of the filters and pooling regions in the second hidden layer.

The effect of max pooling

We fixed the second layer of both architectures to have 128 4× 4 filters with stride 1

and then compared using no pooling, 2×2 max pooling, and 3×3 max pooling on top

of the second layer. Figure 3.5(a) shows a plot of precision-recall breakeven points for

the different model configurations. Convolutional architectures do not seem to benefit

from pooling in the second layer. Given that the first layer uses 3 max pooling, it is
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Figure 3.5: Plots showing precision-recall breakeven points for (a) different pooling
regions, (b) different filter sizes in the second hidden layer.

likely that using any additional pooling in the second layer loses too much information

about the precise location of object parts to help on a pixel labeling task. Given this

result, it is somewhat surprising that untied local architectures seem to benefit from

max pooling in the second layer. As in the single hidden layer case, this effect is likely

explained by the fact that adding pooling to an untied local architecture encourages

filters in the same feature pool to be similar, with the resulting performance boost

outweighing the decrease in performance due to the lower spatial resolution.

The effects of filter sizes and strides

We compared using filters of size 3, 4, 5, and 6 with stride 1 in the second layer of both

architecture types. Figure 3.5(b) shows the precision-recall points for the different

model configurations. As in the single hidden layer case, larger filters seem to work

better in both types of architectures, with a more noticeable improvement for untied

local architectures. We also performed a control experiment to see whether using a

smaller stride while holding the number of hidden units fixed improved results and

found that, as in the one layer case, there was no significant change.

Discussion

The local untied and convolutional architectures improve on the breakeven point for

a shallow factored model by more than 0.04 and 0.08 respectively while using far
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Figure 3.6: A comparison of precision-recall curves for deep architectures. (a) A
comparison of different choices for the third layer of a deep architecture. (b). A
comparison of three, four and five layer networks.

fewer parameters. These results also show that increasing network depth clearly im-

proves the accuracy of untied and convolutional architectures on aerial image labeling

tasks. Overall, convolutional architectures perform noticeably better than untied ar-

chitectures suggesting that the ability to learn different filters at different locations

is either not helpful or is far outweighed by the benefits of weight sharing found in

convolutional nets.

3.3.3 Deeper Architectures

Given the substantial improvements in precision and recall that we gained by adding

a second layer to locally connected architectures we investigate whether adding even

more layers helps. We start with a two layer convolutional network which has 64

12× 12 filters and stride 4 in the first layer and 112 4× 4 filters with stride 1 in the

second layer and add layers until it stops producing better results.

We compare three different choices for the third hidden layer: a fully connected

layer with 4096 hidden units, a factored layer with 2048 factors and 4096 hidden units,

and a convolutional layer with 80 3× 3 filters and stride 1 for a total of 3920 hidden

units. The precision-recall plots for the three models as well as the base two layer

model are shown in Figure 3.6(a). There is a noticeable improvement in precision

and recall from adding a third layer. The fully connected layer leads to the largest

improvement, but at the cost of using more parameters and computation.
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Figure 3.7: Breakeven points for different settings of hyperparameters in a three
layer neural network on the Toronto Roads dataset. The green line indicates the
performance of a three layer network with the default parameter values. (a) Different
amounts of momentum. (b). Different amounts of L2 weight decay. (c) Different
learning rates ε determined by the parameter k as ε = 5 · 10−4 · (1.25k).

With clear improvements from adding a third hidden layer we look into adding

fourth and fifth layers. We use the model with three convolutional layers explored

above as the base model and compare adding a fully connected layer with 4096 hidden

units, a factored model with 4096 hidden units and 1024 factors, as well as two fully

connected layers with 4096 hidden units. Figure 3.6(b) shows the precision-recall

plots for these four layer models along with the base model. While there is a small

improvement in precision and recall from adding a fourth fully connected layer, the

improvement is small and adding a fifth layer actually hurts performance.

3.3.4 Sensitivity to Hyper Parameters

In the above experiments, we did not perform a search over SGD and regularization

hyperparameters and instead used parameter values that worked well for shallow net-

works. While the deep networks exhibit good detection performance it is unclear how

sensitive they are to these choices and whether performance can be further improved

by tuning the hyperparameters. In order to address these questions, we performed

a sensitivity analysis for the three most important hyper parameters – the learning

rate, the momentum, and the amount of weight decay.

Figures 3.7(a), 3.7(b) 3.7(c) show the effects of varying the momentum, amount

of weight decay, and learning rate on the precision-recall breakeven point of a three

layer network respectively. First, the plots show that the parameter choices that

worked well for shallow networks translate relatively well to deep networks. The de-
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Figure 3.8: A plot showing training and validation log likelihoods on the Toronto
Roads dataset at different points during training of a four layer neural network. The
gap between the two curves remains relatively constant even after 20 million training
cases.

fault parameter value was always close to the best value tried on the deep network,

suggesting that using shallow nets, which are much faster to train, for selecting hy-

perparmeter values is a sensible strategy. Second, the plots show that the results are

not overly sensitive to the values of hyperparameters, which means that, for a new

dataset, trying a few values close to our suggested values could produce reasonable

results.

3.3.5 A Word on Overfitting

Since overfitting is a common problem when training large neural networks, we de-

cided to investigate how severe it is for our models and data. In general, we found

that even models with tens of millions of parameters do not seem to exhibit signif-

icant overfitting when trained on our large datasets. Figure 3.8 shows training and

validation log likelihoods at different points during training for a four layer neural

network trained on the Toronto Roads dataset. First, the validation log likelihood is

always better than the training log likelihood because the relatively small validation

set consists of relatively easy regions of the city. Second, the gap between training

and validation curves is relatively constant throughout training suggesting that there

is relatively little overfitting even after 22 million training cases have been processed.
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3.4 Qualitative Evaluation

(a) (b)

(c) (d)

Figure 3.9: Visualizations of neural network predictions on road and building detec-
tion tasks. Green pixels are true positives, red pixels are false positives, blue pixels
are false negatives, and background pixels are true negatives. Figures 3.9(a) and
3.9(b) show predictions on the Toronto Roads test set. Figures 3.9(c) and 3.9(d) are
predictions on the GTA Buildings test set.
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We now apply the lessons learned in the previous section to training a large neural

network on road and building detection datasets. The network we train has four

hidden layers. The first layer is convolutional with 64 filters of size 12 and stride

4, and is followed by size 3 stride 1 max pooling layer. The second hidden layer is

convolutional with 112 filters of size 4 and stride 1 followed by another convolutional

layer with 112 filters of size 3 and stride 1. The last hidden layer is fully connected and

has 4096 hidden units. All four hidden layers use rectified linear units. We trained

two copies of this network on the Toronto Roads and GTA Buildings datasets. The

network trained on the Toronto Roads dataset achieved a breakeven point of 0.928

on the test set, while the network trained on the GTA Buildings dataset achieved a

breakeven point of 0.818 on its test data.

To get some idea of what the numbers mean we visualize the predictions of both

networks at their breakeven points. Figure 4.7 visualizes the predictions on parts

of the test set by colour coding each pixels based on whether it was a true or false

positive/negative, providing many interesting insights into how the networks work.

The predictions on the Toronto Roads dataset, shown in Figures 3.9(a) and 3.9(b),

demonstrate that the network is very good at detecting multiple types of roads includ-

ing two-lane roads in residential areas, multi-lane roads, and even highways. While

the false positives and false negatives show several failure cases for our model, they

also illustrate several problems with the data. For example, the network sometimes

makes predictions for disconnected blobs of road in paved areas, which end up being

counted as false positives. This is an artifact of the network making independent pre-

dictions for each pixel, making it difficult for the network to realize that it is creating

a disconnected component. Such errors can be avoided by incorporating structure

into the predictions and Chapter 5 examines different ways of doing so. Another

common type of mistake is a false negative caused by the shadow of a tall building.

While we do not do so in this thesis, some form of local contrast normalization will

likely help in such cases.

We also see that the network is often penalized for making a road prediction in a

paved area. These predictions show up as false positives because narrow alleys and

roads leading into malls or industrial areas are often not included in vector maps.

Whenever this type of mislabeling occurs in the training data the neural network is

penalized for what is essentially a correct prediction.

The predictions for the network trained on the GTA Buildings dataset are shown
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(a) (b)

Figure 3.10: Visualizations of the input and output weights for a neural network
trained on a road detection task. (a) Convolutional filters from the first layer. (b).
Hidden to output weights for the 256 units with the largest weight norms.

in Figures 3.9(c) and 3.9(d). While the model is clearly not as good as our road

detector, there are a number of differences between the two tasks. First, building data,

unlike road data, is almost always incomplete with as much as 30% of the buildings

left unlabeled, and there is simply less building data than road data. Additionally

there is much more variation in the shape and appearance of buildings than in roads.

Considering the quality of the data and the difficulty of the task, the neural network

still performs reasonably well.

The problems seen in the predictions of the building detector are similar to those

seen on road detection. For example, the false negatives that often appear in the mid-

dle of large buildings can be dealt with by incorporating structure in the predictions.

Adding structure should also reduce false positives caused by predicted buildings with

really improbable shapes. We will explore the use of structured prediction methods

in Chapter 5.

3.4.1 Peering into the Mind of the Network

To gain some insight into what the network learns we first display the input and

output weights learned by the network on the Toronto Roads dataset. Figure 3.10(a)



Chapter 3. Learning to Label Aerial Images 41

Figure 3.11: Visualization of the derivatives of the loss function with respect to the
input pixel values.

shows all 64 convolutional filters from the first layer and 256 of the output filters with

the highest L2 norm. Not surprisingly, the convolutional filters the network learns are

oriented edge and grating detectors, often with an overlaid lower frequency opposing

yellow/blue and green/red patterns. Convolutional neural networks tend to learn

similar filters on other object detection tasks [Krizhevsky, 2011]. The output filters

learned by the network, shown in Figure 3.10(b), also exhibit interesting structure

that falls into several groups. Two of the most prominent groups are entire road

segments at different orientations and filters that make a neutral prediction for much

of the patch and a strong vote for the absence of a road in one of the corners.

Another informative way of visualizing the neural network is through a sensitivity

analysis, which involves looking at the gradient of the loss function with respect to

the inputs at different data points. Figure 3.11 shows a number of input aerial image

patches from the Toronto Roads dataset with the squared gradient with respect to

the input for each data point overlaid in red. Hence, a change to the values of the

input pixels highlighted in red will cause a big change to the value of the loss function.

We see that whenever a piece of road is present in the centre 16× 16 patch for which

the neural net is making predictions there is a strong gradient on the road pixels.

3.5 Conclusions and Discussion

We have shown that our patch-based framework for learning to label aerial imagery

with deep neural networks can achieve good performance on challenging real world

road and building detection datasets. The results show that there is a clear advantage

to using deep networks over shallow ones and that convolutional networks outperform

networks with other types of connectivity. We also saw that while there is a bene-
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fit from using a small amount of max pooling, using too much max pooling hurts

performance on pixel labeling tasks.

While the framework addresses the basic problem of efficiently learning discrim-

inative features from large amounts of labeled aerial imagery, it has a number of

shortcomings. Most importantly, the neural network architectures we examined in

this chapter make separate predictions for each pixel. As we saw in the previous

section, this leads to a number of undesirable artifacts in the predictions, including

disconnected blobs of road and gaps in roads and buildings. Chapter 5 will address

the problem of how to efficiently incorporate rich structure into the predictions while

maintaining the ability to learn from very large datasets.

Another problem with the framework is the underlying assumption that the train-

ing data is perfectly labeled. Figure 4.7 clearly shows problems with the labels which

likely hurt the neural networks during training. This issue has not been studied widely

in machine learning or computer vision and Chapter 4 will attempt to modify our

learning procedure in ways that reduce the effects of noise typically found in maps

on the neural networks.

In addition to addressing the above limitations there are many other ways to

improve the performance of our system that we do not address in this thesis. One

interesting possibility is the use of losses other than negative log likelihood defined

on individual label pixels. For example, Turaga et al. [2009] showed how directly

optimizing a measure of image segmentation leads to much better segmentations

than by optimizing individual pixel disagreement. In our case, optimizing the area

under the precision-recall curve could lead to similar improvements because it is a

better measure of the quality of the detections than log likelihood.

Another way of improving our system is by performing a more extensive hyperpa-

rameter search. While we have only looked at using a fixed learning rate and weight

cost for all layers, using different values for each layer could both speed up learning

and improve the overall performance. Since doing so requires searching over a very

large space of parameters, doing so by brute force search would require a tremendous

amount of computation. A more efficient way of performing this search is using the re-

cently developed methods for doing Bayesian global optimization of hyper parameter

values [Bergstra et al., 2011, Snoek et al., 2012].



Chapter 4

Learning to Label from Noisy Data

The preceding chapter demonstrated that it is possible to use readily available aerial

imagery along with vector metadata from sources such as OpenStreetMap to obtain

state-of-the-art performance on aerial image labeling tasks. While OpenStreetMap

provides an abundance of label information that is clearly of high-enough quality to

learn from, the label information is often incomplete or noisy. In particular we classify

the most common data inaccuracies into two types of noise:

• Omission noise occurs when an object that appears in an aerial image does

not appear in the map. This is the case for many buildings (even in major cities)

due to incompleteness of the maps. It is also true for small roads and alleys,

which tend to be omitted from maps, often with no clear criterion for when they

should be omitted. An example of omission noise is shown in Figure 4.1(a).

• Registration noise occurs when the location of an object in a map is inaccu-

rate. Such errors are quite common because not requiring pixel level accuracy

makes maps cheaper to produce for human experts without significantly re-

ducing their usefulness for most purposes. An example of registration noise is

shown in Figure 4.1(b).

The presence of these kinds of errors in the training labels can significantly reduce

the accuracy of classifiers trained on such data.

This chapter shows how one can deal with the presence of both kinds of noise in the

training labels. We present two robust loss functions that can be incorporated into our

image labeling framework. The first loss function reduces the effect of omission errors,

43
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(a) (b)

Figure 4.1: Road locations derived from a map are shown in red. (a) Example of
omission noise. (b) Example of registration noise.

while the second loss function reduces the effects of both omission and translation

errors. We then demonstrate the effectiveness of these loss functions on road and

building detection tasks.

4.1 Dealing With Omission Noise

Omission noise, as shown in Figure 4.1(a), occurs when some map pixels are labeled

as not belonging to the object class of interest when they, in fact, do. When trained

on data containing a substantial number of such pixels a classifier will be penalized

for correctly predicting the value of 1 for pixels affected by omission noise. This will

cause a classifier to be less confident and potentially increase the false negative rate.

We propose using a robust loss function that explicitly models asymmetric omis-

sion noise in order to reduce its effect on the final classifier. We recall that in Chapter 3

the observed map distribution p(m̃|s) was modeled directly by a neural network. By

doing maximum-likelihood learning under this model we are implicitly assuming that

the training data consists of true samples from a model in this class of models. In

order to account for the possibility of noisy data we take the approach of explicitly

modeling the noise process. We assume a generative process where the true, uncor-

rupted, and unobserved map patch m is first generated from the aerial image patch

s according to some distribution p(m|s). The corrupted, observed map m̃ is then

generated from the uncorrupted m according to a noise distribution p(m̃|m).

For now, we assume that conditioned on m, all components of m̃ are independent
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and that each m̃i is conditionally independent of all mj for j 6= i. The observed map

distribution that corresponds to this model can then be obtained by marginalizing

out m from p(m̃|m)p(m|s), leading to

p(m̃|s) =
∑
m

p(m̃|m)p(m|s) (4.1)

=

w2
m∏

i=1

∑
mi

p(m̃i|mi)p(mi|s). (4.2)

The noise distribution p(m̃i|mi) is assumed to be the same for all pixels i, and is

parameterized by the parameters

θ0 = p(m̃i = 1|mi = 0) and,

θ1 = p(m̃i = 0|mi = 1).

In the presence of omission noise, we expect that θ0 � θ1 because the probability

that the observed label m̃i is 1 given that the true label mi is 0 should be very close

to 0, while the probability that the observed m̃i is 0 given that the true label mi is 1

should still be small but not as close to 0 as θ0.

There are several different ways of determining the values of the parameters θ0

and θ1 – they can be learned along with the neural network weights, selected using a

validation set, or set by hand. We found that learning the parameters along with the

other weights is difficult. This is likely due to the possibility of small changes to θ0 and

θ1 resulting in large changes to the derivatives with respect to the other parameters

because θ0 and θ1 are parameters of the loss. While this issue could potentially

be resolved with second order optimization methods, we did not investigate this

possibility and set the values of the parameters using a validation set.

We refer to this model as the asymmetric Bernoulli noise model, or the ABN model

for short. While in the noise-free setting of Chapter 3 the observed map distribution

was modelled directly by a neural network, in the noisy setting, we instead use the

neural network to model the true map distribution p(m|s). Learning can still be done

efficiently by minimizing the negative log probability of the training data under the

ABN model given in Equation 4.2. Since the ABN model factorizes over the pixels i

and there is only a single Bernoulli latent variable mi for each pixel i, the derivative

of the negative log probability can be found directly.
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Figure 4.2: The plot shows the derivative of the log probability with respect to the
input to the ith output unit for varying predictions m̂i. In this example, the observed
label m̃i is set to 0 while the parameters of the ABN model are θ0 = 0.001 and
θ1 = 0.05. The noise free model penalizes incorrect predictions more than the ABN
model, especially when the prediction is incorrect and confident.

In order to gain some insight into how the noise model affects learning, we contrast

the derivatives of the negative log probability of the data with and without a noise

model. Let xi and m̂i be the input and output to the ith unit of the neural network

respectively. In the noise-free scenario, the derivative of − log p(m̃|s) with respect to

xi is m̃i − m̂i. Hence, in the absence of a noise model, the learning procedure tries

to make the prediction m̂i closer to the observed label m̃i. Under the ABN model,

the derivative of the negative log probability of the data takes the form p(mi =

1|m̃i, s) − m̂i. Hence, the learning procedure tries to make the prediction m̂i close

to the posterior probability that the unobserved true label mi is 1. This has the

effect that the neural network gets penalized less for making a confident but incorrect

prediction. Figure 4.2 demonstrates how the derivatives of the log probability of the

data differ for the noise-free and the ABN models differ as a function of the prediction

m̂i.

4.2 Dealing With Registration Noise

Registration noise occurs when an aerial image and the corresponding map are not

perfectly aligned. As shown in Figure 4.1(b), the error in alignment between the

map and the aerial image can vary spatially over the dataset and hence cannot be
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corrected by a single global translation. In order to deal with a large class of possible

misalignments we make the simplifying assumption that the registration error between

the image and the map is approximately constant in any wm′ × wm′ region. This

assumption is likely to hold true whenever the error in registration varies over the

dataset sufficiently slowly.

4.2.1 Translational Noise Model

We extend the robust loss function we introduced in the previous section for dealing

with omission noise to also handle local registration errors. As with the ABN model,

we introduce a generative model of the observed map patches. On a high level, the

generative model works by first generating an uncorrupted and perfectly registered

map from the aerial image, then selecting a random subpatch of the true map, and

generating the observed map by corrupting the selected subpatch with asymmetric

noise. More formally, the generative process is as follows:

1) An uncorrupted and perfectly registered true map patch m of size wm′ × wm′
is generated from s according to p(m|s). Typically wm′ is at least wm + 2tmax where

tmax is the maximum possible registration error/translation between the map and

aerial image measured in pixels. We allow for the possibility that wm′ is greater

than wm + 2tmax because it may be useful to make the size of the region for which

misalignments are assumed to be approximately constant be different from the size

of the predicted patch.

2) A translation variable t is sampled from some distribution p(t) over T + 1

possible translations 0, . . . , T . In this thesis, we use T = 8, where t = 0 corresponds

to no translation while the other eight values index the eight possible translations by

tmax pixels in the vertical and horizontal directions as well as their combinations (see

Figure 4.3).

3) An observed map is sampled from the translational noise distribution

p(m̃|m, t) = p(m̃|Crop(m, t)) (4.3)

=

w2
m∏

i=1

pABN(m̃i|Crop(m, t)i), (4.4)

where Crop(m, t) selects a wm by wm subpatch from the wm′ by wm′ patch m ac-

cording to the translation variable t as shown in Figure 4.3, and pABN(m̃i|mi) is the
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Figure 4.3: Demonstration of the Crop(m, t) function. For each dark gray patch
representing m, the lighter gray subpatch highlights the area cropped by Crop(m, t)
for each value of the translation parameter t.

pixelwise asymmetric binary noise model defined in the previous section.

We attempt to parameterize this noise model using as few parameters as possible.

By assuming that all non-zero translations are equiprobable, we are able to param-

eterize the prior over translations using a single parameter θt = P (t = 0). For all

other translations, t > 0 we get that P (t = i) = (1 − P (t = 0))/T = (1 − θt)/T .

This assumption is reasonable because we only consider 1 and 2 pixels as the values

of tmax, but it would not hold for larger values of tmax where the diagonal transla-

tions should be less probable than the vertical and horizontal ones. Hence, we use a

total of four parameters for the entire model: tmax, θt, and two parameters needed

to parameterize pABN(m̃i|mi). We refer to this generative model as the translational

asymmetric binary noise model, or the TABN model for short.

4.2.2 Learning

The observed map distribution under the TABN model is given by

p(m̃|s) =
T∑
t=0

p(t)
∑
m

p(m̃|m, t)p(m|s), (4.5)

where the true map distribution p(m|s) is modeled by a neural network. In contrast to

the ABN model, where the map distribution factors over pixels, the map distribution

of the TABN model does not factor, making learning less straightforward. We simplify

the learning process by setting the parameters of p(t) and p(m̃|m, t) using a validation
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set and only learning the parameters of the neural network modeling p(m|s). We learn

parameters by minimizing the negative log likelihood under the model in Equation 4.5

using the EM-algorithm with a partial, approximate M-step. We demonstrate how

the required EM updates can be performed efficiently.

M-step: The the expected complete data log-likelihood for the TABN model is

given by

Q(θ) =
∑
t

∑
m

p(m, t|m̃, s) ln p(t)p(m̃|m, s)p(m|s, θ). (4.6)

While the goal of the M-step is to maximize Q(θ) with respect to θ, this is not possible

for our model because Q(θ) is a nonlinear function due to p(m|s, θ) being modelled

by a neural network. We instead perform a partial approximate M-step by doing one

minibatch update of stochastic gradient descent on the objective Q(θ).

We recall that p(m|s, θ) =
∏

i p(mi|s, θ) and that p(mi = 1|s, θ) = σ(xi), where

xi is the input to the ith output unit of the neural network and σ(x) is the logistic

sigmoid function. We compute the derivatives of Q(θ) with respect to the xi’s because

the derivative of Q(θ) with respect to any other parameter can be easily computed

using backpropagation from the quantities we compute.

We begin by rewriting the expected complete log likelihood as

Q(θ) =
∑
t

∑
m

p(m, t|m̃, s) ln p(m|s)

=
∑
i

∑
m

p(m|m̃, s) ln p(mi|s)

where we rewrote log p(m̃|s, θ) as a summation over the marginals of p(m|s) and

summed out the translation variable t. We also dropped the terms involving p(t) and

p(m̃|m, s) because their parameters are held fixed. It is possible to further simplify

Q(θ) by summing out mj for all j 6= i in each term of the outer summation to get

Q(θ) =
∑
i

∑
mi

p(mi|m̃, s) ln p(mi|s)

= p(mi = 1|m̃, s) ln p(mi = 1|s) + (1− p(mi = 1|m̃, s)) ln(1− p(mi = 1|s))

= p(mi = 1|m̃, s) lnσ(xi) + (1− p(mi = 1|m̃, s)) ln(1− σ(xi).
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Finally, by recognizing the last term as a binary cross entropy we immediately obtain

∂

∂xi
Q(θ) = p(mi = 1|m̃, s)− m̂i, (4.7)

where m̂i = σ(x) is the output of the ith unit of the neural network. This error

derivative for the update performed by the M-step has the intuitive form of the

difference between the predicted probability of the label for the pixel being 1 and the

posterior probability of the true label for that pixel being 1 under the model.

E-step: The role of the E-step is to compute p(mi|m̃, s) for use in the M-step,

and as we will show, this computation can be done in time T · w2
m by exploiting the

structure of the noise model.

We begin by expressing the posterior marginals p(mi|m̃, s) as

p(mi|m̃, s) =

∑
t

∑
m−i

p(t)p(m̃|m, t)p(m|s)

 /p(m̃|s)

=

∑
t

p(t)
∏
j 6=i

∑
mj

p(m̃j|mj, t)p(mj|s)

 /p(m̃|s).

Now let Ct be the set of indices of pixels of m that are cropped for transformation t.

Since this set has w2
m entries we slightly abuse notation and also use it to index into

m̃ using the one-to-one pixel correspondence. We use Ct to define the intermediate

quantity

Pt =
∏
i∈Ct

(∑
mi

p(m̃i|mi)p(mi|s)

)
, (4.8)

and notice that we can conveniently rewrite the above expression for p(mi|m̃, s) in

terms of Pt by performing two substitutions. First, we rewrite the observed map dis-

tribution p(m̃|s) in the denominator as
∑

t p(t) ·Pt. The second substitution involves

replacing the product over pixels j in the summation in the numerator by Pt with

the term for pixel i replaced by p(m̂i|mi)p(mi|s). Putting everything together leads

to the final expression

p(mi|m̃, s) =

[∑
t

p(t) · Pt ·
p(m̃i|mi)p(mi|s)∑
mi
p(m̃i|mi)p(mi|s)

]
/

[∑
t

p(t) · Pt
]
. (4.9)
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This way of computing the posterior marginals is rather efficient because it involves

only T different per-pixel computations.

The learning procedure is slightly complicated by allowing wm′ , the width of the

region for which registration error is assumed to be constant, to substantially differ

from wm, the width of region predicted by the neural network. While we always set

wm to 16, we found that setting wm′ to 18 or 20 to allow 1 or 2 pixel translation

of a 16 × 16 patch resulted in a model that is too flexible. It was simply too easy

for the model to cheat by always choosing to translate its patch of predictions to

incur a smaller loss. This effect is greatly reduced by setting wm′ to a value several

times larger than wm because it makes it much harder to explain a poor prediction

by translating it. We found that using wm′ = 4wp + 2tmax leads to a model with the

right amount of flexibility for our high resolution data.

To apply the noise model with this value of wm′ , we construct the wm′×wm′ patch

m̂ out of 16 non-overlapping wp × wp patches predicted by the neural net. We then

find the wm′ ×wm′ patch of posterior marginals p(mi|m̃, s) as described above, break

it up into 16 non-overlapping wp×wp subpatches, and backpropagate the derivatives

from all the subpatches through the neural network.

4.2.3 Understanding the Noise Model

In order to demonstrate how the translational noise model works in practice, we used

the TABN model to train a neural network to detect roads from poorly registered

road data and plot the target labels, the model predictions, and the inferred true

labels for several test cases. Figure 4.4 shows target map labels in the top row, model

predictions in the middle row, and means of the marginals of the true map posterior

p(m|m̃, s) in the bottom row. These examples show how the TABN model is able to

correctly realign the target map with the aerial images.

4.3 Results

4.3.1 Omission Noise

We begin by evaluating the effectiveness of the ABN noise model on the Toronto

Roads and GTA Buildings datasets. We estimate that the omission rate is less than
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Figure 4.4: Demonstration of the translational noise model on road detection data.
Top row - the target map labels m̃, middle row - model predictions m̂, bottom row
- inferred marginal means for the posterior over the uncorrupted labels p(m|m̃, s).
Each column corresponds to a training case.

5% on the Toronto Roads dataset and roughly 30% on the GTA buildings dataset

so we expect to see some improvement from using a noise model. While the GTA

Buildings test set was hand-corrected to include buildings missing from the source

map, the Toronto Roads test set was not. We decided to not hand correct the Toronto

Roads test set because it is not entirely clear what should and should not be labeled

as a road. Since omission noise can potentially lead to worse predictions on all data,

it should still be possible for a noise model to improve performance even on a noisy

test set.

We trained three layer networks on both datasets with both the ABN model and

the noise free model. Since the aim of using the ABN model is to improve robustness

to omission noise we apply the ABN model only on training cases where the target

map patch m̃ is blank, meaning that all the labels are 0, and use the noise free model

for all non-blank training cases. By avoiding non-blank patches, which are much less

likely to contain omission errors than blank ones, this procedure helps reduce errors

where a noise model incorrectly overrules the ground truth on non-blank patches.

Road Data

While our earlier work [Mnih and Hinton, 2012] showed a clear improvement from

using a noise model on the Toronto Roads dataset, we have since discovered that

the improvement cannot be directly attributed to the use of a noise model. The

true difference in performance can be explained by the fact that the noise free model
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Figure 4.5: Precision/recall plots showing the effect of the ABN noise model. (a)
Models trained and tested on the relatively clean Toronto Roads dataset. (b) Models
trained on the GTA Buildings dataset.

used soft labels generated using the procedure described in Chapter 3 while the ABN

model required binarized labels. Figure 4.5(a) shows precision-recall plots on the

Toronto Roads test set for the ABN model as well as the noise free model with both

soft and binarized labels. Using the noise free model with binarized labels instead

of soft labels leads to almost the same performance as using the ABN model, with

breakeven points of 0.9179 and 0.9181 respectively.

It is not immediately clear why there is no noticeable improvement in precision

and recall from using a noise model on this data. Is it because the noise model does

not work or because the noise is not very harmful? In order to answer this question

we conduct a number of experiments on the Toronto Roads dataset with synthetic

omission noise. We generated three versions of the Toronto Roads training set by

dividing it into non-overlapping 500 by 500 meter regions and randomly deleting all

labels in 10, 20, or 40 percent of these regions respectively. This type of structured

noise is a good approximation to unmapped regions often found in OpenStreetMap

data.

We then proceeded to train the same three layer network used in the preceding

ABN model experiments on the three versions of the dataset with the noise free and

ABN models. The first row of Table 4.1 shows precision-recall breakeven points for

the noise free model under varying amounts of label noise. Somewhat surprisingly,

our neural network models seem to be quite robust to the presence of omission noise
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Model Type
Amount of added omission noise

0% 10% 20% 40%
Noise free 0.9179 0.9136 0.9104 0.902
ABN 0.9181 0.9159 0.9123 0.9065

Table 4.1: Precision and recall breakeven points for varying amounts of synthetic
noise on the Toronto Roads dataset.

because, when compared to the uncorrupted Toronto Roads dataset, using 10, 20, or

40 percent of synthetic omission noise reduces the precision-recall breakeven point by

0.0043, 0.0075 and 0.0159 respectively.

Since according to our estimates the uncorrupted Toronto Roads dataset has an

omission rate of less than 5%, the above results suggest that even if the noise model

resulted in complete robustness to noise, the improvement in precision and recall

would not be large. In fact, given that doubling the amount of synthetic noise seems

to roughly double the decrease in precision-recall at the breakeven point, the difference

of 0.002 we saw on the uncorrupted test set is in the expected range.

Nevertheless, since the difference on uncorrupted data is so small, we also evaluate

the ABN noise model on the corrupted datasets to see how much of the decrease our

noise model can recover. The second row of Table 4.1 shows precision-recall breakeven

points for the ABN model on the corrupted Toronto Road data. There is a noticeable

improvement from using the ABN model compared to using the noise free model at

all three noise levels.

Building Data

Figure 4.5(b) shows the precision-recall plots for the noise free and ABN models

on the hand-corrected GTA Buildings test set. Using the ABN model on the GTA

Buildings dataset improves the precision-recall breakeven point by roughly 0.085.

The improvement is a much larger than what we saw on the Toronto Roads dataset

because the GTA Buildings training set has a much higher omission rate of roughly

30%. Given that the results in the previous section suggest that neural networks

trained with the noise free loss are quite robust to omission noise the improvement

on this data underscores the effectiveness of the ABN noise model.
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Figure 4.6: Precision/recall plots showing the effect of the TABN noise model. The
models were trained on the smaller and much noisier Hamilton Roads dataset but
tested on the cleaner Toronto Roads test set.

4.3.2 Registration Noise

In order to evaluate the robustness of the TABN model to registration noise, we per-

form experiments on the Hamilton Roads dataset. While the Toronto data contains

relatively few registration problems, with most road labels within one or two meters

of the true locations, road centerlines in the Hamilton Roads dataset are often more

than 5 meters away from their true locations. We train the ABN and TABN models

on the Hamilton training set and evaluate them on the Toronto Roads test set because

it is much cleaner.

Figure 4.6 shows precision-recall curves on the Toronto Roads test set for the

models trained on the Hamilton training set and demonstrates the clear advantage of

using the TABN robust loss function on this data. In addition to the TABN model,

we include results for the ABN model, as well as a noise free model trained on both

soft and binarized labels. As we saw on the road data, much of the improvement of

the ABN model over the noise free model can be attributed to using binarized labels.

Nevertheless, we get a substantial improvement in the precision recall curve from

training a network with the TABN model, improving the precision-recall breakeven

point by 0.0176 when compared to the ABN model.

It might seem surprising that the improvement from using the TABN model is so

much higher than from using the ABN model even on data with a lot of synthetic
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omission noise. The improvement is likely explained by two factors. First, neural

networks are likely less robust to registration errors than omission errors because while

omission errors may simply reduce the confidence of the neural network’s predictions,

registration errors can result in learning encouraging predictions that are entirely

wrong. The second factor explaining the effectiveness of the translational noise model

is the fact that under truly local registration errors it is possible for the TABN model

perfectly recover the true labels by translating the observed labels.

We further demonstrate the robustness of the TABN model to registration noise

by visualizing its predictions on noisy training data. Figure 4.7(a) shows an area

from the Hamilton Roads training set with the ground truth road locations overlaid

in red while Figure 4.7(b) shows the predictions of a model trained with the TABN

loss for the same area of the training set. The alignment between the predicted road

locations and their true locations is clearly much better than it is for the training

labels even though the training labels are what the model was trained to predict.

4.4 Conclusions and Discussion

We have shown that by using robust loss functions to train neural networks instead

of the standard negative log likelihood loss can provide some level of robustness to

label noise. Somewhat surprisingly, large amounts of omission noise do not seem

to significantly hurt the training of deep neural networks without a noise model,

although our ABN noise model does show across-the-board improvements. We also

saw that while the more structured registration noise is more harmful when no noise

model is used, it is actually easier to deal with when a translational noise model is

used.

While our noise models were designed specifically for the types of noise one faces

in aerial image labeling tasks, they can be easily modified to handle other types of

noise. For example, the translational noise model can be generalized to handle any

type of label noise for which we can write down a graphics program parameterized

with a single discrete transformation variable t. Any such graphics program G(m, t)

leads to a noise distribution

p(m̃|m, s, t) =

w2
m∏

i=1

pABN(m̃i|G(m, t)i),
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that gives us some robustness to the transformation G. Rotations and shears are two

basic examples of transformations that can be handled in this manner.

One interesting extension of the ABN model is the addition of dependencies be-

tween pixels of the unobserved true map M. This modification would allow strong

disagreements with the ground truth in one part of a patch to influence weaker dis-

agreements in nearby parts of the patch. One way to achieve this effect is by placing

an MRF prior on M, leading to a combination of a CRF and our ABN noise model.

We will show how this model can be trained efficiently in the next chapter.
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(a)

(b)

Figure 4.7: Figure 4.7(a) Shows an area from the Hamilton Roads training set with
the training labels overlaid in red. Figure 4.7(b) shows the predictions on the training
data for a model trained with the TABN loss.



Chapter 5

Structured Prediction

So far we have only used unstructured models, meaning ones in which predictions

for individual pixels do not directly influence each other. Even though unstructured

models seem to be capable of achieving good performance on the tasks we have

considered, incorporating knowledge about the smoothness or shape of the predicted

objects should lead to even better performance. Indeed, as we discussed in Chapter 2,

incorporating structure into aerial and general image labeling methods has often led

to big improvements in accuracy and can be traced back to some of the earliest work

on the subject [Kettig and Landgrebe, 1976, Bischof et al., 1993, He et al., 2004,

Kluckner et al., 2009].

To gain some insight into the kinds of issues that we hope to address by incorporat-

ing structure we show sample predictions on the Toronto Roads and GTA Buildings

datasets in Figures 5.1(a) and 5.1(b) respectively. On road data, the most common

problems are disconnected blobs of road and gaps in the predicted road network.

A model that incorporates a connectedness constraint on the road network should

be able to avoid both types of errors. Similarly, the most common issues found in

predicted building maps are holes and disconnected blobs. Unlike with road data,

however, shape and layout are the cues that must be used to resolve these types of

errors. Incorporating structure into an image labeling approach by placing a smooth-

ness prior over the labels is likely to help address the issues with both road and

building detection. On top of this, incorporating higher level information, such as

shape, is likely to lead to further gains.

In this chapter, we aim to address the problem of incorporating rich dependencies

among the outputs of our models without sacrificing the ability to learn from large

59
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(a) (b)

Figure 5.1: Sample predictions for a base network on the Toronto Roads and GTA
Buildings datasets.

datasets and deal with noisy labels. We first show how stacking neural networks on

top of each other indirectly introduces high-level dependencies between the outputs.

Training a neural network to clean up the predictions of another neural network in

this manner makes it easier to incorporate knowledge about shape into resulting the

predictions. We then show how post-processing neural networks can be extended to

post-processing Conditional Random Fields by adding direct pairwise dependencies

between the outputs of the neural network. Adding direct pairwise dependencies

makes it easier for the models to capture low-level properties such as smoothness.

The resulting models lead to substantial improvements in precision and recall over

our unstructured models.

5.1 Post-processing Neural Networks

Given that our goal is to incorporate structure into our models without sacrificing

the benefits of fast online training and noise models, perhaps the easiest way to

accomplish this is by recycling our existing machinery for training neural networks.

While the neural networks we have been using do not have explicit dependencies

between the outputs, indirect dependencies can be introduced by stacking several

neural networks, each using the outputs of the previous neural network as its inputs.

We make use of our patch-based prediction framework using patches of predictions
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Figure 5.2: A stack of two post-processing neural networks.

instead of patches of aerial images as input. We will refer to neural networks taking

patches of predictions instead of aerial images as input as post-processing or cleanup

neural networks.

To precisely define the setup, let M̂0 be the map predicted from an aerial image by

one of the models described in the preceding chapters. The ith level post-processing

neural network fi takes a ws by ws patch of M̂i−1 and outputs a wm × wm patch of

M̂i. As with the other neural network models, fi is trained to minimize the negative

log probability of patches of the observed map M̃. Hence, the ith post-processing

neural network aims to improve on the predictions of the previous neural network

fi−1. Figure 5.2 shows a stack of two such post-processing neural networks.

Each post-processing neural network should be able to improve or match the

quality of the predictions of the previous network for two reasons. First, the fact that

the network trained to predict a set of labels from a set of predictions for this set of

labels should allow it to at least match the accuracy of the preceding neural network.

It should also be easier to represent dependencies between predictions than in a

network that is trying to predict the same labels from an aerial image patch. Second,

by using an input patch larger than the output patch, each successive network is using
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(a) (b)

Figure 5.3: Predictions of post-processing neural networks for the areas shown in
Figure 5.1.

information extracted from a larger and larger area of the aerial image as input. This

allows post processing networks to propagate confidence along the predicted maps.

There are two main advantages to using post-processing neural networks for in-

corporating structure into the predictions. One immediate benefit is the fact that the

robust losses from Chapter 4 can be used to train post-processing networks without

modification. Two, given the fact that neural networks are universal approxima-

tors, at least in theory, post-processing neural networks are capable of representing

arbitrary dependencies between input predictions and output label probabilities.

As we discussed in Chapter 2, trained classifiers have been used for post-processing

in the past. For example, Bischof et al. [1993] trained logistic regression models to

remove salt and pepper noise from aerial image classification results. In the remainder

of this section, we evaluate different types of post-processing neural network archi-

tectures, including shallow, single hidden layer networks and networks with multiple

levels of local or convolutional features, on road and building detection tasks. Our

results confirm the effectiveness of this simple approach to doing structured predic-

tion.

5.1.1 Results

To evaluate different post-processing neural network architectures, we first trained

two copies of a three layer locally connected network on the Toronto Roads and
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Figure 5.4: Precision/recall plots showing the effect of cleanup with different network
architectures. (a) Post processing on the Toronto Roads dataset. (b) Post processing
on the GTA Buildings dataset.

GTA Buildings datasets. These base networks used aerial image patches as input

and were trained for 20 epochs, at which point validation precision and recall stop

improving noticeably. We then trained three different post-processing neural network

architectures to predict 16 by 16 map patches from 64 by 64 patches of predictions

of the base networks on each dataset.

The first architecture is a neural network with a single fully-connected hidden

layer with 4096 hidden units. The second architecture is a two-layer locally-connected

network with 64 filters of size 12 by 12 with stride 1 in the first hidden layer and 256

filters of size 4 by 4 with stride 2 in the second hidden layer. Finally the third

architecture is a convolutional version of the second architecture. The hidden layers

in all three architectures consisted of rectified linear units.

Figures 5.4(a) and 5.4(b) show the precision-recall curves for the models we com-

pared on the Toronto Roads and GTA Buildings datasets respectively. All three

post-processing network architectures give a substantial improvement in precision

and recall over the base networks, but the difference between different architectures

themselves is quite small. We found this to be a general trend – post processing leads

to a substantial improvement over the base network, but there is little difference in

performance between different architecture choices such as the sizes and types of the

hidden layers.

In order to visually demonstrate the improvement in the predictions of the post-
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processing networks over the base networks, Figure 5.3 shows the predictions of the

best post-processing networks on the areas for which base network predictions are

shown in Figure 5.1. The post-processing network suppressed the disconnected blobs

of road present in the base network predictions in Figure 5.1(a) and filled in most of

the gaps in the road network. The network essentially learns to propagate confident

predictions along the map while respecting the constraints of the predicted road

network. A similar effect can be seen in the building predictions, where the post-

processing network propagates confident predictions while respecting the constraints

on building shape it has learned from the data.

5.2 Conditional Random Fields

One drawback of post-processing neural networks is that they do not incorporate

prior knowledge by explicitly coupling the model outputs and instead attempt to

learn all dependencies from data. While, as we showed in the previous section, this

approach is able to learn useful dependencies between outputs, post processing neural

networks fail to model local smoothness, which is the strongest local dependence.

Though stacking multiple post-processing neural networks on top of one another

might eventually come close to modeling smoothness really well, it may be easier and

more effective to incorporate such strong prior knowledge directly into the model.

In this section, we explore extending our deep neural networks to deep Conditional

Random Fields (CRFs) by adding explicit dependencies between outputs of a neural

network. In particular, we add a smoothness term between neighbouring pixels to

our model, removing the need to learn smoothness from the data. Using the resulting

models for post-processing leads to substantial improvements over unstructured, post-

processing neural networks.

5.2.1 Model Description

Following the discussion of Chapter 2, an image labeling CRF is simply a Markov

Random Field over the set of pixel labels, which is globally conditioned on the image.

In the context of our patch-based labeling framework, the observed map distribution
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Figure 5.5: A graphical representation of a 4-lattice MRF. The shaded nodes are all
conditionally independent given the non-shaded nodes and vice versa.

for a CRF takes the form

p(m̃|s) =
exp (−E(m̃, s))∑
m exp (−E(m, s))

, (5.1)

where E(m̃, s) is an energy function.

We focus on the most common type of CRF used in the computer vision literature,

namely the pairwise lattice CRF. The energy function for a pairwise CRF takes the

form

E (m̃, s) =
∑
i

U(m̃i, s) +
∑

(i,j)∈E
V (m̃i, m̃j, s),

where E denotes the set of all pairs of neighbouring pixels according to the 4-lattice

shown in Figure 5.5. This type of energy function includes unary potentials U(m̃i, s),

which determine how well label i agrees with the image s and, and pairwise potentials,

V (m̃i, m̃j, s), which determine how well neighbouring labels i and j agree with each

other and the image.

In particular, we consider grid CRFs in which the unary potentials are determined

by the outputs of a deep neural network, and the pairwise potentials encourage neigh-

bouring pixels of similar colour to have the same label. The pairwise potential we use

was proposed by Shotton et al. [2008] and is defined as

V (m̃i, m̃j, s) = exp
{
−β||si − sj||2

}
αδ [m̃i 6= m̃j] ,

where α is a negative constant, δ is a delta function, and si denotes the vector of
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colour values for pixel i. When the pixels si and sj are not similar, the exponential

term of the potential will be close to 0, making a negligible contribution to the energy

for all possible labels m̃i and m̃j. When the pixels si and sj are similar, however,

the exponential term will be close to 1, which means that the penalty of α will be

added to the energy when m̃i and m̃j are different. This type of potential directly

encourages smoothness of the labels in homogeneous regions of the image. The energy

function for a CRF with these types of potentials can be expressed as

E (m̃, s) = −∑i

(
m̃i log fi(s)− (1− m̃i) log(1− fi(s))

−∑j∈N(i) exp {−β||si − sj||2}αδ [m̃i 6= m̃j]
)
,

where fi(s) is the ith output of the neural network.

This basic pairwise CRF model can be extended in a number of different ways. For

example, Kohli et al. [2009] build a model that combines multiple oversegmentations of

an image and obtain more fine-grained segmentations by using higher order potentials

to encourage label consistency within superpixels of the oversegmentations. Gould

et al. [2008] extend the basic model with a prior over the relative locations of different

object types. We do not use these types of extensions and instead hope to capture

some of the same dependencies by stacking models on top of each other. Since the

unary potentials of our model are determined by the outputs of a deep neural network,

the model could conceivably be able to reason about the relative locations of predicted

objects whenever it is used for post-processing. We also hope that the use of a deep

neural network for the unary potentials will lead to more fine-grained segmentations

compared to models with less powerful unary potentials, despite the fact that we use

a simple smoothing term.

5.2.2 Predictions and Inference

The standard way of making predictions with a CRF is by finding the labeling with

the highest probability under the model. More precisely, we would like to find the so

called MAP labeling mMAP , defined as

mMAP = arg max
m̃

p(m̃|s).
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While the problem of finding the MAP labeling in general CRFs, known as MAP

inference, is known to be NP-hard, there are broad classes of CRFs for which efficient

exact MAP inference is possible. Pairwise CRFs in which the pairwise potentials

satisfy a condition known as submodularity are one such class. Under our formulation,

submodularity corresponds to the condition

V (0, 1, s) + V (1, 0, s) ≤ V (0, 0, s) + V (1, 1, s). (5.2)

For any model satisfying this condition, the MAP labeling can be found in polynomial

time using graph cuts [Greig et al., 1989]. Conveniently, the submodularity condition

simply states that the model should favour smoothness in the labels and it is satisfied

by our models for all non-positive values of α.

Despite the fact that efficient and exact MAP inference for our model is possible

using graph cuts, it is not a good choice in this setting because it produces a hard 0/1

labeling. The resulting labeling leads to a single pair of precision and recall values,

making it impossible to trade off one for the other by choosing a threshold. Indeed, we

found that graph cut inference leads to predictions with high precision and moderate

recall, which may not be desirable. For this reason, we do not use MAP inference

and instead perform marginal inference where the goal is to compute the marginals

p(m̃i|s) for all pixels i. Computing the marginals allows us to trade off precision

and recall against each other by choosing a threshold and using it to produce a hard

assignment from the marginal probabilities.

We experimented with two types of marginal inference: mean field inference based

on a fully-factored distribution and loopy belief propagation. While the two types of

inference led to nearly identical precision-recall curves, mean field inference is both

faster and more straight forward to implement, so we present it here in detail.

Mean field inference involves finding the fully-factored distribution q that is closest

to p(m̃|s) in terms of KL-divergence. More precisely, the mean field approximation

of p(m̃|s) is the distribution q defined as

q = arg min
q∗

KL (q∗||p(m̃|s)) such that q∗(m̃) =
∏
i

q∗i (m̃i),

Not surprisingly, it is rarely possible to find a closed form solution to this variational

minimization problem unless the distribution being approximated is in the class of
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approximating distributions, which would entirely defeat the purpose of finding an

approximation. Instead, solving for q typically leads to an expression for each qi in

terms of the other q’s, which can in turn be used to iteratively update the q’s starting

from some initial guess until a stationary point is reached.

In order to derive the mean field approximation to p(m̃|s) we first write out KL-

divergence between q and p(m̃|s) and separate out its dependence on a single term

qj. Hence,

KL(q||p(m̃|s)) =
∑
m̃

q(m̃) log
p(m̃|s)

q(m̃)

=
∑
i

∑
m̃i

(∏
i

qi(m̃i)

)(
log p(m̃|s)−

∑
i

log qi(m̃i)

)

=
∑
m̃j

qj(m̃j)
∑
m̃i6=j

[(∏
i 6=j

qi(m̃i)

)(
log p(m̃|s)−

∑
k

log qk(m̃k)

)]
=

∑
m̃j

qj(m̃j)
∑
m̃i6=j

[(∏
i 6=j

qi(m̃i)

)
log p(m̃|s)

]−
∑
m̃j

qj(m̃j) log qj(m̃j) + C,

where C is a constant that does not depend on qj. At this point, we can take partial

derivatives of KL(q||p) with respect to qj(m̃j = 0) and qj(m̃j = 1) set them to 0 to

obtain that

qj(m̃j) = exp (Eqi,i 6=j [log p(m̃|s)]) /Zj,

where Zj is a normalizing constant. This gives us a set of consistency equations that

must hold for the distribution q that minimizes KL(q||p).
While this is not a closed form solution for the best possible approximating dis-

tribution q, we can find a fixed point for these equations by iteratively updating the

qi’s using the consistency equations starting with some initial guess, with convergence

guaranteed. Since updating one qi at a time does not lend itself to easy parallelization

we instead perform damped parallel updates. While convergence to a fixed point is

no longer guaranteed, we find that the procedure works well in practice. We pro-

vide the mean field inference procedure for CRFs with the energy function defined in

Equation 5.2 as Algorithm 1.
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Result: Approximate marginals qMF

Initialize q
(0)
i to 0.5 for all i

for t = 1, . . . , T do
Compute the iterated q∗i ’s according to:

log q∗j (m̃j) = m̃i ln fj(s) + (1− m̃i) ln(1− fj(s)) +∑
k∈N(j)

∑
m̃k
q
(t−1)
k (m̃k)V (m̃j, m̃k, s)

Compute the updated qi’s according to:

q
(t)
j (m̃j) = γq∗j (m̃j) + (1− γ)q

(t−1)
j (m̃j)

end

return q(T )

Algorithm 1: Mean-Field Inference for Grid CRFs

One thing to note is that due to the 4-lattice structure of the CRF the update

equation for each pixel is a sparse computation involving only its 4 neighbours. By

breaking down the computation into four separate steps, one for each direction of

neighbours, it is possible to vectorize this update and perform it in parallel for an

entire minibatch.

The mean-field inference procedure has two free parameters: the number of infer-

ence steps T and the damping factor γ. We experimented with a few settings of the

parameters and found that using T = 10 and γ = 0.5 seemed to work well. We used

these parameter values for both training and testing in all experiments where mean

field inference was used.

Figure 5.6 shows the first six steps q(1), . . . , q(6) of this mean field inference proce-

dure for a CRF trained on the GTA Buildings dataset. While some boundary artifacts

are still present, the inference procedure does a good job of removing some of them

by propagating confident predictions.

5.2.3 Learning

Our CRF has two sets of parameters – the parameters of the neural network deter-

mining the unary potentials and the parameters α and β of the pairwise potential.

We learn the two sets of parameters separately, which is a common practice in the
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Figure 5.6: Six steps of mean field inference for a CRF trained on building data. The
order of steps is left to right and top to bottom.

computer vision literature [Shotton et al., 2008, Krähenbühl and Koltun, 2011].

We set the smoothness penalty term α based on validation data. In particular,

we found that the value α = −1.2 worked well on validation data on both road and

building data and used it for all the experiments in this section. Following Shotton

et al. [2008], we set β based on the training data to be

β = E
[
||si − sj||2

]−1
,

where the expectation is over neighbouring pixels i and j. This makes sure that the

exponential term of the pairwise potential tends to be in a reasonable range and does

not saturate too often.

The simplest procedure for finding good weights for the neural network f is to first

train it separately from the CRF using the unstructured approach from Chapter 3.

Indeed, we found that initializing the neural network part of the CRF using weights
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of a separately trained neural network led to good results. Since this way of learning

the unary potentials of a CRF does not make use of the pairwise terms, we explored

the possibility of finetuning the neural network determining the unary potentials of

a CRF using gradient descent on the CRF negative log likelihood.

For a single training case, the partial derivative of the negative log likelihood of a

general CRF with respect to a parameter θ is given by

−∂ log p(m̃|s, θ)
∂θ

= ∂E(m̃,s)
∂θ

−∑m̃ p(m̃|s, θ)∂E(m̃,s)
∂θ

= ∂E(m̃,s)
∂θ

− Ep(m̃|s)
[
∂E(m̃,s)

∂θ

]
.

The expression for the partial derivative consists of two terms. The first term, known

as the positive term, is simply the partial derivative of the energy with respect to

the parameter, and is straightforward to compute for most models, including ours.

The second term, known as the negative term, is the partial derivative of the log

partition function and takes the form of an expected value of the partial derivative

of the energy with respect to the model distribution p(m̃|s). Since the negative term

requires summing over a number of terms exponential in the number of pixels, it

is generally intractable to compute, even for a model as simple as a 4-lattice CRF,

forcing one to use approximate learning methods.

Broadly speaking, approximate learning methods for models with intractable par-

tition functions can be divided into stochastic and deterministic approximations. We

experimented with learning the parameters of f using both types of approximations,

which we now discuss in greater detail.

Deterministic approximations

We considered the broad category of deterministic approximation methods which

involves replacing the expectation with respect to the model distribution p(m̃|s) with

an expectation over some tractable distribution q. In models where MAP inference

is tractable, a popular choice for q is a point mass distribution with all of its mass

placed on the MAP prediction mMAP . While it would be interesting to experiment

with using MAP inference during learning we chose to use the fully factored mean

field approximation to p(m̃|s) as the distribution q because the computation can be

easily parallelized.
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Using the approximation

−∂ log p(m̃|s)

∂θ
≈ ∂E (m̃, s)

∂θ
− EqMF

[
∂E (m̃, s)

∂θ

]
,

where qMF is the result of mean field inference described in Section 5.2.2, we get the

intuitively pleasing result that

−∂ log p(m̃|s)

∂ai(s)
≈ m̃i − qMF

i (m̃), (5.3)

where ai(s) is the total input to the output unit for the ith pixel. Hence, according to

the approximations we have used, the partial derivative of the negative log likelihood

with respect to the activation of a single unit ai(s) is just the difference between the

observed label and the probability of the observed label being 1 according to mean

field inference. The partial derivatives of the loss with respect to the parameters of the

neural network f can be easily computed from Equation 5.3 using backpropagation.

Our attempts to learn the unary potentials of the CRF defined by the neural

network f using the above approach were not successful. All models finetuned with

this approach were considerably worse than the neural networks they were initialized

with. The problem likely stems from the fact that the mean field approximation

of the model distribution tends to be overconfident because it converges on a single

mode [Bishop, 2006]. It is common for the entries of q to be very close to 0 whenever

the neural network assigns a low probability of an object of interest being present.

This has the effect of driving up the biases of the neural network and leads to an

increased false positive rate.

Stochastic approximations

Stochastic approximation techniques rely on using Monte Carlo methods for approx-

imating the expectation in the negative term. In cases where it is easy to efficiently

draw samples from the model distribution, sampling-based techniques can be used to

obtain an unbiased estimate of the negative term. Since probabilistic models with

intractable partition functions, including the types of CRFs we consider, are usually

difficult to sample from, approximate sampling techniques must be used.

We experimented with approximating the negative term expectation using a Markov

chain whose stationary distribution is the model distribution p(m̃|s). The transition



Chapter 5. Structured Prediction 73

operator of the Markov chain we used for our model is a block Gibbs sampler with

two groups defined using a checker board pattern, as shown in Figure 5.5. All the

shaded nodes can be updated in parallel given all the unshaded nodes and vice versa,

allowing us to update all nodes in just two block Gibbs updates. By running the

Markov chain until it reaches equilibrium, we could obtain samples from the model

p(m̃|s) and use them to approximate the negative term expectation. Unfortunately

this approach is impractical because it takes a long time to reach equilibrium.

One alternative is to use Contrastive Divergence (CD) learning [Hinton, 2002],

which initializes the Markov chain at the data m̃ and runs the Markov chain for a

small number of steps instead of running until convergence. We found that finetuning

a CRF using CD actually made the predictions worse. This confirms our earlier

finding that CD may not work well for training conditional models [Mnih et al., 2011]

where the Markov chain mixes slowly. Intuitively, CD training lowers the energy of

the observed data and raises the energy of the regions near the true data. This may

not work well for a conditional model because test time inference starts away from

the true data and may never reach the regions of the state space explored by CD at

training time.

We experimented with a number of alternatives to standard CD training and

found that we could successfully finetune a CRF using CD where the Markov chain

in the negative phase run at temperature 2 instead of 1. Running the Markov chain

at the higher temperature improved mixing in the chain. Additionally, we found that

using a different value of the pairwise smoothness penalty term α at training time also

improved mixing of the chain leading to even better finetuning results. While using

the value of α = −1.2 works well at test time, it leads to rather rigid smoothness

constraints on the labels which make it difficult for our Gibbs sampler to make large

moves. Thus our finetuning procedure used CD with the negative chain running at

temperature 2 for 5 steps and the pairwise penalty term set to −0.6. While it might

be possible to use CD training without any model modifications by using a better

sampler such as Swendsen-Wang [Swendsen and Wang, 1987], we did not explore this

possibility.
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Model Base Post-processing
nn 0.7985 0.8176
crf 0.8144 0.8343
Finetuned crf 0.8296 0.8351
Finetuned nn crf 0.8268 0.8345

Table 5.1: Precision and recall breakeven points for different base and cleanup models
on the GTA Buildings dataset.

5.2.4 Results

Due to the fact that smoothness is more important for building detection than road

detection we evaluate the proposed CRF model on the GTA Buildings dataset. We

evaluate two types of models – base models taking aerial images as input and post-

processing models using the outputs of a neural network as the input.

Table 5.1 shows precision-recall breakeven point values on the GTA Buildings

dataset for neural networks as well as CRFs trained in different ways. nn denotes a

deep neural network trained using the procedure described in Chapter 3, while crf

denotes a CRF whose neural network weights were initialized with the weights of

nn. The parameters of this model were not finetuned. The model Finetuned crf

corresponds to initializing a CRF with the weights of crf and finetuning it for two

epochs by optimizing the CRF likelihood using Contrastive Divergence. Finally, the

model Finetuned nn crf is a CRF whose neural network weights were obtained

by training nn for two more epochs using the standard neural net likelihood. We

included Finetuned nn crf to see if there is a benefit from finetuning a CRF using

the CRF likelihood as opposed to just training the neural network part longer using

the unstructured neural network likelihood.

CRFs trained using all three procedures substantially outperform nn. For both

base and post-processing models, simply placing an MRF over the outputs of a neural

network to turn it into a CRF, which is the difference between nn and crf, improves

precision-recall breakeven points by roughly 0.015. We also see that while finetuning a

CRF using the CRF likelihood leads to a slightly bigger improvement in performance

than simply training the neural network longer, the difference between these two

methods is too small to be conclusive.

It is also interesting to note that post-processing CRFs are the best performing

models, outperforming both post processing neural networks and base CRFs. This
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(a) (b)

Figure 5.7: Predictions for base and post-processing CRFs on the GTA Buildings
datasets.

suggests that the improvements from doing post-processing with a neural net and

directly incorporating smoothness using a CRF are somewhat orthogonal and that

their combination offers the advantages of both.

In order to better understand how adding pairwise dependencies changes the pre-

dictions of the models we visualize the predictions of both CRFs. Figure 5.7 shows

predictions of the base and cleanup CRFs for the same part of the GTA Buildings

dataset that is covered by Figure 5.1(b). First, it is evident that the CRFs produce

much smoother predictions than simple post processing neural networks. Second,

CRFs seem produce much more extreme predictions than unstructured models, with

most pixels assigned probabilities of containing a building close to 0 or 1. For the

most part this effect improves predictions by reinforcing moderately confident predic-

tions. Unfortunately, the effect also tends to produce gaps where the initial detection

probabilities were too low, and this somewhat hurts precision at lower recall levels.

5.3 Combining Structure and Noise Models

In this section, we combine the Asymmetric Binary Noise model we developed in

Chapter 4 with the deep CRFs presented in Section 5.2. The combination of these

models is especially interesting because the pixel-by-pixel ABN noise model should

become more powerful when used to train a CRF. In particular, using the ABN model
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to train a CRF should allow nearby disagreements of the neural network predictions

with the ground truth to reinforce each other. This effect does not exist when the

ABN model is used to train a neural network because the negative log likelihood

decomposes over pixels due to the lack of direct dependencies between different labels.

5.3.1 The model

We recall from Chapter 4 that in order to deal with omission noise we defined the

following two-stage generative model of the data:

1. Generate the true, uncorrupted and unobserved map m from the aerial image

s according to a data distribution p(m|s).

2. Generate the corrupted observed map m̃ from the true map m according to a

noise distribution p(m̃|m).

When the noise distribution is specified by the asymmetric binary noise model, this

generative process leads to the following observed map distribution:

p(m̃|s) =
∑
m

(∏
i

p(m̃i|mi)

)
p(m|s).

In Chapter 4, the true map distribution p(m|s) was specified using a neural net and

factored over pixels, which led to a p(m̃|s) that also factored over pixels. Here, the

true map distribution is specified by a CRF, which means that the observed map

distribution no longer factors over pixels. We will refer to this model as the CRF-

ABN model. While coupling the pixels in this manner makes learning more difficult,

it gives the model some interesting properties. Figure 5.8 shows the difference in the

inferred true map m between the ABN and CRF-ABN models. In particular, one

can see how nearby disagreements reinforce each other in the CRF-ABN model and

not in the ABN model.

5.3.2 Inference

Since the noise model only has an effect at training time, the test time inference prob-

lem for the CRF-ABN model is the same as for the plain CRF model from Section 5.2.

Namely, the goal is to compute the marginals p(mi|s) for making predictions from



Chapter 5. Structured Prediction 77

(a) (b) (c) (d)

Figure 5.8: Comparison of the ABN and CRF-ABN models. Each plot shows 64
training cases arranged in an 8 by 8 grid. 5.8(a) are the target map patches m̃.
5.8(b) are the outputs of a neural network. 5.8(c) are the true map patches m
inferred according to the ABN model. 5.8(d) are the true map patches m inferred
according to the LMRF model.

the CRF. We make use of the mean field inference procedure developed in Section 5.2

and refer to this mean field approximation of p(m|s) as qp(m|s).

5.3.3 Learning

As the CRF-ABN model can be seen as a latent CRF with a stationary pixelwise

emission distribution, we will use the EM algorithm to optimize the log likelihood

in the presence of latent variables. As in our application of the EM algorithm to

the translational noise model, we are not able to perform a full M-step and instead

perform a partial approximate one by doing a single minibatch gradient update.

However, unlike in the case of the translational noise model, we are no longer able

to perform an exact E-step because expectations with respect to p(m|m̃, s) are not

tractable under the CRF-ABN model. Instead, we chose to perform a variational

E-step, where we use a fully factored mean field approximation q(m) in place of

p(m|m̃, s). We found that this scheme works well in practice.

Variational EM

We briefly review the variational EM algorithm before giving a detailed description

of its application to training the CRF-ABN model. Our treatment of the variational

EM algorithm follows that of Bishop [2006].

We consider a probabilistic model with observed variables X, latent variables Z,



Chapter 5. Structured Prediction 78

and a joint distribution p(X,Z|θ). The goal is to optimize the log likelihood

log p(X|θ) = log
∑
Z

p(X,Z|θ),

and we assume that this is difficult due to the presence of the sum inside the logarithm.

Additionally, we assume that maximizing the complete log likelihood log p(X,Z|θ) is

straightforward with respect to θ.

The central idea behind the EM algorithm is decomposing the log likelihood as

log p(X|θ) = L(q, θ) +KL(q||p(Z|X)),

where q is a distribution defined over the latent variables Z, and

L(q, θ) =
∑
Z

q(Z) log
p(X,Z|θ)
q(Z)

.

This decomposition holds for any choice of distribution q, and because the KL-

divergence KL(q||p) is nonnegative, the term L(q, θ) is a lower bound on the log

likelihood log p(X|θ).

The EM algorithm maximizes the log likelihood log p(X|θ) by performing an al-

ternating maximization of the lower bound L(q, θ). In the E-step, L is maximized

with respect to q. Since L is bounded from above by log p(X|θ) and KL(q||p) is 0 if

and only if q = p, L attains its maximum with respect to q at q = p(Z|X). In the

second step of the alternating minimization, the M-step, L is maximized with respect

to the model parameters θ, which corresponds to maximizing∑
Z

q(Z) log p(X,Z|θ). (5.4)

Since L is a lower bound on the log likelihood, increasing L is guaranteed to increase

the log likelihood when the bound is tight.

Unfortunately, maximizing the quantity in Equation 5.4 for the choice q(Z) =

p(Z|X, θ) is intractable for many models of interest. The key idea behind the vari-

ational EM algorithm is to restrict the maximization performed in the E-step to a

class of distributions for which maximizing the quantity in Equation 5.4 is tractable.
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One common choice for q is the mean field approximation which is defined as

qMF = arg max
q(Z)
L(q, θ) such that q(Z) =

∏
i

qi(Zi)

and corresponds to restricting the maximization of L to the class of fully factored

distributions q.

While the EM algorithm always improves the log likelihood unless a local opti-

mum has already been reached, since the E-step in the variational EM algorithm

corresponds to a partial maximization of L, the M-step is no longer guaranteed to

improve the log likelihood. Nevertheless, both steps of the variational EM algorithm

increase L when possible, and since L is a lower bound on the log likelihood , varia-

tional EM tends to increase the log likelihood in practice.

We now describe our variational EM algorithm for training the CRF-ABN model.

M-step:

The goal of the M-step is to maximize L with respect to the parameter vector θ. Since

we are training a nonlinear model, we opt for a partial approximate M-step in which

we do a single minibatch update of stochastic gradient descent on the parameters θ.

Following the approaches used to learn the parameters of the ABN model in Chapter 4

and the CRF parameters in Section 5.2 we use gradient information only to learn the

parameters of the neural network f and use a validation set to learn the pairwise

term of the MRF and the noise model parameters.

In order to derive the required update, we take the partial derivative of the vari-

ational lower bound L with respect to a single parameter θ and obtain

∂L(q, θ)

∂θ
=

∂

∂θ

∑
m

q(m) log p(m|s) (5.5)

= −
(∑

m

q(m)

(
∂E(m, s)

∂θ
− Ep(m|s)

[
∂E(m, s)

∂θ

]))
(5.6)

= −
(
Eq(m)

[
∂E(m, s)

∂θ

]
− Ep(m|s)

[
∂E(m, s)

∂θ

])
, (5.7)

by removing terms that do not depend on θ and rewriting summations as expectations

where possible. The first term in Equation 5.7 is an expectation of the CRF’s energy
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derivative with respect to the mean field approximation q and is straightforward to

evaluate. The second term in the same expression is the expectation of the CRF’s

energy derivative with respect to the CRF’s model distribution p(m|s) and, as we

saw in Section 5.2 is intractable for our model. Since we already addressed the issue

of approximating this term, we follow the approach from Section 5.2. In particular

we use CD with the Markov chain running at temperature 2 and, as before, we also

set the pairwise penalty term to −0.6 at training time in order to further improve

mixing of the Markov chain.

Combining the above approximation with Equation 5.7 we obtain that the ap-

proximate partial derivative of L with respect to the activation ai of the ith output

unit of the neural network f is given by

∂L(q, θ)

∂ai
≈ −

(
Eq(m)

[
∂E(m, s)

∂ai

]
− Ep(m|s)

[
∂E(m, s)

∂ai

])
= −

(
q
p(m|m̃,s)
i (mi = 1)− qp(m|s)i (mi = 1)

)
.

The resulting expression for the error derivative of the ith output is the difference

between the probability of the ith unit being on under a variational approximation of

the posterior p(m|m̃, s) and the probability of the ith unit being on under a variational

approximation of the CRF distribution p(m|s). The M-step updates the parameters

of the neural network f by backpropagating these error derivatives.

E-step:

The role of the E-step is to obtain the mean field approximation qp(m|m̃,s) of p(m|m̃, s)

by maximizing the variational lower bound L(q, θ) with respect to q subject to the

constraint q(m) =
∏

i qi(mi). As we saw above, this problem is equivalent to mini-

mizing KL(q||p(m|m̃, s)) subject to the constraint on q.

We recall from the derivation of qp(m|s) in Section 5.2.2 that the jth factor of a

fully factored mean field approximation of a distribution p is given by

qj = exp (Eqi,i 6=j [log p]) /Zj.

Thus, the terms q
p(m|m̃,s)
j can be easily obtained by plugging in p = p(m|m̃, s) into

the above equation. The resulting inference procedure for the E-step is shown as

Algorithm 2.
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Result: Approximate marginals qp(m|m̃,s)

Initialize q
(0)
i to 0.5 for all i

for t = 1, . . . , T do
Compute the iterated q∗i ’s according to:

log q∗j (mj) = mi ln fj(s) + (1−mi) ln(1− fj(s)) + ln p(m̃j|mj) +∑
k∈N(j)

∑
mk
q
(t−1)
k (mk)V (mj,mk, s)

Compute the updated qi’s according to:

q
(t)
j (mj) = γq∗j (mj) + (1− γ)q

(t−1)
j (mj)

end

return q(T )

Algorithm 2: Mean-Field Inference for Grid CRFs

This inference procedure is nearly identical to mean field inference in a plain CRF,

but with each factor qj also receiving a contribution from the emission distribution

p(m̃j|mj).

Alternative Training Procedure

While the training procedure for the CRF-ABN model based on the variational EM

algorithm produces reasonable results, we found that a simpler procedure tends to

work equally well. Instead of approximately training the CRF-ABN model, we use

qp(m|m̃,s) as the targets for training a neural network. According to this training

scheme, the error backpropagated to the ith output unit of the neural network is

−
(
q
p(m|m̃,s)
i (mi = 1)− fi(s)

)
.

Hence, we only use the CRF-ABN model to infer the true map m and use it as the

target for the input s instead of m. Alternatively this can also be seen as using

the point mass distribution centered at the outputs of the neural network f to ap-

proximate the negative term expectation in Equation 5.7. Despite the fact that this

training scheme ignores the pairwise terms in the negative phase, as we will show in

the next section, it seems to work just as well for training the CRF-ABN model.
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Model Base Post-processing
crf 0.8296 0.8351
crf-abn 0.8327 0.8413
crf-abnNN 0.8349 0.8393

Table 5.2: Precision and recall breakeven points for different base and cleanup models
on the GTA Buildings dataset.

5.3.4 Results

We evaluate both proposed procedures for training the CRF-ABN model on the GTA

Buildings dataset using and compare it to the performance of a CRF trained using the

CRF likelihood. Table 5.2 shows precision-recall breakeven points for three different

settings. crf corresponds to training a CRF by maximizing the CRF likelihood with

Contrastive Divergence while crf-abn corresponds to using the training criterion for

CRF-ABN based on variational EM. The third line crf-abnNN corresponds to using

the alternative training criterion for the CRF-ABN model.

The CRF-ABN model outperforms training with the standard CRF likelihood for

both base and post-processing networks, although the improvement is larger for post-

processing networks. It is possible that some of the omission errors are predictable

from the input aerial image but not from a patch of predictions. The presence of such

regularities in the omission noise would explain the larger improvement from training

a post-processing network with a noise model.

5.3.5 Discussion

This chapter presented two effective and complementary ways of incorporating struc-

ture into the outputs of our image labeling system. Adding direct pairwise dependen-

cies between neighbouring labels predicted by a neural network helps produce smooth

labelings. We also showed that training a neural network or a CRF using the outputs

of a neural network as input helps it indirectly capture higher-order dependencies

between outputs. The combination of the two approaches, namely using a CRF to

clean up the predictions of a neural network is particularly effective at capturing both

low-level and high-level dependencies.

Overall, we saw that, on the GTA Buildings dataset, training a post-processing

CRF using a noise model improved the precision-recall breakeven point over a using

just a deep neural network by roughly 0.04. Given that the deep neural network is
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already a powerful model, the improvement is substantial.

There are a number of interesting extensions of the proposed models. One promis-

ing direction is to investigate the use of pairwise potentials that are modulated by

a neural network instead of a simple image-dependent term. Given that we found it

necessary to use image-dependent pairwise potentials in order to get an improvement

from using a CRF we believe that making this part of the model more powerful could

lead to substantial improvements. The promising results obtained on several image

labeling tasks in Jancsary et al. [2012] using a model where the pairwise potentials

are determined using regression trees provide further evidence.



Chapter 6

Large-Scale Evaluation

So far, we have presented a complete framework for learning to label aerial images, and

while we have provided experimental validation along the way, we have not directly

compared our results to the work of others. As we discussed in Chapter 2, the rarity

of direct comparisons between proposed aerial image interpretation methods is a long-

standing problem in the area and we believe that it is primarily caused by the lack

of high quality publicly available aerial image datasets. In this chapter, we introduce

the first large-scale and publicly available road and building detection datasets, and

evaluate the most promising methods from the rest of the thesis on the new datasets.

We hope that the availability of these new high-quality datasets will both facilitate

more comparisons of existing methods and lead to increased interest in aerial imagery

applications in the machine learning and computer vision communities. Furthermore,

the evaluation of methods presented in this thesis on challenging datasets that were

not used during the development of these methods offers further validation of their

effectiveness.

We have assembled three datasets using publicly available imagery and metadata.

Two of the datasets make use of imagery released by the state of Massachusetts 1

while the third dataset uses imagery released by the state of New York 2. All imagery

was rescaled to a resolution of 1 pixel per square meter. The target maps for all three

datasets were generated using data from the OpenStreetMap project. Target maps

for the test and validation portions of all three datasets were hand-corrected to make

1http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-
geographic-information-massgis/

2gis.ny.gov/gisdata/

84
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the evaluations more accurate.

6.1 Massachusetts Buildings Dataset

The Massachusetts Buildings Dataset consists of 151 aerial images of the Boston

area, with each of the images being 1500 × 1500 pixels for an area of 2.25 square

kilometers. Hence, the entire dataset covers roughly roughly 340 square kilometers.

We randomly split the data into a training set of 137 images, a test set of 10 images and

a validation set of 4 images. The target maps were obtained by rasterizing building

footprints obtained from the OpenStreetMap project. Unlike the GTA Buildings

dataset we have used throughout the thesis, this data was restricted to regions with

an average omission noise level of roughly 5% or less. It was possible to collect such

a large a mount of high quality building footprint data because the City of Boston

has contributed building footprints for the entire city to the OpenStreetMap project.

The dataset covers mostly urban and suburban areas and buildings of all sizes,

including individual houses and garages, are included in the labels. Figures 6.1(a)

and 6.1(b) show two representative regions from the Massachusetts Buildings dataset.

6.2 Massachusetts Roads Dataset

The Massachusetts Roads Dataset consists of 1171 aerial images of the state of Mas-

sachusetts. As with the building data, each image is 1500×1500 pixels in size, covering

an area of 2.25 square kilometers. We randomly split the data into a training set of

1108 images, a validation set of 14 images and a test set of 49 images. The dataset

covers a wide variety of urban, suburban, and rural regions and covers an area of over

2600 square kilometers. With the test set alone covering over 110 square kilometers,

this is by far the largest and most challenging aerial image labeling dataset. Fig-

ures 6.2(a) and 6.2(b) show two representative regions from the Massachusetts Roads

dataset.

The target maps were generated by rasterizing road centerlines obtained from

the OpenStreetMap project. We used a line thickness of 7 pixels and no smoothing

because, as we discovered in Chapter 4, using hard binary labels for training works

better than using soft binary labels.
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(a) (b)

(c) (d)

Figure 6.1: Figures 6.1(a) and 6.1(b) show two representative regions from the Mas-
sachusetts Buildings dataset. Figures 6.1(c) and 6.1(d) show predictions of a post-
processing network on these regions. Green pixels are true positives, red pixels are
false positives, blue pixels are false negatives, and background pixels are true nega-
tives.

6.3 Buffalo Roads Dataset

The Buffalo Roads dataset differs substantially from the other two datasets presented

in this chapter because it is primarily meant to be used as an additional test set for
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(a) (b)

(c) (d)

Figure 6.2: Figures 6.2(a) and 6.2(b) show two representative regions from the Mas-
sachusetts Roads dataset. Figures 6.2(c) and 6.2(d) show predictions of a post-
processing network on these regions.

the Massachusetts Roads dataset. Our aim was to construct a test set that was

collected in a different area and under different conditions from the Massachusetts

Roads dataset.

The dataset consists of 30 aerial images of the city of Buffalo with each image
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being 609 × 914 pixels at a resolution of one pixel per square meter. The dataset

was randomly split into a training set of 5 images, a validation set of 5 images and

a test set of 20 images. Since the training set is so small it is unlikely that it can be

used to learn a good road detector and hence it is mostly available for the purposes

of adapting models trained on the Massachusetts data to the Buffalo dataset. As

with the Massachusetts Roads dataset, the target maps were generated by rasterizing

road centerlines obtained from the OpenStreetMap project with a line thickness of 7

pixels.

The dataset includes a wide variety of roads from both urban and suburban areas,

including significant amounts of occlusion from trees. Figures 6.3(a) and 6.3(b) show

two representative regions from the Buffalo Roads dataset. The conditions under

which the Buffalo Roads dataset was collected are clearly significantly different from

those of the Massachusetts Roads dataset, suggesting that training a model on the

later while evaluating it on the former may be a challenging task.

6.4 Results

6.4.1 Massachusetts Datasets

The main model we evaluated on the Massachusetts datasets is a large convolutional

neural network. The input to the model is a 64 by 64 aerial image patch. The first

hidden layer is a convolution layer with 64 16× 16 filters with stride 4. It is followed

by 2 × 2 max pooling with stride 1. The second hidden layer is also convolutional

with 112 filters of size 4×4 with stride 1, followed by a third convolutional layer with

80 filters of size 3 × 3 with stride 1. The fourth, and final, hidden layer is a fully

connected layer with 4096 hidden units. All four hidden layers consist of rectified

linear units. As before, the output layer is a fully-connected layer of 256 logistic

units.

The neural network was trained using stochastic gradient descent with minibatches

of size 128 using the hyper-parameter values described in Chapter 3. Additionally,

after every 220 training cases, we multiplied the learning rate by 0.95. Training

stopped after 225 cases had been processed.

We evaluated two other methods in addition to the plain neural network – a CRF

initialized with the neural network weights, and a post-processing network trained
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(a) (b)

(c) (d)

Figure 6.3: Figures 6.3(a) and 6.3(b) show two representative regions from the Mas-
sachusetts Buildings dataset. Figures 6.3(c) and 6.3(d) show predictions of a post-
processing network on these regions.

on the outputs of the base neural network. We did not tune the value of the CRF’s

pairwise interaction term α and simply used the value −1.2 because it worked well

on the GTA Buildings dataset. The post-processing neural network had one fully-

connected hidden layer with 4096 rectified linear units.
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Model
Dataset

Mass. Roads Mass. Buildings
Neural net 0.8873 0.9150
CRF 0.8904 0.9211
Post-processing net 0.9006 0.9203

Table 6.1: Precision-recall breakeven points for different models on the Massachusetts
datasets.

Table 6.1 shows the precision-recall breakeven points on the Massachusetts datasets

for the three models described above. We see that there is a relatively small improve-

ment from using a CRF on both datasets and that post-processing neural networks

outperform CRFs on road data. It is surprising that the improvement obtained by

structured models on the building data is quite small compared to the improvement

obtained on the GTA Buildings dataset. The main difference between the datasets

is that the Massachusetts Buildings dataset is dominated by individual houses while

the GTA Buildings dataset consists almost entirely of larger buildings. It is possible

that the gain from structured prediction on the Massachusetts data is smaller because

structure is not as important for detecting small objects such as houses.

To get a better idea of how well these models work, we include visualizations of

predictions of the post-processing networks on test data from both datasets. Fig-

ures 6.1(c) and 6.1(d) show predictions of the post-processing neural network trained

on the building data for the regions shown in Figures 6.1(a) and 6.1(b). The network

is very good at detecting individual houses but does less well on larger buildings.

This is not entirely surprising because there is significantly more variation in the

appearance of large buildings and the model saw fewer of them during training Fig-

ures 6.2(c) and 6.2(d) show predictions of the post-processing neural network trained

on the Massachusetts Roads dataset. As these results show, the model is very good

at detecting roads in a variety of settings and even under significant occlusions by

trees.

6.4.2 Buffalo Roads Dataset

The Buffalo Roads dataset was constructed in order to evaluate how well models

trained on the Massachusetts Roads dataset generalize to substantially different con-

ditions. Table 6.2 shows the precision-recall breakeven points for a number of different
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models on the Buffalo Roads test set. NN Mass corresponds to the big convolutional

neural network trained on the Massachusetts data and this model clearly works poorly

on the Buffalo data. NN Buffalo corresponds to the same convolutional architecture,

but trained on the small Buffalo Roads training set. While this model works surpris-

ingly well given that it was trained on less than 3 square kilometers of imagery, it

still achieves a breakeven point of just 0.7960.

Comparing images from the Massachusetts (Figures 6.2(a) and 6.2(b)) and Buffalo

(Figures 6.3(a) and6.3(b)) datasets suggests that the main difference may be in the

distribution of colours and that the structure of the roads may be largely the same.

Using this hypothesis as motivation we evaluated several ways of adapting the network

trained on Massachusetts data to Buffalo data using the small training set.

One straightforward way of compensating for the difference in colour distribution

between the datasets is by transforming the Buffalo data to have the same colour

histogram as the Massachusetts data. The third model from Table 6.2 corresponds to

running the NN Mass model on colour corrected Buffalo data. This simple strategy

requires only unlabeled data and turns out to be reasonably effective, as it boosts

the breakeven-point from 0.5613 to 0.8099. The other strategy for adapting the NN

Mass model to the Buffalo data involves using the small training set to finetune the

weights of the model. We started with the weights of NN Mass, trained it on the

Buffalo Roads training set for 128 epochs using a learning rate of 10−4, and saved the

weights that gave the highest log likelihood on the Buffalo Roads validation set. Using

the training set to finetune the weights in this manner improved the breakeven point

of the NN Mass model to 0.8785. While this number is comparable to the breakeven

point of the NN Mass model on the Massachusetts test set it does not mean that

the model works equally well on Buffalo data. In fact, we find that the Buffalo test

set appears to be easier than the Massachusetts test set, explaining the comparable

performance. Nevertheless, these results show that a model trained under one set of

conditions can be adapted to a new dataset using a small amount of labeled training

data.

The last model we evaluated on the Buffalo dataset is a post-processing neural

network trained on Massachusetts. We applied it to the outputs of the finetuned NN

Mass model and achieved a breakeven point of 0.8918 on the Buffalo test set. This

shows that post-processing networks do not necessarily have to be retrained for each

new dataset as long as the target object class is the same. Figures 6.3(c) and 6.3(d)
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Model Breakeven point
NN Mass. 0.5613
NN Buffalo 0.7960
NN Mass. + histogram matching 0.8099
NN Mass. + finetuning 0.8785
NN Mass. + finetuning + post-processing 0.8918

Table 6.2: Precision-recall values on the Buffalo Roads test.

show the predictions of this-post processing network on parts of the Buffalo Roads

test set.
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Conclusions and Future Work

This thesis presented a complete framework for learning to label aerial imagery, ad-

vancing the state of the art in both the difficulty of the tasks considered and the

quality of the predictions. Our framework addressed what we see as the three central

issues in learning from aerial imagery – learning of discriminative features, learning

from noisy data, and doing structured prediction.

In Chapter 3, we showed that neural networks trained on large amounts of la-

beled images using modern GPUs produced good performance on challenging real

world road and building detection datasets. We also showed that deep neural net-

works produced much more accurate predictions than shallow networks. In particular,

we found that deep convolutional neural networks with small amounts of maximum

pooling were particularly effective on aerial image labeling tasks.

Our introduction of noise models for dealing with omission and registration noise

in Chapter 4 is, to the best of our knowledge, the first attempt to address the problem

of noisy labels in aerial imagery. It is also, along with the work of Jain [Jain et al.,

2010] the first work to directly address the issue of noise in pixel labeling tasks. While

our ABN and TABN noise models introduce some level of robustness to two types of

label noise, we also looked at how noise in the training data affects a system trained on

this data. By using synthetic omission noise, we found that, somewhat surprisingly,

a neural network trained on a road detection dataset with as much as 40% of the

road labels deleted still performed quite well. Hence, label noise has a negative but

relatively small effect on neural networks.

Chapter 5 showed that the quality of the predictions can be further improved

using two complementary ways of incorporating structure into the predictions of our

93
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system. Post-processing neural networks learn to improve the predictions of a base

predictor using our patch-framework from Chapter 3. By reusing the existing frame-

work, post-processing neural networks are able to handle massive datasets using our

GPU-based implementation and are capable of learning complex features of the in-

put predictions. We also showed that adding direct, image-dependent dependencies

between the outputs of a neural network, turning it into a CRF, improves the predic-

tions by encouraging smoothness between neighbouring labels, a property of the data

that is not easily learned by post-processing neural networks. While training such

models can be troublesome, we showed that most of the benefit can be obtained by

training the neural network separately before using its weights to initialize a CRF.

Finally, we introduced the first large-scale publicly available datasets for both road

and building detection along with benchmarks that others can compare to. In both

datasets, the regions used for testing are both much larger and more varied than any

aerial image labeling dataset, both public or private, that we are aware of. We believe

that the availability of large and realistic datasets for aerial image labeling has the

potential to significantly advance the area. In particular, we hope that these datasets

will stimulate interest among computer vision and machine learning researchers.

While there are many possible directions for improving our system, it is important

to consider which ones will lead to the biggest gain in the quality of predictions.

Despite the significant gains obtained by incorporating structured prediction into our

system in Chapter 5, it is clear that neural network design choices such as using

several layers instead of one and convolutions instead of locally connected units lead

to the biggest gains in our thesis. For this reason we believe that putting more effort

into finding a good neural network architecture is likely to lead to further significant

gains. As we mentioned earlier, one way of improving the architecture is by doing a

better hyper-parameter search using Bayesian optimization techniques [Snoek et al.,

2012]. The recently introduced stochastic pooling [Zeiler and Fergus, 2013] has been

shown to work much better than the max pooling operation we use and should be

explored within our system.

In addition to finding a good neural network architecture, it is also important

to have a good procedure for fitting it to the data. While we have shown that

stochastic gradient descent on the negative log likelihood works well, we believe that

exploring better loss functions is likely to lead to big improvements in the predictions.

For example, the area under the precision-recall curve is a better measure of the
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quality of the predictions for road and building detection than log likelihood, hence

directly maximizing the area under the curve is almost certainly a better approach.

Furthermore, due to the fact that even our largest models do not seem to suffer from

serious overfitting problems, we believe that exploring better optimization methods

is a promising direction.

Beyond improving the architecture and training procedure of the neural network,

improving the structured prediction aspect of the model is also likely to lead to

significant improvements. The fully connected CRF model recently introduced by

Krähenbühl and Koltun [2011] has significantly improved the state-of-the-art in image

labeling and is likely to work well on aerial imagery. One interesting question relating

to these types of models is whether their performance could be improved by jointly

training all parameters using the model likelihood. We had limited success with

finetuning the unary potentials of our CRFs using the CRF likelihood, which could

simply be the result of using a poor approximate learning procedure. Still, we believe

that an end-to-end training procedure is preferable to one in which components are

learned separately.

Another important aspect of the overall system design is what data it is trained

on, which is equivalent to an underlying assumption about what type of data the

system is expected to work on. We have focused on improving performance on several

large and realistic aerial image labeling datasets, the most diverse of which covered

different parts of the state of Massachusetts. Our success on such datasets suggests

that given enough aerial imagery of a geographic area of limited size it is possible

to learn a good road or building detector for this area. Ultimately, the goal of the

field is probably to build a system that works well for imagery taken from any part

of the world under any reasonable conditions. While we showed some success with

training on one region while testing on another one and with adapting an existing

system to a new region using a small amount of labeled data, building a single good

detector probably requires even more varied datasets that cover all distinct regions

of the world. Unfortunately, at this point, freely available high resolution imagery is

generally limited to parts of Europe and North America.

Furthermore, being able to label pixels of an aerial image with semantic classes is

not the ultimate goal of aerial image interpretation but merely a useful abstraction

of the underlying problems. To make our system truly useful it must be incorporated

into a Geographic Information System (GIS). Two possible use cases for a pixel label-
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ing system in a GIS environment are map updating and automatic object extraction.

In the case of map updating, an existing, possibly outdated map needs to be updated

based on recent aerial imagery. While maps are usually stored in vector form and

our system produces raster images as its predictions, comparing a vector map and a

raster predicted map should be relatively straightforward. By looking for parts of the

predicted map that significantly disagree with the reference vector map, our system

could be used to automatically find regions that need updating. We believe that the

quality of the predictions of our system on the Massachusetts Roads data is already

sufficient to make it useful in an updating setting.

Finally, we believe that our system could also be used to facilitate automatic ex-

traction of objects from aerial imagery. In the case of roads, this requires extracting

vector representations of road centerlines from predicted raster maps. We have ex-

perimented with the automatic line extraction algorithm of Steger [1998] and found

that it works well when applied to predicted road maps produced by our system. It is

interesting that this algorithm was originally applied to extracting roads directly from

aerial imagery, but it works substantially better when applied to the output of our

system. This suggests that previous work on finding roads by applying active contour

models directly to aerial images can be revisited using our predicted maps as input.

The combination of strong topological constraints enforced by such models with a

data association potential produced by our system could be especially powerful. In

the case of buildings, we can already extract their locations by finding the centres

of mass of connected components of predicted building pixels. Extracting complete

building footprints would likely require training on even higher resolution input data,

but could probably be done using existing polygon extraction algorithms. Again, we

see the possibility of using the outputs of our system as a powerful data association

term in existing building detection methods that use strong topological constraints.
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