
CS 2401 - Introduction to Complexity Theory Lecture #7: Fall, 2015

CS 2401 - Introduction to Complexity Theory

Lecture #7: Fall, 2015

Lecturer: Toniann Pitassi

Scribe Notes by: Eric Bannatyne

1 Circuit Complexity

In this lecture we began discussing a number of topics related to circuit complexity. Boolean circuit
families are a natural example of a nonuniform model of computation. In contrast with our usual
definition of a Turing machine, which is a uniform model of computation in which a machine uses
the same algorithm on all input lengths, a boolean circuit family computing a function includes a
different circuit for every possible input size.

Recall that a boolean circuit Cn is a directed acyclic graph that has input nodes labeled with
the literals x1, . . . , xn and ¬x1, . . . ,¬xn, as well as internal nodes, or gates, labeled either ∧ or ∨,
and one output node. We can define what it means for a family of circuits to compute a boolean
function f .

Definition Let f : {0, 1}∗ → {0, 1} be a boolean function. A circuit family Cf = {Cn}n∈N computes
f if for every n ∈ N and x ∈ {0, 1}n we have Cn(x) = f(x).

We say that f has polynomial sized circuits, or f ∈ P/poly, if there is some constant c such
that |Cn| ≤ nc for all sufficiently large n, where |Cn| denotes the number of nodes in Cn.

We also introduce the parity function, which will be an important example of a problem that
occurs in circuit complexity.

Definition Let x ∈ {0, 1}n, then PARn(x) = 1 if and only if x1 ⊕2 · · · ⊕2 xn ≡ 1 (mod 2), where
⊕2 denotes exclusive or. Equivalently, PARn(x) = 1 if and only if x has an odd number of ones.

1.1 Common Circuit Classes, AC0 and NC

In addition to P/poly, we can define a number of related circuit complexity classes by restricting
the types of circuits we can use to compute a given boolean function.

Definition A boolean formula is a boolean circuit in which every gate has fanout 1.

1. DNF/CNF consists of boolean functions that can be computed with polynomial-size, depth
2, unbounded fanin formulas, which correspond to traditional DNF and CNF boolean formu-
las.

2. AC0 is the class of all boolean functions that can be computed with polynomial-size, un-
bounded fanin, constant-depth circuits. AC0

d consists of all those functions in AC0 that can
be computed with circuits of depth d.

1

CS 2401 - Introduction to Complexity Theory Lecture #7: Fall, 2015

3. NCi is the class of all boolean functions that can be computed with polynomial-size, fanin
2, depth O(logi n) circuits. The class NC is the union of NCi over all i ∈ N. Functions in
NC can also be viewed as those functions which can be computed efficiently in parallel.

The following chain of inclusions is known:

DNF/CNF ⊆ AC0 ⊆ NC1 ⊆ NC2 ⊆ · · · ⊆ NC ⊆ P/poly (1)

It is conjectured that problems in NP do not have polynomial-sized circuit families, that is,
that NP ⊈ P/poly. In particular, since P ⊆ P/poly, a proof of this conjecture would imply that
P ̸= NP. A primary aim of proving circuit lower bounds is to find some explicit function, ideally
in NP (or at least NEXP) that cannot be computed in one of the above circuit complexity classes.

We can show, by a simple counting argument, that almost all functions on n bits do not have
polynomial size circuits. Firstly, there are 22

n
different boolean functions on n bits. Second, a

circuit of size s can be represented as a string encoding an adjacency list in which 2 bits specify
the type of each gate, and for each wire, 2 log s bits specify the endpoints of the wire, requiring
s(2 + 2 log s) bits in total. Thus there are at most s2s(2+2 log s) circuits of size at most s. Taking
s = 2n/(10n), there are at most 20.4

n+2n+2 circuits of size s, which is much smaller than 22
n
for

sufficiently large n. In particular, the value of the ratio

20.4
n+2n+2

22n

decreases quickly to zero as n increases.

1.2 Circuit Complexity of Parity and Other Problems

We can show that n-bit parity is in NC1 by constructing, for each n ∈ N, a balanced boolean
circuit (which will have depth O(log n)) to compute PARn(x) for every x ∈ {0, 1}n. Below is an
example for n = 8. ⊕

⊕
⊕

x1 x2

⊕
x3 x4

⊕
⊕

x5 x6

⊕
x7 x8

In the above circuit, each XOR gate x⊕ y can be rewritten as (x ∨ y) ∧ (x ∧ y).
We can also show that any DNF formula computing PARn must have size exponential in n.

Theorem 1 Any DNF formula computing PARn has size at least 2n/2.

2

CS 2401 - Introduction to Complexity Theory Lecture #7: Fall, 2015

Proof Suppose f is some DNF formula that computes PARn on n bits. We can observe the
following facts:

1. Every term in f must have size exactly n. This is because if a variable is missing from some
term in f , then the final value of PARn(x) will depend on that variable, since the value of
that variable will determine whether the number of ones in x is even or odd.

2. Each term is satisfied by only one assignment to the bits of x.

Therefore the total number of terms in f must be greater than or equal to the number of inputs
α such that PARn(α) = 1, which is equal to 2n/2.

A similar argument also shows that parity requires exponential size CNF formulas. A harder
result shows that PARn is not in AC0. Another major result by Ryan Williams shows that there
is a function in NEXP that is not in ACC. Here, the class ACC can be thought of as “AC0 with
counting,” in which we also allow circuits to include gates that count modulo a fixed integer.

It’s also possible to show that basic arithmetic operations, such as binary addition and mul-
tiplication, are in NC1. In the case of addition, the standard gradeschool algorithm requires us
to maintain a carry bit at each step. This method requires a circuit of depth that is linear in the
number of bits in the input to compute the carry bits. However, this can be made more efficient
by using carry lookahead. For instance, if we want to add the following binary numbers:

1011011

1101011

we can determine whether a carry is necessary at a given position by looking at the pairs of
corresponding digits in the inputs. In particular, the pair 1

1 generates a carry bit, while 0
0 absorbs

a carry bit, and 1
0 and 0

1 propagate an existing carry bit. Thus the carry bits can be determined by
a shallow circuit, and in particular a circuit of logarithmic depth.

1.3 Monotone Circuit Classes

In addition to our usual circuit complexity classes, we can also define an analogous set of mono-
tone circuit classes mAC0,mNC1,mNC2, . . . ,mNC and mP/poly. The definition of each of
these classes is identical to its corresponding complexity class defined above, with the additional
restriction that the boolean circuits used cannot include negations. Thus the input gates consist
only of positive literals.

We say that a boolean function f : {0, 1}n → {0, 1} is monotone if for any input α ∈ {0, 1}n
such that f(α) = 1, then f(α′) = 1 if α′ ∈ {0, 1}n can be obtained from α by flipping some zero
bits to be ones.

For example, the function CLIQUEn,k, which takes as input the adjacency matrix of an undi-
rected graph G on n vertices and outputs 1 iff G contains a clique of size k, is a monotone function.
This is because if a graph contains a k-clique and we add a new edge (thereby flipping a bit in the
adjacency matrix from 0 to 1), the resulting graph will still contain a clique of size k.

Just like with the circuit classes defined above, we have the following chain of inclusions for
monotone circuit classes:

mAC0 ⊆ mNC1 ⊆ mNC2 ⊆ · · · ⊆ mNC ⊆ mP/poly.

3

CS 2401 - Introduction to Complexity Theory Lecture #7: Fall, 2015

However, while it is unknown whether any of the classes in (1) are equal, it is known that each of
these inclusions for monotone circuit classes is strict.

Given any boolean function f , we can derive a collection of monotone functions known as the
slice functions of f .

Definition Let f : {0, 1}n → {0, 1} be a boolean function. For each i ∈ {0, . . . , n}, we can define
the ith slice of f to be the function

fi(x) =

1 if x has more than i 1’s

f(x) if x has exactly i 1’s

0 if x has fewer than i 1’s

for every x ∈ {0, 1}n.

In particular, it is easy to see that every slice fi is monotone, regardless of whether f itself
is monotone. One of the main reasons for studying slice functions is related to a result due
to Berkowitz, establishing a relationship between the complexity of monotone and non-monotone
circuits for slice functions. Namely, that a non-monotone circuit of size s computing a slice function
f : {0, 1}n → {0, 1} can be converted to a monotone circuit of size at most 2s+O(n log2 n). This
is done by introducing the idea of a pseudo-negation, which enables us to emulate the behaviour
of NOT gates using monotone circuits for slice functions. In particular, this result means that a
superpolynomial lower bound for the monotone circuit size of a slice function would also imply the
lower bound for non-monotone circuits.

1.4 NC1 and Polynomial Sized Formulas

It is also possible to view the class NC1 in terms of polysize formulas, without depth restrictions.
This requires a useful lemma concerning binary trees.

Lemma 2 If T is a binary tree of size |T |, then T contains a subtree T ′ such that

1

3
|T | ≤ |T ′| ≤ 2

3
|T |.

Proof If either the left or right subtree of T is within the desired range, then we are done.
Otherwise, let T1(0) = T2(0) = T . Then for each k ≥ 1, let T1(k) (resp. T2(k)) be the smaller
(resp. larger) of the left and right subtrees of T2(k − 1).

Since |T2(1)| > 2
3 |T |, there must be some k such that |T2(k)| ≤ 2

3 |T | but |T2(k − 1)| > 2
3 |T |.

This is simply because T2(j + 1) is a proper subtree of T2(j), and thus has at least one less node,
for all j less than the height of T . To conclude the proof, we then have

|T2(k)| = |T2(k − 1)| − |T1(k)| − 1 >
2

3
|T | − 1

3
|T | − 1 =

1

3
|T | − 1.

Since |T2(k)| is an integer, it follows that |T2(k)| ≥ 1
3 |T |.

Using the above lemma, we can prove the following theorem.

4

CS 2401 - Introduction to Complexity Theory Lecture #7: Fall, 2015

Theorem 3 NC1 is equal to the set of all boolean functions that can be computed by polynomial-
sized formulas.

Proof Let f be an NC1 (polysize, depth O(log n)) circuit. Then we can convert f to a formula
by duplicating subcircuits as necessary to obtain a tree that is equivalent to the original circuit f .
Since f has depth O(log n), the resulting formula has size polynomial in n.

To prove the reverse direction, let f be a formula of size polynomial in n. We wish to construct
a new circuit f ′ by “re-balancing” f to have depth O(log n). Let t1 be a subformula of f such
that 1

3 |f | ≤ |t1| ≤ 2
3 |f |, and let t2(x1, . . . , xn, y) be the original formula f with the subformula t1

replaced with a new variable y. We can then rewrite f as

f = [t1 ∧ t2(1/y)] ∨
[
t1 ∧ t2(0/y)

]
,

where t2(1/y) means “t2 with 1 substituted for y”, and similarly for t2(0/y). We then construct
f ′ by recursively applying this same process on t1, t2(1/y) and t2(0/y). Every application of this
process increases the depth of the resulting formula by at most 3. However, since the size of the
subtrees that this process gets recursively called on decreases by a factor of 2

3 , the total recursion
depth will only be at most log3/2 |f |. Since |f | is polynomial in n, the recursion depth is O(log n),
and so the resulting balanced formula will have depth O(log n).

2 Next Time

During the next lecture, we will show that PARn /∈ AC0. The main idea will be to begin with
an alleged small AC0 circuit for PARn, and apply a restriction ρ : {x1, . . . , xn} → {0, 1, ∗}, which
assigns each variable to be either 0, 1, or unset (∗). Let PARn |ρ be the parity function restricted
to the inputs set by ρ. We then observe that the problem of computing PARn |ρ is still the problem
of computing the parity function (or its negation) on the unset variables. Turning this argument
into an actual lower bound for PARn will involve the use of the switching lemma.

5

