
Detecting Reduplication in Videos of American Sign Language

Zoya Gavrilov, Stan Sclaroff*, Carol Neidle*, Sven Dickinson

University of Toronto, *Boston University
6 King’s College Road Toronto ON, 111 Cummington Street Boston MA

zoya.gavrilov@utoronto.ca, sclaroff@cs.bu.edu, carol@bu.edu, sven@cs.toronto.edu

Abstract
A framework is proposed for the detection of reduplication in digital videos of American Sign Language (ASL). In ASL, reduplication is
used for a variety of linguistic purposes, including overt marking of plurality on nouns, aspectual inflection on verbs, and nominalization
of verbal forms. Reduplication involves the repetition, often partial, of the articulation of a sign. In this paper, the apriori algorithm for
mining frequent patterns in data streams is adapted for finding reduplication in videos of ASL. The proposed algorithm can account for
varying weights on items in the apriori algorithm’s input sequence. In addition, the apriori algorithm is extended to allow for inexact
matching of similar hand motion subsequences and to provide robustness to noise. The formulation is evaluated on 105 lexical signs
produced by two native signers. To demonstrate the formulation, overall hand motion direction and magnitude are considered; however,
the formulation should be amenable to combining these features with others, such as hand shape, orientation, and place of articulation.

Keywords: sign recognition; reduplication; apriori algorithm

1. Introduction
In this paper, we propose an automatic framework for the
detection of reduplication in digital videos of American
Sign Language (ASL). The focus of our research is lexical
signs, the largest morphological subclass in ASL; thus, we
do not consider other types of signs, including fingerspelled
signs and classifier constructions. The production of lexi-
cal signs in ASL involves particular hand configurations,
orientations, places of articulation in the signing space, and
types of movement (Stokoe et al., 1965; Klima and Bel-
lugi, 1988). Reduplication–a full or partial repetition of
the base form of a sign–can be involved in various con-
structions, including overt marking of plurality on nouns,
aspectual inflection on verbs (frequency, intensity, repeti-
tion, duration, etc.), and nominalization of verbal forms
(Fischer, 1973; Wilbur, 1973; Pfau and Steinbach, 2006;
Cokely and Baker-Shenk, 1980; Perry, 2005; MacLaughlin
et al., 2000).
Given the prevalence and linguistic importance of redupli-
cation, it is clear that an automated ASL recognition system
must include a model for reduplication. Moreover, model-
ing reduplication is fundamental in solving the problem of
sign segmentation; for instance, in parsing a sequence of
continuous signs, it is essential to know whether two se-
quential movements are contained within a single sign or
two different signs.
The richness of reduplication presents interesting chal-
lenges for automated analysis. When reduplicated, the
movement of the base form of a sign is sometimes reduced
in magnitude and damped with subsequent repetitions. In
some linguistic constructions, the reduplicated motion may
be superimposed on a larger motion pattern (MacLaughlin
et al., 2000). For example, in overt marking of plurality
on nouns the reduplicated motion is frequently subject to
a lateral translation, as shown in Fig. 1. All of these mod-
ifications to the base form present substantial challenges
for the automated detection of reduplication. Despite these
challenges, there are still significant underlying regularities

(a) (b)

Figure 1: Example from (Neidle, 2007a) of singular and
plural signs for POSTER, both bisyllabic.
(a) The singular version involves two forward movements;
(b) The plural version involves two downward movements,
laterally displaced from one another.

that characterize reduplication, which form a basis for our
approach: we recognize within a signing sequence inexact
repetitions of the type typically found in reduplication.

To detect reduplication, we formulate an approach that
finds inexact repetitions of a base form within a signing
sequence. We adapt the apriori algorithm (Agrawal et
al., 1993) for efficiently finding repeated patterns in data
streams. An ASL video clip is first processed to obtain the
movement parameters for the signer’s hands in each video
frame. These hand movement parameters are then mapped
to a codebook to yield a sequence of symbols, such that
similar hand movement parameters are mapped to the same
code in the codebook. The apriori algorithm is then used
to find temporally adjacent, repeated patterns within the se-
quence. Our formulation of the apriori algorithm allows
for inexact matching of similar hand motion subsequences
and thereby provides robustness to possible noise in hand
movement parameters. Our approach is evaluated on 105
lexical signs produced by two native signers. For the pur-
pose of demonstrating our formulation, overall hand motion
direction and magnitude are considered; however, our for-
mulation should be amenable to combining these features
with others, such as hand shape, orientation, and place of
articulation.

The plan for the rest of the paper is as follows. In Section 2,
we review related work. To our knowledge, we are the first
to propose a computational approach for the detection of
reduplication in ASL. In Section 3, we describe our algo-
rithm for finding inexact repeated subsequences of states,
given an input of state and weight vectors. In Section 4, we
give implementation details for processing ASL videos to
obtain the movement parameters for the signer’s hands. In
Section 5, we describe our results in detecting reduplication
given sequences of hand movement parameters. In Section
6, we outline the current limitations of our algorithm and
directions for future research, and in Section 7 we conclude
by outlining the contributions of this work.

2. Related work
2.1. String-based representations of human motion

A number of past works have proposed discretizing motion
sequences into states on which string pattern matching al-
gorithms can operate. For instance, (Beaudoin et al., 2008)
convert motions to motion state strings by k-means cluster-
ing the pose space, and associating each pose with the near-
est cluster. Sequential repetitions of letters are removed,
and an adjacency matrix helps identify non-identical sub-
strings that represent similar motions. Repeated motions
are found by performing string matching with randomly
generated seed substrings (of prespecified lengths). In con-
trast, we find repeated patterns by sequentially generat-
ing larger patterns from smaller patterns constrained by the
apriori principle.
In (Fihl et al., 2006) a motion sequence is represented as
a string of primitives from a predefined set. The string is
pruned by removing isolated instances and collapsing all
repeated letters, with a weight generated to reflect the num-
ber of repetitions. Probabilistic edit distances are used to
compare a motion sequence to labelled motion sequences
to identify the most likely candidate for recognition of the
query sequence. This approach assumes that the patterns to
be located in sequences are known in advance. Our frame-
work does not make this assumption.
In (Bobick and Wilson, 1997) gestures are recognized by
matching them to prototypes, where a prototype is repre-
sented as a curve through configuration space, parameter-
ized according to arc length, and independent of time. The
prototype is then partitioned into regions, or states, based
on how its direction varies. For a gesture to be recognized,
it must match sufficiently and pass through all the required
states. Such an approach is unlikely to work well for natural
human motions that exhibit wide variability.
Other approaches seek to match one motion to another by
computing the similarity between video segments, e.g, by
direct frame-to-frame similarity computation (Schödl et al.,
2000; Efros et al., 2003), or dynamic time warping for
sequence alignment (Tang et al., 2008). In our problem,
we are looking for similar motion segments within a sin-
gle video. Hence, utilizing an approach that compares
video sequences would theoretically entail computing the
pairwise similarity between all non-overlapping frame se-
quences within a single video –an approach that would be
exponential in the length of the input sequence.

In bioinformatics, a related problem entails motif finding–
the discovery of commonly recurring subunits among a set
of sequences (for a survey see (Das and Dai, 2007)); how-
ever, such approaches generally assume a very high degree
of regularity to the repeating units.

2.2. Apriori algorithm
The apriori algorithm was originally formulated for mining
association rules in transactional databases (Agrawal et al.,
1993), and then extended to handle temporal sequences (see
(Laxman and Sastry, 2006) for a review). The apriori al-
gorithm proceeds incrementally in levels, where each level
comprises a candidate generation step followed by a fre-
quency counting step. The apriori property that is used in
generating candidate patterns of progressively larger sizes
at each level guarantees that the frequency of a pattern is
bounded above by the frequencies of its subpatterns; thus
larger patterns are grown from smaller patterns, thereby
providing computational savings. The complexity of can-
didate generation is polynomial in the size of the collection
of frequent patterns, but is independent of the length of the
input sequence (Mannila et al., 1997).
The frequency counting step tallies the number of times
each candidate pattern occurs in the input. In (Mannila et
al., 1997), where a finite state automaton is used to keep
track of serial candidate patterns, this has time complexity
O(n|C|l), where n is the length of the sequence, C con-
tains the candidate patterns for this level, and l is the max-
imum number of automata for each pattern. Laxman et al.
(Laxman et al., 2007) propose a variation to this algorithm,
where the frequency is a measure of non-overlapped occur-
rences. This reduces the complexity of frequency counting
to O(n|C|). We adapt this latter approach to our problem.

3. Approach
Our goal is to determine efficiently whether a given sign
includes reduplication. The input to our system is a video
sequence with n frames.
A tracker estimates the signer’s hand locations in each
video frame fi, i ∈ [1, n]. Features are computed for the
detected hands in each frame. The features for each hand
are then mapped onto a codebook B of size m, resulting in
a sequence of discrete states, S = {s1, . . . sn} representing
the video sequence, where si ∈ B, ∀i ∈ [1, n].
A variant of the apriori algorithm is then used to locate
repeated patterns within the sequence of discrete states S.
The apriori algorithm (Agrawal et al., 1993) was designed
to enable efficient searching for repeated sequential pat-
terns over large databases. Our application differs, in that
we want to search efficiently for reduplication within indi-
vidual ASL signs. Nevertheless, the basic apriori algorithm
offers a systematic and efficient framework for detecting re-
peated patterns within signs, which we adapt to account for
inexact matching of a reduplicated base form within a sign.

3.1. Apriori algorithm overview
Algorithm 1 summarizes our adaptation of the apriori algo-
rithm. The input to the algorithm includes a sequence of n
states S, an n-dimensional weighting vector w that gives

Algorithm 1 findRedup(S,w,M, thresholds)
1: C ← getSetOfStates(S)
2: while notEmpty(C) do
3: [freq, cumV alue, cumCost]← countFrequencies(S,w,M, thresholds)
4: C ← generateCandidates(C, freq, cumV alue, cumCost, thresholds)
5: end while
6: return C

the certainty for each state in the sequence S, a similar-
ity matrix M that determines the cost of matching any two
states in the codebook B, and thresholds that control in-
exact matching and pruning of the search for repeated pat-
terns. Each of the inputs to the algorithm will be explained
in more detail below.
Alg. 1 first invokes the function getSetOfStates to produce
an initial list of candidate patterns C. This initial list C
contains all possible single-state patterns that can appear
within an input string S (hence, at this point, C ⊆ B).
In the original apriori algorithm frequency-based pruning
occurs at this stage; however, our algorithm will provide
inexact matches, so no pruning occurs initially. The algo-
rithm then iterates, alternating between frequency counting
(Alg. 2) and candidate generation (Alg. 3), with increasing
pattern size at each iteration.

3.2. Frequency counting
Algorithm 2 traverses the input string S to compute the fre-
quency of each candidate repeated pattern Cj ∈ C, where
j ∈ [1, |C|]. An automaton, Aj is first initialized for each
candidate pattern Cj . The automaton has internal states
c1, ..., cm corresponding to each state of Cj (|Cj | = m).
The match value, vj , for each automaton is initialized to 0.
Alg. 2 then iterates over each si of the input string S, check-
ing to see if any automata match to the state at position si.
If there is a match, then the corresponding automaton Aj ,
its match cost costj , and match value vj are updated.
To account for natural variation in signing, the matching
of the states in Alg. 2 is inexact. The pairwise matching
cost of states is defined by a similarity matrix M, where
0 ≤ mu,v ≤ 1. Diagonal entries mu,u = 1 (a state is
most similar to itself) and non-zero, off-diagonal entries in
M specify the degree of the match between the state an au-
tomaton was waiting for (ck) and the state on the string at
si. A poor match increases the match cost costj for the
given automaton. In our implementation, because of the
coarse discretization of directions of hand motions, we al-
low an automaton waiting for a given bin also to accept
its first-neighbor bins as valid, with an associated cost (see
Alg. 2). The other entries in M are zero. A more general
M would require further modifications to the algorithm.
To account for the varying certainty of (or confidence in)
state labels in the sequence S, each state si has a corre-
sponding scalar weight wi. If an automaton matches a state,
then the match value, vj , for that automaton Aj is increased
by the corresponding weight wi; otherwise, a noise state de-
creases vj by wi. In our implementation, the weight wi is
proportional to the magnitude of the motion, although other
measures of certainty are possible.
In the case of a successful match, an automaton advances
from ck to ck+1 (1 ≤ k < m), to wait for the next state.

Otherwise, the automaton continues to wait for the same
state. Additionally, if an automaton processes the same
state multiple times consecutively, it accumulates a match
value and a cost, without advancing to the next state. As a
result, a state that recurs over multiple frames but has low
certainty each time may have an accumulated match value
(vj =

∑
k wk) that is comparable to the case where a state

occurs in only one frame but with a high certainty value
(vj = wk). This allows us to robustly handle motion pat-
terns that occur with varying speeds.
In our implementation, when an automaton processes a
noise state (an input state with no similarity value to the
state an automaton is waiting for), the noise state con-
tributes a negative match value. Hence, the accumulated
match value of an automaton can increase or decrease as
matching to the input progresses. As part of each iteration
of Alg. 2, an automaton Aj is restarted (reinitialized) if this
accumulated match value vj falls below a minimum thresh-
old (lines 17-20 in Alg. 2).
If the final state cm is reached for an automaton Aj , then the
frequency count for the candidate pattern Cj is incremented
by one, and the cumulative value and cost for the pattern are
incremented by vj and costj , respectively. The automaton
is restarted so that search for the next possible match can
continue in the remaining part of the string S. These steps
are shown in Alg. 2, lines 21-27.

3.3. Candidate generation
Algorithm 3 generates an updated list of the candidate pat-
terns to be used in matching. Updated candidate patterns
are generated from the patterns that were matched with suf-
ficient strength and a sufficient number of times by the au-
tomata in Alg. 2. To generate new larger patterns for the
next iteration, overlapping patterns from the previous itera-
tion are concatenated. This exploits the apriori property to
guarantee that the frequency (and certainty) of a pattern is
bounded above by the frequencies (and certainty values) of
its subpatterns, thereby reducing the computational cost of
brute search through all possible patterns.
The patterns that survive to the next iteration (as compo-
nents of larger patterns) are those that are not pruned in
lines 1-6 of Alg. 3. In pruning, we consider the following
cumulative value measurements for a given pattern Cj :

costMeasure(Cj) =
cumCost(Cj)
|Cj | × freq(Cj)

(1)

valMeasure(Cj) =
cumV alue(Cj)

freq(Cj)
(2)

Here, freq(Cj) is the number of times Cj has matched
to the input string (via exact/inexact matches) and

Algorithm 2 countFrequencies(S, C,w,M, thresholds)
1: for all j = 1 to |C| do
2: Aj ← makeAutomaton(Cj)
3: vj ← 0
4: end for
5: for all i = 1 to |S| do
6: for all j = 1 to |A| do
7: if waiting(Aj , si) then
8: costj ← costj + (1−M(Aj , si))
9: vj ← vj + wi

10: update(Aj)
11: else if curState(Aj , si) then
12: costj ← costj + (1−M(Aj , si))
13: vj ← vj + wi

14: else
15: vj ← vj − wi

16: end if
17: if vj < weightThresh then
18: reinitialize(Aj)
19: vj ← 0
20: end if
21: if finalState(Aj) then
22: freq(Cj)← freq(Cj) + 1
23: cumV alue(Cj)← cumV alue(Cj) + vj

24: cumCost(Cj)← cumCost(Cj) + costj
25: reinitialize(Aj)
26: vj ← 0
27: end if
28: end for
29: end for
30: return freq, cumV alue, cumCost

cumV alue(Cj) is the sum of the weights of all states in
the input string matched to Cj . Hence, valMeasure is a
measure of the certainty of a match to the pattern, averaged
over all occurrences of the pattern in the input. The cumu-
lative penalty cumCost is the sum of the costs of matching
Cj to the input string. In our implementation, costs are 0 for
perfect matches, and 1 for neighboring bins. A pattern will
have a high costMeasure if the total cost of the matches is
high, relative to the size and frequency of the pattern in the
input. A pattern will be pruned if valMeasure falls below
a threshold, or if costMeasure exceeds a threshold.

4. Implementation details
4.1. Tracking
The input is a video clip corresponding to a sign, sampled
at 30 fps, where each frame is 312 × 324 pixels. For hand
tracking, we use a simple k-means clustering (where k = 2,
for the hands) applied to difference images. A difference
image provides a crude measure of motion but offers the
benefits of being simple to compute and providing robust-
ness to illumination and appearance changes (Fihl et al.,
2006). A face tracker (Bradski, 1998) is used to subtract
head motion. Fig. 2 shows an example processed frame
from an ASL video sequence.
The initial hand and face locations are specified with
bounding boxes in the first frame of each sequence. Pix-
els within the bounding boxes are used to initialize the skin

Figure 2: (a) Clustering of moving points; (b) Detected
hands and face. Also displayed (in yellow) are the motion
directions of the hands between successive frames.

color model and the thresholds used in frame differencing.
The tracker then runs autonomously.
We have also built a tool that allows for user-directed track
adjustment. At each frame, the tracker offers a hypothesis
for the bounding boxes of the hands, which the user can
then adjust. Tracker computations for subsequent frames
then take into account the adjusted locations. This tool was
used to help label video sequences that the tracker had trou-
ble with, thereby increasing the amount of data that could
be used to test the reduplication-detection module sepa-
rately from the detection module. This provides us with
the capability of testing our apriori algorithm on the results
of a gold standard tracking of the hands, in order to exam-

Algorithm 3 generateCandidates(C, freq, cumV alue, cumCost, thresholds)
1: for all i = 1 to |C| do
2: costMeasure(Ci)← cumCost(Ci)/(|Ci| × freq(Ci))
3: if cumV alue(Ci)/freq(Ci) ≤ valThresh or costMeasure(Ci) ≥ costThresh then
4: remove(C, Ci)
5: end if
6: end for
7: newC = {}
8: for all 1 ≤ j, k ≤ |C|, j 6= k do
9: if Cj [2 : end] == Ck[1 : end− 1] then

10: newPat← concatenate(Cj , Ck[end])
11: insert(newC, newPat)
12: end if
13: end for
14: return newC

Figure 3: Hand motion projected onto the 2D image plane
is discretized to one of 8 directions, or bin 0 when there is
no motion (motion magnitude below threshold).

ine limitations that remain in detecting reduplication in the
absence of tracker noise. Please see Sec. 6. for a discussion
of some of these limitations.

4.2. Codebook Representation
For each frame, the direction of each hand’s motion is com-
puted. These directions are discretized into 8 bins, each
spanning 45 degrees, with the exception that if no motion
is observed, the motion is assigned to bin 0 (see Fig. 3). We
process the sequence of each hand separately to produce its
corresponding sequence of symbols S and weights wi. In
our implementation, the wi are proportional to the magni-
tude of the hand’s displacement from frame i− 1 to i.
More precisely, for a video sequence F = {f1, ..., fn}, we
compute as hand features Hi (i ∈ [1, n]), the displacement
direction from the hand cluster center in fi−1 to the hand
cluster center in fi, mapping these onto the codebook of
discrete directions B = [0, 8] and weights wi that capture
the magnitudes of each displacement. The video is repre-
sented as a sequence of discrete states, S (where si ∈ B),
with associated weight vector w. Note that for the first
frame in a sequence, the direction and magnitude of mo-
tion is defined to be 0.
This particular codebook design was chosen to demonstrate
our method for detecting reduplication in ASL. We found
that this codebook design works well in our experiments.
However, the optimal number of states and codebook could
be learned from training data. Learning the codebook for
representing ASL hand motion parameters remains a topic

for future investigation.

5. Experiments
The experiments were run on sequences from the National
Center for Sign Language and Gesture Resources (NC-
SLGR) Corpus, a collection of ASL videos collected at
Boston University from Deaf native signers and linguisti-
cally annotated using SignStream R©(Neidle, 2002a). The
corpus, available from http://www.bu.edu/asllrp/ (see also
(Neidle and Vogler, 2012)), includes synchronized video
files showing the signing from the front and side, as well
as a close-up of the face (although only the front view was
used for the current research), as well as linguistic annota-
tions of both manual signs (represented by unique gloss la-
bels) and nonmanual behaviors; annotation conventions are
documented in (Neidle, 2002b; Neidle, 2007b). The dataset
includes 19 short narratives (containing a total of 1002 ut-
terances) plus 885 additional elicited utterances. This con-
stitutes a total of 1,888 linguistically annotated utterances,
with 1,920 distinct canonical signs (grouping together close
variants) and 11,861 total sign tokens. The sign videos for
this research are lexical signs taken from the corpus, and
hence occur in context, with natural variability. Focusing
on data from two of the signers, we obtained a subset of
lexical signs that had been labeled as including reduplica-
tion (120 sign examples involving 58 distinct signs) and re-
moved those in which we failed to see reduplication, prob-
ably because of the placement of the frontal camera, move-
ments small in magnitude, or errors in labelling. What re-
mained were 84 video sequences, each containing a redu-
plicated sign (a total of 58 distinct signs for which we had
one or more examples with reduplication). We then queried
the corpus for sequences involving those same two signers
that contained non-reduplicated versions of the same signs,
and found 21 sign examples (involving 5 distinct signs). To-
gether, the 84 examples of signs with reduplication, and the
21 non-reduplicated examples of signs with reduplicated
counterparts in the dataset, formed the 105 sequences that
were used for testing our algorithm.
Of these 105 video sequences, 12 were grayscale sequences
of one signer, and the rest were RGB sequences of another
signer (based on the availability of data for each in the cor-
pus). Moreover, the video sequences used came from 11

separately-recorded videos, thereby introducing some vari-
ability in the appearance of the signers. The fact that the
video segments have been extracted from continuous sign-
ing means that the signs are occurring in different linguis-
tic contexts, and are subject to a variety of contextually-
sensitive linguistic processes, including coarticulation ef-
fects. The output of the hand tracker was mapped to the
binned motion directions for each hand in each frame, as
described in Sec. 4.. The apriori algorithm was then run
on the motion sequence of each hand, separately, such that
reduplication was claimed if at least one of the hands exhib-
ited reduplication. This allowed the system to account for
one-handed signs, as well as to provide greater robustness
to tracker errors.
To separate the modules (and hence failure modes) of mo-
tion tracking and reduplication detection, another set of ex-
periments was run with manually corrected tracks. This
involved integrating the detector into an interactive system,
whereby a user could correct the tracker’s errors. The aver-
age percentage of overlap between the hand-corrected and
automatically-tracked bounding boxes is 60%, taken over
all frames of all sequences in our dataset. Fewer than 10%
of the automatically-tracked bounding boxes had overlap of
10% or less with the hand-corrected bounding boxes.
Our apriori algorithm was run with the following param-
eter settings: weightThresh = 0, costThresh = 0.5
and valThresh varying from 0 to 10. The threshold
weightThresh determines the amount of tolerance an au-
tomaton has for matching noise states in the patterns it de-
tects; the setting weightThresh = 0 means that search is
pruned whenever the weighted penalty for matching noise
states exceeds the score for matching states in the automa-
ton’s pattern. The thresholds valThresh and costThresh
control the pruning of patterns at the end of the compu-
tation; these two thresholds determine whether patterns
have occurred with a high enough certainty and with a low
enough match cost, respectively.
The ROC curve in Fig. 4 shows the performance of the
reduplication detection system. The ROC measure plots
the trade-off between the detection rate and the false pos-
itive rate. The false positive rate pictured is controlled by
varying valThresh in the range 0 to 10. The red curve
shows detection accuracy given the output of our simple au-
tomatic hand tracker, whereas the blue curve shows results
given hand-corrected tracks. Comparison of these curves
shows that the reduplication detection formulation works
relatively well in the presence of tracking errors for this
dataset. The green curve in Fig. 4 shows performance on
the corrected video sequences, but with no bin variations
permitted within the apriori pattern matching, i.e., M is
given as an identity matrix. As demonstrated by the graph,
inexact matching is beneficial, as it compensates for the er-
rors introduced by the discretization of a continuous space.

6. Discussion
The proposed framework discovers repeating patterns of
states amidst noise and natural variation. We have thus
demonstrated the capabilities of this framework for deal-
ing with signs represented only by motion directions. For
a more comprehensive analysis of reduplication, the algo-

Figure 4: ROC curve as a function of changing the thresh-
old for pattern scores.

rithm presented here can be extended to incorporate addi-
tional features, including hand shape, orientation, and place
of articulation.
Our feature representation of motion bins is only sufficient
to represent signs where the motion parameter undergoes
reduplication (in the frontal plane). This is not the case, for
instance, for signs where reduplication is limited to change
in handshape or local finger movement. In the latter case,
reduplication may be difficult to detect using the methods
described here. To handle all cases robustly, a different rep-
resentation of hand motion may be necessary.
Motion repetition may be observed in the absence of redu-
plication; a particular motion pattern may repeat in an ASL
utterance without the repetition being attributable to redu-
plication. Other features may also be useful for disam-
biguation. In particular, a repetition of motion is not suf-
ficient to claim reduplication, unless the entire set of artic-
ulatory features (e.g., including handshape) is involved in
the repeated motion.
The performance of the apriori algorithm in detecting re-
peating motion is fully dependent upon the input it receives;
thus, a faulty tracker is likely to lead to an overall degrada-
tion of detection performance. For instance, a common fail-
ure mode of our simple tracker involves detecting the elbow
or other part of the arm as a hand. Out of the 11 videos from
which signs were obtained, 6 videos involved a signer with
short sleeves. Better localization of the elbows and arms of
the signer as in (Buehler et al., 2008) would be an important
feature of a tracker for handling these sorts of videos.

7. Conclusion
In this paper we have formulated the problem of detecting
reduplication in ASL video streams and we have presented
a framework for doing so. We have extended the apriori
algorithm to handle the natural variability of sign language
and also the noise that is likely to be introduced by motion
detectors. We have offered some promising initial results of
the framework applied to the movement parameter of signs,
and have discussed how the framework can be extended to
allow for more complete representations.
A more general approach for detecting reduplication would

require a more complete representation of hand states and a
corresponding distance metric. Mapping such a representa-
tion to a finite state space would permit treating the redupli-
cation detection problem as a string pattern matching prob-
lem. The results presented in this paper merely reinforce
our conviction that more features are required for a more
comprehensive analysis of reduplication, but we have nev-
ertheless offered hopeful results indicating that the method-
ology we have chosen is suitable for this purpose.
In this paper, hand motion features were estimated in the
image plane, i.e., in two-dimensions. Three-dimensional
measurements of hand motion parameters would provide
a more complete representation of hand states. Three-
dimensional sensing is becoming more affordable, given
the advent of computer game sensors like the Microsoft
Kinect depth-sensing system. Thus, an extension of our
framework to exploit 3D hand motion features is an excit-
ing possible future direction for our research.

8. Acknowledgments
We would like to acknowledge Ashwin Thangali of Boston
University for his support, advice, and technical help,
throughout the duration of this project. We would also
like to thank Joan Nash of Boston University and Braden
Painter of Gallaudet University for helpful discussions
about reduplication. The research reported here has been
partially funded by the Natural Sciences and Engineering
Research Council (NSERC) of Canada and by grants from
the U.S. National Science Foundation: 0705749, 0964385,
0958442, and 0964385.

9. References
R. Agrawal, T. Imielinski, and A. Swami. 1993. Mining as-

sociation rules between sets of items in large databases.
In ACM SIGMOD, pages 207–216.

P. Beaudoin, S. Coros, M. Van de Panne, and P. Poulin.
2008. Motion-motif graphs. In ACM SIGGRAPH, pages
117–126.

A.F. Bobick and A.D. Wilson. 1997. A state-based ap-
proach to the representation and recognition of gesture.
In PAMI, volume 19, pages 1325–1337.

B. Bradski. 1998. Computer vision face tracking for use in
a perceptual user interface. Intel Technology Journal.

P. Buehler, M. Everingham, D.P. Huttenlocher, and A. Zis-
serman. 2008. Long term arm and hand tracking for con-
tinuous sign language TV broadcasts. In BMVC.

D. Cokely and C. Baker-Shenk. 1980. American Sign Lan-
guage: A Teacher’s Resource Text on Curriculum, Meth-
ods, and Evaluation. Gallaudet University Press, Wash-
ington, DC.

M. Das and H. Dai. 2007. A survey of DNA motif finding
algorithms. BMC Bioinformatics, 8(7).

A.A. Efros, A.C. Berg, G. Mori, and J. Malik. 2003. Rec-
ognizing action at a distance. In ICCV, volume 2, pages
726–733.

P. Fihl, M. B. Holte, T. B. Moeslund, and L. Reng. 2006.
Action recognition using motion primitives and proba-
bilistic edit distance. In AMDO, pages 375–384.

S. Fischer. 1973. Two processes of reduplication in the
American Sign Language. In Foundations of Language,
volume 9, pages 469–480.

E. Klima and U. Bellugi. 1988. The Signs of Language.
Harvard University Press, Cambridge, MA.

S. Laxman and P.S. Sastry. 2006. A survey of temporal
data mining. In SADHANA, Academy Proceedings in
Engineering Sciences, volume 31, pages 173–198.

S. Laxman, P.S. Sastry, and K. P. Unnikrishnan. 2007.
A fast algorithm for finding frequent episodes in event
streams. In ACM SIGKDD, pages 410–419.

D. MacLaughlin, C. Neidle, B. Bahan, and R.G. Lee. 2000.
Morphological inflections and syntactic representations
of person and number in ASL. In Recherches linguis-
tiques de Vincennes, volume 29, pages 73–100.

H. Mannila, H. Toivonen, and A. Verkamo. 1997. Discov-
ery of frequent episodes in event sequences. Data Min-
ing Knowledge Discovery, pages 259–289.

C. Neidle and C. Vogler. 2012. A new web interface to fa-
cilitate access to corpora: Development of the ASLLRP
data access interface (DAI). In Proc. 5th Workshop on
the Representation and Processing of Sign Languages:
Interactions between Corpus and Lexicon, LREC 2012.

C. Neidle. 2002a. SignStreamTM: A database tool for re-
search on visual-gestural language. Journal of Sign Lan-
guage and Linguistics, pages 203–214.

C. Neidle. 2002b. SignStreamTMAnnotation Conventions
used for the American Sign Language Research Project.
Technical report, Boston University, Boston, MA. Re-
port 11, Boston University American Sign Language
Linguistic Research Project.

C. Neidle. 2007a. Interplay between manual and
non-manual expressions in American Sign Language
(ASL). In A. Zaenen, J. Simpson, T. Holloway-King,
J. Grimshaw, J. Maling, and C. Manning, editors, Archi-
tectures, Rules, and Preferences: A Festschrift for Joan
Bresnan. CSLI.

C. Neidle. 2007b. SignStreamTMAnnotation: Addendum
to Conventions used for the American Sign Language
Research Project. Technical report, Boston University,
Boston, MA. Report 13, Boston University American
Sign Language Linguistic Research Project.

D. Perry. 2005. The use of reduplication in ASL plurals.
Master’s Project, Boston University.

R. Pfau and M. Steinbach. 2006. Pluralization in sign and
in speech: A cross-modal typological study. In Linguis-
tic Typology, volume 10, pages 135–182.

A. Schödl, R. Szeliski, D. H. Salesin, and I. Essa. 2000.
Video textures. In SIGGRAPH, pages 489–498.

W. C. Stokoe, D. C. Casterline, and C. G. Croneberg. 1965.
A dictionary of American Sign Language on linguistic
principles. Linstok Press, Silver Spring, MD.

K.T. Tang, H. Leung, T. Komura, and H. Shum. 2008.
Finding repetitive patterns in 3D human motion captured
data. In Proc. 2nd Int. conference on ubiquitous informa-
tion management and communication, pages 396–403.

R. Wilbur. 1973. The Phonology of Reduplication. Ph.D.
thesis, University of Illinois, Urbana-Champaign, IL.
Published by the Indiana University Linguistics Club.

