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Figure 1: SEE-2-SOUND enables spatial audio creation from real or generated visual content. Our
method takes in an image or a sequence of frames (video) and generates spatial audio with a variable
number of different sources. The generated audio could also be conditioned on a text prompt.

Abstract

Generating combined visual and auditory sensory experiences is critical for the
consumption of immersive content. Recent advances in neural generative models
have enabled the creation of high-resolution content across multiple modalities
such as images, text, speech, and videos. Despite these successes, there remains a
significant gap in the generation of high-quality spatial audio that complements
generated visual content. Furthermore, current audio generation models excel in
either generating natural audio or speech or music but fall short in integrating
spatial audio cues necessary for immersive experiences. In this work, we introduce
SEE-2-SOUND, a zero-shot approach that decomposes the task into (1) identifying
visual regions of interest; (2) locating these elements in 3D space; (3) generating
mono-audio for each; and (4) integrating them into spatial audio. Using our
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framework, we demonstrate compelling results for generating spatial audio for
high-quality videos, images, and dynamic images from the internet, as well as
media generated by learned approaches.

1 Introduction

Human visual and auditory systems inherently depend on synchronized spatial audio cues for an
immersive experience and contextual understanding of video content. Modern generative models have
been able to create compelling high-resolution digital content across various modalities. These models
have been successful in generating images [611 58], text [55} [1]], speech [[75, 57, audio [44]} 35], 3D
scenes [40, 53], 4D (dynamic 3D) scenes [[68}42], and videos [67, 13]]. Although generating audio
from text [30, 18] - and more recently, images [[72] - has become a reality, generating spatial audio
is still a challenge. Unlike these earlier works, we are interested in solving the specific problem
of generating high-quality spatial audio or surround sound to accompany images, animated images
(GIFs), and videos. Such a model could be particularly useful to pair with any kind of video generation
or image generation techniques as well as on real images and videos.

Audio generation is a long-standing challenge, often subdivided into generating speech, music, and
sound effects. Most audio generation methods include inductive biases for each of these tasks, often
due to the diversity between the generation of speech, music, and other types of audio [11} 2,43, [70].
There have also been newer approaches that develop unified representations [44] to generate complex
audio as well. However, none of these currently emphasize the generation of rich spatial audio. The
few related works that perform image-to-audio [[72} [71] are closest to our work. However, these also
face the same problem of not being able to generate rich spatial audio. Currently, there also exist a
few learned approaches that generate spatial audio [47,41] but these are often based on having access
to the captured audio; following which these approaches localized the audio in a viewing sphere
to produce spatial audio for a captured video. However, none of these approaches aim to generate
accompanying spatial audio for images, animated images (GIFs), and videos, which remains an open
problem.

Towards this goal, we propose SEE-2-SOUND, a training-free method that approaches this specific
problem by employing the foundational models, CoDi [72]], DepthAnything [84], and Segment
Anything [33]]. The pipeline works by explicitly factorizing this generative problem into separate
problems: (1) identifying regions of interest in the input; (2) finding the 3D location on the viewing
sphere for a visual element; (3) generating audio from the regions of interest, and (4) simulating
these multiple mono-audio outputs to generate spatial audio. We then explicitly compose these
component models to generate spatial audio conditioned on the visual input (e.g. images, animated
images (GIFs), or videos) as shown in Figure[l] As our method is compositional and zero-shot, we
hope to see SEE-2-SOUNDwidely used or adapted for content creation and enhancement as well as
accessibility.

By generating spatial audio that accurately corresponds to visual elements, we can significantly
enhance the immersion of images and videos, creating more realistic and engaging user experiences
with digital content.SEE-2-SOUND presents a step towards true complete video and image generation,
by also incorporating non-verbal audio that accompanies visual generation models [67} [13] (8} 9l 46|
79]]. Additionally, our pipeline can also be employed on real visual content.

Our contributions can be summarized as follows:

* We present the challenging new task of generating spatial audio from images or videos.
To the best of our knowledge, our work is the first of its kind that tackles this challenging
problem.

* We propose SEE-2-SOUND, a novel compositional pipeline that builds on top of and uses
off-the-shelf models for segmentation, depth estimation, and audio generation. Due to the
nature of our approach, our method is zero-shot in nature and thus is very feasible to use.

* We evaluate SEE-2-SOUND both quantitatively and qualitatively through similarity compar-
isons and a user study, respectively. To evaluate this method quantitatively we also propose
a novel evaluation method for this task.



We have open-sourced our code and models to promote the accessibility and reproducibility of our
work. We also hope the extensibility of our work allows users to easily modify or replace individual
modules within our approach. Our assets can be found at: https://github.com/see2sound/
see2sound.

2 Related works

The audio generation field has been gaining much attention lately, primarily in models that create
audio conditioned on different modalities. From speech synthesis to music generation and sound
effects creation, past efforts have explored numerous aspects of auditory information synthesis.
Learning algorithms have led to ever-improving techniques in the models for generating high-quality,
diverse audio. This surge in interest has fueled research efforts that push the boundaries of audio
generation.

2.1 Conditional Audio Generation

Recent work in conditional audio generation has made significant progress using latent diffusion
models [43]] such as AudioLDM (2) [43],44]] and Make-An-Audio [30]]. Audiogen [35]] was one of
the first to create a text-to-audio environment, treating audio generation as a conditional language
modeling task. Building on this, AudioLDM-2 [44] introduces a unified audio generation framework
that addresses different objectives for speech, music, and sound effects, using the “language of audio"
(LoA) and a GPT-2 [154]] model for translation and latent diffusion [S8] for generation.

AudioLM [10] employs neural codecs [[78] for long-term consistency in audio generation, mapping
input audio to discrete tokens and using a language modeling task. Meanwhile, DiffSound [83]], using
a text encoder, decoder, vector quantized variational autoencoder (VQVAE) [32], and “vocoder”,
introduces a mask-based text generation strategy (MBTG) for generating text descriptions from audio
labels to address the scarcity of audio-text paired data. NaturalSpeech [70] integrates a memory
component in variational autoencoders [32]] to achieve human-level quality in text-to-speech systems.

Significant progress in text-to-music generation has been made by notable models such as Musi-
cLM [2]], Noise2Music [29], MusicGen [18] and MeLoDy [37]. MusicLM [2]] uses contrastive
pretraining to align music and language embeddings, improving performance without explicit text
using a semantic modeling stage based on w2v-BERT [17]]. MusicGen [18] adopts a language
modeling approach with melodic conditioning, enhancing control over output. MeLoDy [37/]] employs
dual-path diffusion-based modeling for computational efficiency in music generation.

The image-to-audio and video-to-audio domains have also seen significant advancements. For
instance, Im2Wav [[66] generates audio from images or image sequences, using Transformers [77] to
manipulate hierarchical discrete audio representation derived from VQ-VAE [76]. Similarly, based
on GANSs [26]]: SpecVQGAN [31] enhances visually driven audio synthesis from videos, while
RVQGAN [36] achieves high-fidelity audio compression. [7] introduces aligned representations that
help in cross-modal retrieval and transferring between audio, visual, and text modalities. Furthermore,
AV-NeRF [39] synthesizes new videos with spatial audio along different camera trajectories, and
AV-RIR [56] estimates audio-visual room impulse responses from images and audio.

Multi-modal generative models of note include CoDi(-2) [9,[71]]. CoDi [9] generates multiple output
modalities from various input combinations using a composable generation strategy. CoDi-2 [71]
extends this with enhanced modality-language alignment for encoding and generative tasks, improving
zero-shot capabilities in multi-modal generation, reasoning, and interactive conversations.

Recent works like MAGNeT [93] introduce a masked generative sequence modeling method for direct
audio token generation, achieving higher efficiency in text-to-music and text-to-audio tasks. DIFF-
FOLEY [45] improves video-to-audio synthesis quality, relevance, and synchronization using latent
diffusion and contrastive audio-visual pretraining. Affusion [82] enhances text-to-audio generation
by leveraging text-to-image diffusion models, producing high-quality audio closely aligned with text
prompts. These advancements significantly expand the possibilities of audio generation.
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2.2 Acoustic Matching

Recent advancements in acoustic matching integrate visual and audio cues to enhance realism and
immersion in generated content. AViTAR [14] performs visual-acoustic matching using a cross-modal
transformer to integrate visual properties into audio and learning from in-the-wild videos. AdVerb [16]
uses a geometry-aware cross-modal transformer to enhance reverberation by leveraging visual cues,
significantly outperforming traditional methods. SoundSpaces 2.0 [15] provides geometry-based
audio rendering for 3D environments, supporting tasks like audio-visual navigation and source
localization with high fidelity and realism.

2.3 Construction of Surround Sound

In 1881, Ader used a pair of microphones and telephone receivers to relay the sound signals at the
Paris Opera [60], a first-of-its-kind spatial (stereophonic) sound demonstration. In the past three
decades, the development of digital signal processing [34], computer, and internet technologies have
rapidly evolved spatial sound [81]]. Together, they have made spatial audio commonplace now [88]].

In the context of virtual environments generated by game engines, spatial audio is crucial to provide an
immersive experience [[12]. Traditionally, sounds in virtual worlds are created by recording individual
sound sources separately and then blending them according to the intended scene setup [48] using
various audio processing techniques [25,|19]. But this recording process is costly [88] and optimizing
it involves generating spatial audio. While spatializing mono-audio is a popular area of research
(discussed below), to the best of our knowledge, there have not been any approaches to generate
spatial audio directly.

2.4 Audio Spatialization

Recent advancements in audio spatialization have focused on integrating audio and visual modalities
to enhance realism. Sep-Stereo [91]] uses an associative pyramid structure to generate stereo output
by combining audio and visual information. Similarly, LAVSS [85] introduces a location-guided
audio-visual spatial audio separator, highlighting the importance of visual cues in audio generation.

Several studies have synchronized visual cues and encoders to produce natural sound for dynamic
video scenarios [92]]. Methods like those in [22, 23] use a U-Net to encode monaural input and
decode binaural output with visual guidance.

Other approaches, such as [21}, 35] generate audio samples conditioned on diverse inputs such as
text, motion key points, and position information [24} 51], respectively. Techniques like [47] utilize
end-to-end trainable neural networks for sound source separation and localization in 360-degree
videos. Additionally, works like [38]] synthesize directional impulse responses by exploiting the
spatial and directional characteristics of room reverberation.

2.5 Audio Visual Learning

In recent years, there has been a growing interest in audio-visual learning, focusing on understanding
the inherent connection between visual and auditory stimuli within vision research. Noteworthy works
have delved into explaining the natural synchronization between visual and audio elements [4} 6] 50].
This approach finds application in diverse domains, including speech recognition utilizing both
audio and visual cues [69, 27, 86} 90], event localization through joint analysis of audio and visual
information [[74}[73/180]], and sound source localization [} 28,159,164} [74}|89]]. Additionally, there have
been explorations in the use of audio-visual data for unsupervised representation learning [49) 50].

In contrast to these modalities, our focus diverges as we undertake a distinct task: the direct generation
of surround sound spatial audio from images.

3 Preliminary: Conditional LDM

Latent Diffusion models (LDMs) [58]] project input images into a lower-dimensional latent space.
Unlike traditional diffusion models that operate in a high-dimensional pixel space, LDMs perform
forward and backward diffusion processes in a lower-dimensional learned latent space. For generating
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Figure 2: We show an overview of how our approach works. First, we perform image segmentation
and find regions of interest for different objects in the image. We also perform monocular depth
estimation on the image and produce 3D co-ordinate estimating positions for each object in the
scene. We then generate mono-audio from the regions of interest. Finally, we place all of these audio
according to the 3D co-ordinates on a viewing sphere producing spatial or surround sound.

audio, we have a conditional LDM ey, which can be interpreted as a sequence of denoising autoen-

coders €g(z¢,t,...);t ~U(1,...,T), trained using a squared error loss (representing the denoising
term in the ELBO) to denoise some variably noisy audio signals using the following objective,
Ee (x),c.e~(0,1),t [|€ — €0 (2, T0(C))[3] , )

where x; is some noisy audio signal; c is a conditioning vector; 7y is an encoder that projects c to an
intermediate representation; £ encodes x; into a latent representation z;; and we jointly optimize €y
and 7.

4 Methodology

Given a casually captured or generated image, animated image, or video, optionally with a text prompt
that describes the content of the media, our objective is to generate spatial audio to accompany the
media. We do not impose any qualitative restrictions on the way the media is captured. Our approach,
SEE-2-SOUND is a compositional model that has three components (Figure [2): (1) estimating
positions for regions of interest (§ {.I); (2) generating audio for regions of interest (§ {.2); and (3)
generating spatial audio (§ [43).

4.1 Source Estimation

We have a visual input, for brevity let T € R¥*WxC represent a (H, W)-resolution and C' channel
image. Here, we are interested in learning from I, a ser of 3D coordinates, x = (z, y, z) representing
the positions of regions of interest.

Identifying regions of interest. We first focus on finding out regions of interest from the image,
I. We do this by finding a segmentation mask M € R”*W 'using a pre-trained Segment Anything
model [33]]. From the segmentation mask M, we extract the contours of each region of interest. Let
C ={cy,ca,...,c,} represent the set of contours, where each contour ¢y, is a sequence of points
outlining one region of interest. We then compute the smallest polygon Py, that bounds each contour
cj.. Formally, we solve the following optimization problem for each contour,

II7lpiIl Area(Py) , subject to, Vi, € Py, 2)
k

where Area(P;) denotes the area of the polygon Py, ensuring that the polygon fully encloses the
contour cg. This allows us to generate a set of minimal bounding polygons, P = {P1,Pa, ..., Pk}

We can also modify this to instead set each polygon to an axis-aligned bounding box (AABB) R, for
each contour cg. The AABB is defined by the minimum and maximum « and y coordinates of the
points in c¢j. Formally, for each contour ¢, we define Ry, as,

Ry = [min(c?)),max(c,(f)),min(cgy)),max(c,gy)) . 3)

This allows us to generate a set of AABBs, R = {R1,Ra,..., Rk}
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Figure 3: Overview of the simulation. We show a schematic of the virtual “ShoeBox” room utilized
in our 5.1 surround sound simulation. The diagram presents the three-dimensional arrangement of
multiple audio sources (labeled Source 1, Source 2, and Source 3) and the standardized microphone
placement for the channels Front-Left (FL), Front-Right (FR), Center (C), Surround-Left (SL),
Surround-Right (SR), and Low-Frequency Effects (LFE).

Estimate monocular depth. For the image I, we also estimate the monocular depth map D €
RZ*W using a pre-trained Depth Anything model [84]]. Now we can construct a set of image patches
I,,, for the regions of interest from either P or R to create a set of variably sized patches, and the 3D
coordinates (z, y, z), from the image coordinates and the monocular depth coordinates illustrated
in Figure[2] We find that using AABBs usually works better for generating spatial audio.

4.2 Audio Generation

We are now interested in learning from the set of image patches I, and an optional text prompt
c, a set of 4D representations, (x, vy, z, AT*F") representing the positions and audio. We generate
mono audio clips conditioned on each of the image patches in R and the text conditioning c using a
pre-trained CoDi model [[72]. We thus have the 4D representation (z,y, z, AT*¥") for each of the
individual image patches in {R1, R2, Rs,...}.

4.3 Generating 5.1 Surround Sound Spatial Audio

The goal of surround sound spatial audio generation is to generate ambisonic channels ¢ (¢) from
different non-spatial audios and positions (z,y, z, AT>*¥ ). We first construct a virtual acoustic
environment, specifically a “ShoeBox” room [62]. We place the listener centrally at the ground level
of this room, serving as a reference point for audio projection and perception. For the source and
microphone placements, we adhere to the ITU-R BS 775 configuration [3]], which is essential for
aligning our simulations with the standard 5.1 Surround Sound setups. This configuration includes
designated positions for the Front-Left (FL), Front-Right (FR), Center (C), Surround-Left (SL),
Surround-Right (SR), and Low-Frequency Effects (LFE) channels [[65]].

A critical component of our simulation involves computing the Room Impulse Responses (RIRs)
using the Image Source Method (ISM) [3]]. We now calculate the impulse response h(t) by accounting
for contributions from multiple virtual sources that arise from reflections off the room’s boundaries.
For a source at position s and a receiver at position r, the impulse response is expressed as

h(t) = amd(t — 7)), 4

where 7,,, = M denotes the time delay; c represents the speed of sound, and «,, are the
attenuation factors due to reflections. This model effectively captures both the early reflections and
the reverberations, which are crucial for rendering a realistic acoustic environment.



(+ AViTAR [14]) MFCC-DTW | ZCR?1T Chromat Spect?

CoDi [72] (baseline) 0.8 x1073 0.80 0.70 0.85
SEE-2-SOUND (ours) 0.03 x1073 0.95 0.77 0.95

Table 1: Quantitative Evaluation Results. We report average similarity scores between different
audios. The similarity metrics are calculated across the method and AviTAR [14] enhanced audios
of the methods. Lower MFCC-DTW scores and higher ZCR, Chroma, and Spectral scores indicate
higher similarity.

After computing the RIRs, we convolve these responses with the original mono audio tracks to
synthesize the spatial audio for each of the 5.1 channels. The convolution integrates the spatial effects
into the audio, effectively distributing the sound across the designated channels. The synthesized
signal for each channel ch is expressed as

(bch(t) = ATXF * hch(t)7 (5)

where AT*F denotes the original audio signal in the time-frequency domain. Our simulation also
incorporates the interference among audio sources which is a significant factor that differentiates the
outcome from scenarios where fewer sources are used and then combined. Thus, the resulting sound
field in a full simulation exhibits unique characteristics that cannot be replicated by simply summing
the outputs of simulations with fewer sources. This interference results in spatial audio properties that
are intrinsically linked to the arrangement (z, y, z) and the number of sources in the complete setup.

S Experiments

To the best of our knowledge, no previous techniques address the problem of spatial sound genera-
tion, thus we propose a novel quantitative evaluation technique based on marginal scene guidance
(Section [5.1)) alongside human evaluation (Section[5.2).

5.1 Quantitative Evaluation

We conduct a quantitative evaluation of the scene guidance of generations produced by our model
using various audio similarity metrics. To construct this setup, we first sample images from
Laion400M [63] and the web. We then generate audio from these images using our method as
well as CoDi [[72] which serves as a baseline. We then use the audio outputs and images to generate
modified scene-guided audio generated using AViTAR [14]]. The use of an unconventional model-
based evaluation stems from the lack of existing evaluations or any strong baselines. We report the
average audio similarity scores between multiple such generated audio in Table[I] In particular,
SEE-2-SOUNDconsistently generates spatial audio that matches the scene’s content as shown by
AViTAR [14] only slightly altering the generated audios.

5.2 Human Evaluation

Due to the absence of any traditional metrics, we also use human evaluation to evaluate our approach.
To promote future research in this field, we will open-source the evaluation protocol for human
evolution. We conduct human evaluations by surveying 43 human evaluators, for which we use
randomly selected images and videos from the internet that are non-iconic in nature. We use this
qualitative evaluation technique specifically due to the absence of any baseline methods for spatial
generation. Additionally, the task of spatial audio generation is challenging since there are multiple
possible ground truth spatial audios for a given image or video. This makes it difficult for us to use
any kind of similarity metric. Existing similarity metrics like LPIPS [87] or CLIP score [52] and their
audio equivalents that make use of embeddings are also not feasible since we do not train embeddings
directly for the spatial generation problem.

Our human evaluation task has the following key components.



Metric p-value (])

Spatial Audio Quality
Realism 4.174 x 107°
Immersion 1.036 x 10~*
Accuracy 1.036 x 10~*
Clarity 5.927 x 1076
Consistency 2.089 x 1076
Audio Identification
Overall Localization 4.523 x 104
Audio Direction Identification 2.880 x 10~7
Distance Identification 3.103 x 1072
Adversarial Identification 9.345 x 1072
Audio Matching 7.431 x 107°

Table 2: Human Evaluation Results. We evaluate our model performance across metrics identified
through a user study. The hypothesis of our test was that the responses follow a uniform distribution.
For the quality questions, we considered 3, 4, and 5 to be correct on a scale of 1-5. For the distance
and localization problems, we used the patches and coordinates generated by our approach as correct
answers. For adversarial identification and matching problems, we knew the correct answers by the
nature of the problem. The significance of human preference is evaluated with x2-tests at p < 0.05.

Spatial Audio Quality. Human evaluators qualitatively rate the realism, immersion, and accuracy
of two images or videos with spatial audio generated by our method. These aspects are
measured using a semantic differential scale.

Direction Identification. Evaluators estimate the sensation of direction and distance of an object
given the generated spatial audio. This assesses the effectiveness of the spatial sound in
conveying the sensation of sound originating from multiple directions.

Adversarial Identification. Evaluators are given a random mix of generated spatial audios and
mono audios. They are tasked with discriminating whether the given audio is indeed spatial
audio, their accuracy is measured.

Audio Quality. Evaluators are provided with three clips of spatial audio and three images or videos.
They perform a matching task to pair the audio clips with the corresponding visual content,
and their matching accuracy is measured.

More details on the tasks in our user study can be found in Appendix [B] We evaluate the results
for each of these individual sub-tasks and questions and conduct y2-tests to evaluate significance at
p < 0.05 level.

Furthermore, we demonstrate our outputs in the supplementary from which one can observe that
SEE-2-SOUND produces compelling spatial audio that aligns well with videos and images which are
either generated from video generation models or taken from the internet. We perform the user testing
on 43 human evaluators and report the metrics for our human evaluation in Table[2] Users indicated a
statistically significant preference towards SEE-2-SOUND in terms of spatial audio quality, directions
of sound, and audio quality.

6 Discussion

Our work introduces a method for generating spatial sound from images and videos. We envision
many avenues for potential impact based on our technique, including applications related to enhancing
images and videos generated by learned methods, making real images interactive, human-computer
interaction problems, or for accessibility.

Limitations. Although SEE-2-SOUNDproduces compelling spatial audio clips, there are several
limitations and avenues for future work. First, our framework may not detect all of the fine details
in images and videos, nor does it produce audio for every fine detail. If we try to produce audio for



many fine structures with this framework using upscaling or other zooming-in methods, we observe a
lot of interference within the audios.

Second, SEE-2-SOUNDdoes not generate audios based on any motion cues but solely based on the
image priors. We could benefit from having separate appearance and motion backbones, which may
potentially allow us to use any motion information to refine the generated audio.

Third, currently, our method is not able to work in real-time on an Nvidia A100-80 GPU on which
the experiments were conducted. However, since SEE-2-SOUNDrelies on composing off-the-shelf
models, we could easily swap out the models we use for other models that solve the individual sub-
problems. We can easily incorporate advances in any of the subproblem areas within our framework
to potentially get to real-time capabilities.

Lastly, inherent in the capabilities of generative models such as SEE-2-SOUND- which excel
in producing synchronized and realistic outputs — is a significant concern regarding the potential
generation and dissemination of deepfakes. The exploitation of this technology by malicious entities
poses a notable risk even though we do not generate speech, as they could fabricate realistic counterfeit
audio clips. We condemn any such applications and hope to be able to work on safeguards for such
approaches in the future.

7 Conclusion

Our work builds an audio-generation pipeline, SEE-2-SOUND, that can generate spatial audio from
images, dynamic images, or videos. We achieve this by framing it as a compositional problem and
propose a novel framework to use off-the-shelf methods for this challenging new task. To the best of
our knowledge, our work is also the first to tackle the problem of performing spatial audio generation.
Evaluating approaches for this novel task is very challenging thus apart from doing a user study
we also propose a novel quantitative evaluation method based on measuring scene guidance from
audios. We and our human evaluators observe compelling outputs for images and videos both from
the internet and produced by generative models. Our method is also zero-shot in nature which makes
our method significantly easy to use and extensible. To this extent, we also envision users being able
to swap out the models we use for advances and other models in each of the individual sub-problems
in our pipeline.

We hope SEE-2-SOUNDand the future works we inspire lead to the generation of truly immersive
digital content. We also look forward to seeing other research on the problem we describe in this
work. Our codes, models and results are open-sourced to facilitate future research in this area.
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A Details of our Method

We provide the details of our approach with which we demonstrate all of our experiments and results.
Our experiments ran on a single A100-80 GPU. Running our approach on an image takes ~ 12 — 15
seconds (non-initial runs; initial runs can take up to ~ 3 minutes) for images and ~ 5 minutes
on videos that are under 20 seconds like the ones we experiment with. Our method can be easily
swapped for other off-the-shelf models however we limit our experiments to these settings. Our
human evaluation experiments were also performed without any text prompts to solely determine our
framework’s performance.

Source Estimation. For source estimation we use a Segment Anything [33]] model. We use the
ViT-H/16 [20] with 14 x 14 windowed attention as our image encoder. Following standard approaches
we rescale any inputs to 1024 x 1024 by rescaling and padding. For the decoder, we use the same
design and weights as used by Segment Anything [33]]. For monocular depth estimation, we use a
Depth Anything [84] model. We use ViT-L/14 [20] as our image encoder.

Audio generation. For audio generation we use a CoDi [72] model and use the Video LDM, Audio
LDM, and Text LDM components. For inference, we sample the model through 500 diffusion steps.

Generating 5.1 Surround Sound. We use a sampling rate of 16000 Hz for audio processing. For
simulating the acoustic environment, we utilize a “ShoeBox" room model from Pyroomacoustics [62].
The room dimensions are dynamically calculated based on the image size. Specifically, the dimensions
width w = image_width, height h = image_height, and length [ = 0.5- image_width. In our virtual
room, the microphones are placed at the following coordinates for each channel,

* Front-Left (FL): [0, 0, 100]

* Front-Right (FR): [0, 0, -100]

¢ Center (C): [100, 0, 0]

* Low-Frequency Effects (LFE): [0, -100, 0]

e Surround-Left (SL): [-100, 0, 0]

* Surround-Right (SR): [0, 100, 0]

B User Study Prootocol

We demonstrate the user study that the participants were given. We however removed any YouTube
video links we had as well as a consent form and institutional details here.

B.1 Consent Form
Your decision to participate is voluntary and you are free to withdraw at any time without any
consequences. You are not required to answer any questions you do not feel comfortable answering.
Please ensure that you understand the following:

1. The purpose of the survey is to evaluate Al for spatial audio generation from image inputs

and optional text prompts for the purpose of improving the quality of the outputs from these
systems.

2. I will be asked a questionnaire consisting of comparisons between pairs of images, audios,
and videos.

3. The questionnaire takes approximately 15 minutes to complete, and will be conducted
online.

4. I may withdraw from the questionnaire at any time by exiting the questionnaire screen. If
choose to withdraw, all partial data collected will be discarded.

5. The researchers do not foresee any risks or stresses on the participant beyond what one
might experience in a typical day of work.

15



6. The researchers also do not foresee any immediate benefits for the participant beyond what
one might experience in a typical day of work.

7. The results collected will help researchers develop systems for using AI models to generate
spatial audio from image inputs and optional text prompts.

8. T agree to have my responses documented and recorded digitally.

9. All data collected from the questionnaire will be kept secure. Only the researchers involved
in this study will have access to the information I provide. All data collected will be
destroyed S years after publication of results.

10. Data collected may be used in research journals, conferences, or other scholarly activities.
In these cases, an anonymous subject identifier will be used and no identifying information
will be provided to the audience.

11. T'am at least 18 years of age.

12. T am free to ask questions about the process at any time. I can ask questions in person, or by
contacting through email.

13. If requested, I will receive a copy of this form for my records.
The research study you are participating in may be reviewed for quality assurance to make sure that
the required laws and guidelines are followed. If chosen, (a) representative(s) of the Human Research
Ethics Program (HREP) may access study-related data and/or consent materials as part of the review.
All information accessed by the HREP will be upheld to the same level of confidentiality that has

been stated by the research team. If you have any questions about your rights as a participant, please
contact the Ethics Review Office at (this email) or (this phone number).

B.2 Part 1: Familiarization
Before we begin, please note that the optimal testing condition involves 5.1 surround speakers.
However, for this test, we ask participants to use headphones.

Watch this preselected video with correct spatial audio to familiarize yourself with the spatial audio
experience.

B.3 Part 2: Rating Spatial Audio with Images

You will be exposed to images paired with corresponding spatial audio. Some of these may be
generated by our system.

Rate the realism, immersion, accuracy, clarity, and consistency of the audio representation in relation
to the visual content on a scale of 1 to 5, where 1 is not realistic/immersive/accurate/clear/consistent,
and 5 is very realistic/immersive /accurate/clear/consistent.

Here is how we have defined these terms:

* Realism: How authentically the spatial audio mirrors real-world sound distribution.

* Immersion: The extent to which spatial audio engages and envelops the listener.

* Accuracy: The precision of alignment between spatial audio and visual content.

* Clarity: The degree to which individual sound elements are distinct and perceptible.

* Consistency: The uniformity of spatial audio representation across different images.
Video 1

Please rate the spatial audio in Video 1 on the following parameters, where 1 is not realis-
tic/immersive/accurate/clear/consistent, and 5 is very realistic/immersive /accurate/clear/consistent.

Video 2
Please rate the spatial audio in Video 2 on the following parameters, where 1 is not realis-
tic/immersive/accurate/clear/consistent, and 5 is very realistic/immersive /accurate/clear/consistent.
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B.4 Part 3: Direction and Distance Identification

You will be exposed to videos paired with corresponding spatial audio. Some of these may be
generated by our system.

Identify the direction and distance of sound sources within the audio landscape as depicted in the
videos.

Video 3

1. Where did you perceive the sound source for the trumpet to be located in the audio clip?
(You can choose multiple options)
o Left
* Right
* Center
¢ Behind
* In front
* Above
* Below
2. How would you describe the distance of the sound source for the trumpet in the audio clip?
* Very Close
* Moderately Close
* Moderately Far
e Very Far
3. Where did you perceive the sound source for the drums to be located in the audio clip? (You
can choose multiple options)
o Left
* Right
* Center
* Behind
* In front
* Above
* Below
4. How would you describe the distance of the sound source for the drums in the audio clip?
* Very Close
* Moderately Close
* Moderately Far
e Very Far
5. How accurately could you localize different sound sources within the audio landscape?
* Very Accurate
* Moderately Accurate
* Not Accurate

B.5 Part 4: Real vs. Fake Identification

You will be shown 2 clips, one of them has spatial audio generated by and another one has mono
audio of the same clips. You will be asked to identify which of them is "real" spatial audio and "fake"
spatial audio.

Video 4a
Video 4b
Which of the clips is more likely to be real spatial audio?

e Video 4a
¢ Video 4b
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B.6 Part 5: Matching Images to Spatial Audio

You wi

11 be shown three images and corresponding spatial audio. Some of these may be generated by

our system. You will be asked to match each spatial audio clip to its corresponding image.

Image

1 was shown.

Spatial Audio 1

Image

2 was shown.

Spatial Audio 2

Image

3 was shown.

Spatial Audio 3

Match

each spatial audio clip to its corresponding image.

C Quantitative Evaluation Metrics

The evaluation metrics we utilized are listed below:

1.

MFCC-DTW Similarity: Measures the similarity between the Mel-Frequency Cepstral
Coefficients (MFCCs) using Dynamic Time Warping (DTW) distance.

2. Zero-Crossing Rate (ZCR) Similarity: Measures the similarity between the zero-crossing

rates of the audio files.

3. Rhythm Similarity: Calculates the similarity between the rhythm patterns using the Pearson

correlation coefficient.

4. Chroma Similarity: Measures the similarity between the chroma features.

Spectral Contrast Similarity: Compares the spectral contrast of the audio files.

. Perceptual Similarity: Quantifies the perceptual similarity using the Short-Time Objective
Intelligibility (STOI) metric.

We excluded the perceptual and rhythm similarity metrics for the following reasons:

* Perceptual Similarity: Comparing spatial audio to mono audio using perceptual similarity
(such as the Short-Time Objective Intelligibility (STOI) metric) is not meaningful, as the
perceptual qualities are inherently different.

* Rhythm Similarity: Our framework does not generate music; hence, rhythm similarity is
irrelevant in our context.

D Licenses

Here we list the licensing information for code bases, pre-trained models, and data used:

Our co

» Segment Anything [33]] (code and weights): Apache License 2.0, https://github. com/
facebookresearch/segment-anything/tree/main

* Depth Anything [84] (code and weights): Apache License 2.0, https://github.com/
LiheYoung/Depth-Anything/tree/main

e CoDi [72] (code and weights): MIT License, https://github.com/microsoft/
i-Code/tree/main/i-Code-V3

* Visual Acoustic Matching [14] (code and weights): Creative Common CC-BY-NC Licence,
https://github.com/facebookresearch/visual-acoustic-matching

e Laion400M [63]: Creative Common CC-BY 4.0 License, https://laion.ai/blog/
laion-5b/

* Images from web: Creative Common CC-BY 4.0 License

de is made public under the Apache 2.0 License.
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