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Abstract

There has been much interest in unsuper-
vised learning of hierarchical generative mod-
els such as deep belief networks. Scaling
such models to full-sized, high-dimensional
images remains a difficult problem. To ad-
dress this problem, we present the convolu-
tional deep belief network, a hierarchical gen-
erative model which scales to realistic image
sizes. This model is translation-invariant and
supports efficient bottom-up and top-down
probabilistic inference. Key to our approach
is probabilistic max-pooling, a novel technique
which shrinks the representations of higher
layers in a probabilistically sound way. Our
experiments show that the algorithm learns
useful high-level visual features, such as ob-
ject parts, from unlabeled images of objects
and natural scenes. We demonstrate excel-
lent performance on several visual recogni-
tion tasks and show that our model can per-
form hierarchical (bottom-up and top-down)
inference over full-sized images.

1. Introduction

The visual world can be described at many levels: pixel
intensities, edges, object parts, objects, and beyond.
The prospect of learning hierarchical models which
simultaneously represent multiple levels has recently
generated much interest. Ideally, such “deep” repre-
sentations would learn hierarchies of feature detectors,
and further be able to combine top-down and bottom-
up processing of an image. For instance, lower layers
could support object detection by spotting low-level
features indicative of object parts. Conversely, infor-
mation about objects in the higher layers could resolve
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lower-level ambiguities in the image or infer the loca-
tions of hidden object parts.

Deep architectures consist of feature detector units ar-
ranged in layers. Lower layers detect simple features
and feed into higher layers, which in turn detect more
complex features. There have been several approaches
to learning deep networks (LeCun et al., 1989; Bengio
et al., 2006; Ranzato et al., 2006; Hinton et al., 2006).
In particular, the deep belief network (DBN) (Hinton
et al., 2006) is a multilayer generative model where
each layer encodes statistical dependencies among the
units in the layer below it; it is trained to (approxi-
mately) maximize the likelihood of its training data.
DBNs have been successfully used to learn high-level
structure in a wide variety of domains, including hand-
written digits (Hinton et al., 2006) and human motion
capture data (Taylor et al., 2007). We build upon the
DBN in this paper because we are interested in learn-
ing a generative model of images which can be trained
in a purely unsupervised manner.

While DBNs have been successful in controlled do-
mains, scaling them to realistic-sized (e.g., 200x200
pixel) images remains challenging for two reasons.
First, images are high-dimensional, so the algorithms
must scale gracefully and be computationally tractable
even when applied to large images. Second, objects
can appear at arbitrary locations in images; thus it
is desirable that representations be invariant at least
to local translations of the input. We address these
issues by incorporating translation invariance. Like
LeCun et al. (1989) and Grosse et al. (2007), we
learn feature detectors which are shared among all lo-
cations in an image, because features which capture
useful information in one part of an image can pick up
the same information elsewhere. Thus, our model can
represent large images using only a small number of
feature detectors.

This paper presents the convolutional deep belief net-
work, a hierarchical generative model that scales to
full-sized images. Another key to our approach is
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probabilistic max-pooling, a novel technique that allows
higher-layer units to cover larger areas of the input in a
probabilistically sound way. To the best of our knowl-
edge, ours is the first translation invariant hierarchical
generative model which supports both top-down and
bottom-up probabilistic inference and scales to real-
istic image sizes. The first, second, and third layers
of our network learn edge detectors, object parts, and
objects respectively. We show that these representa-
tions achieve excellent performance on several visual
recognition tasks and allow “hidden” object parts to
be inferred from high-level object information.

2. Preliminaries

2.1. Restricted Boltzmann machines

The restricted Boltzmann machine (RBM) is a two-
layer, bipartite, undirected graphical model with a set
of binary hidden units h, a set of (binary or real-
valued) visible units v, and symmetric connections be-
tween these two layers represented by a weight matrix
W . The probabilistic semantics for an RBM is defined
by its energy function as follows:

P (v,h) =
1
Z

exp(−E(v,h)),

where Z is the partition function. If the visible units
are binary-valued, we define the energy function as:

E(v,h) = −
∑
i,j

viWijhj −
∑
j

bjhj −
∑
i

civi,

where bj are hidden unit biases and ci are visible unit
biases. If the visible units are real-valued, we can de-
fine the energy function as:

E(v,h) =
1
2

∑
i

v2
i −

∑
i,j

viWijhj −
∑
j

bjhj −
∑
i

civi.

From the energy function, it is clear that the hid-
den units are conditionally independent of one another
given the visible layer, and vice versa. In particular,
the units of a binary layer (conditioned on the other
layer) are independent Bernoulli random variables. If
the visible layer is real-valued, the visible units (condi-
tioned on the hidden layer) are Gaussian with diagonal
covariance. Therefore, we can perform efficient block
Gibbs sampling by alternately sampling each layer’s
units (in parallel) given the other layer. We will often
refer to a unit’s expected value as its activation.

In principle, the RBM parameters can be optimized
by performing stochastic gradient ascent on the log-
likelihood of training data. Unfortunately, computing
the exact gradient of the log-likelihood is intractable.
Instead, one typically uses the contrastive divergence
approximation (Hinton, 2002), which has been shown
to work well in practice.

2.2. Deep belief networks

The RBM by itself is limited in what it can represent.
Its real power emerges when RBMs are stacked to form
a deep belief network, a generative model consisting of
many layers. In a DBN, each layer comprises a set of
binary or real-valued units. Two adjacent layers have a
full set of connections between them, but no two units
in the same layer are connected. Hinton et al. (2006)
proposed an efficient algorithm for training deep belief
networks, by greedily training each layer (from low-
est to highest) as an RBM using the previous layer’s
activations as inputs. This procedure works well in
practice.

3. Algorithms

RBMs and DBNs both ignore the 2-D structure of im-
ages, so weights that detect a given feature must be
learned separately for every location. This redundancy
makes it difficult to scale these models to full images.
(However, see also (Raina et al., 2009).) In this sec-
tion, we introduce our model, the convolutional DBN,
whose weights are shared among all locations in an im-
age. This model scales well because inference can be
done efficiently using convolution.

3.1. Notation

For notational convenience, we will make several sim-
plifying assumptions. First, we assume that all inputs
to the algorithm are NV × NV images, even though
there is no requirement that the inputs be square,
equally sized, or even two-dimensional. We also as-
sume that all units are binary-valued, while noting
that it is straightforward to extend the formulation to
the real-valued visible units (see Section 2.1). We use
∗ to denote convolution1, and • to denote element-wise
product followed by summation, i.e., A •B = trATB.
We place a tilde above an array (Ã) to denote flipping
the array horizontally and vertically.

3.2. Convolutional RBM

First, we introduce the convolutional RBM (CRBM).
Intuitively, the CRBM is similar to the RBM, but
the weights between the hidden and visible layers are
shared among all locations in an image. The basic
CRBM consists of two layers: an input layer V and a
hidden layer H (corresponding to the lower two layers
in Figure 1). The input layer consists of an NV ×NV
array of binary units. The hidden layer consists of K
“groups”, where each group is an NH × NH array of
binary units, resulting in NH

2K hidden units. Each
of the K groups is associated with a NW ×NW filter

1The convolution of an m×m array with an n×n array
may result in an (m + n − 1) × (m + n − 1) array or an
(m − n + 1) × (m − n + 1) array. Rather than invent a
cumbersome notation to distinguish these cases, we let it
be determined by context.
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(NW , NV − NH + 1); the filter weights are shared
across all the hidden units within the group. In addi-
tion, each hidden group has a bias bk and all visible
units share a single bias c.

We define the energy function E(v,h) as:

P (v,h) =
1
Z

exp(−E(v,h))

E(v,h) = −
K∑
k=1

NH∑
i,j=1

NW∑
r,s=1

hkijW
k
rsvi+r−1,j+s−1

−
K∑
k=1

bk

NH∑
i,j=1

hkij − c
NV∑
i,j=1

vij . (1)

Using the operators defined previously,

E(v,h) = −
K∑
k=1

hk • (W̃ k ∗ v)−
K∑
k=1

bk
∑
i,j

hki,j − c
∑
i,j

vij .

As with standard RBMs (Section 2.1), we can perform
block Gibbs sampling using the following conditional
distributions:

P (hkij = 1|v) = σ((W̃ k ∗ v)ij + bk)

P (vij = 1|h) = σ((
∑
k

W k ∗ hk)ij + c),

where σ is the sigmoid function. Gibbs sampling forms
the basis of our inference and learning algorithms.

3.3. Probabilistic max-pooling

In order to learn high-level representations, we stack
CRBMs into a multilayer architecture analogous to
DBNs. This architecture is based on a novel opera-
tion that we call probabilistic max-pooling.

In general, higher-level feature detectors need informa-
tion from progressively larger input regions. Existing
translation-invariant representations, such as convolu-
tional networks, often involve two kinds of layers in
alternation: “detection” layers, whose responses are
computed by convolving a feature detector with the
previous layer, and “pooling” layers, which shrink the
representation of the detection layers by a constant
factor. More specifically, each unit in a pooling layer
computes the maximum activation of the units in a
small region of the detection layer. Shrinking the rep-
resentation with max-pooling allows higher-layer rep-
resentations to be invariant to small translations of the
input and reduces the computational burden.

Max-pooling was intended only for feed-forward archi-
tectures. In contrast, we are interested in a generative
model of images which supports both top-down and
bottom-up inference. Therefore, we designed our gen-
erative model so that inference involves max-pooling-
like behavior.

v

Wk

hk
i,j

pk
α

V  (visible layer)

Hk (detection layer)

Pk (pooling layer)

NH

NV

C

NW

NP

Figure 1. Convolutional RBM with probabilistic max-
pooling. For simplicity, only group k of the detection layer
and the pooing layer are shown. The basic CRBM corre-
sponds to a simplified structure with only visible layer and
detection (hidden) layer. See text for details.

To simplify the notation, we consider a model with a
visible layer V , a detection layerH, and a pooling layer
P , as shown in Figure 1. The detection and pooling
layers both have K groups of units, and each group
of the pooling layer has NP × NP binary units. For
each k ∈ {1, ...,K}, the pooling layer P k shrinks the
representation of the detection layer Hk by a factor
of C along each dimension, where C is a small in-
teger such as 2 or 3. I.e., the detection layer Hk is
partitioned into blocks of size C × C, and each block
α is connected to exactly one binary unit pkα in the
pooling layer (i.e., NP = NH/C). Formally, we define
Bα , {(i, j) : hij belongs to the block α.}.

The detection units in the block Bα and the pooling
unit pα are connected in a single potential which en-
forces the following constraints: at most one of the
detection units may be on, and the pooling unit is on
if and only if a detection unit is on. Equivalently, we
can consider these C2+1 units as a single random vari-
able which may take on one of C2 + 1 possible values:
one value for each of the detection units being on, and
one value indicating that all units are off.

We formally define the energy function of this simpli-
fied probabilistic max-pooling-CRBM as follows:

E(v,h) = −
X
k

X
i,j

“
hki,j(W̃

k ∗ v)i,j + bkh
k
i,j

”
− c

X
i,j

vi,j

subj. to
X

(i,j)∈Bα

hki,j ≤ 1, ∀k, α.

We now discuss sampling the detection layer H and
the pooling layer P given the visible layer V . Group k
receives the following bottom-up signal from layer V :

I(hkij) , bk + (W̃ k ∗ v)ij . (2)

Now, we sample each block independently as a multi-
nomial function of its inputs. Suppose hki,j is a hid-
den unit contained in block α (i.e., (i, j) ∈ Bα), the
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increase in energy caused by turning on unit hki,j is
−I(hki,j), and the conditional probability is given by:

P (hki,j = 1|v) =
exp(I(hki,j))

1 +
∑

(i′,j′)∈Bα exp(I(hki′,j′))

P (pkα = 0|v) =
1

1 +
∑

(i′,j′)∈Bα exp(I(hki′,j′))
.

Sampling the visible layer V given the hidden layer
H can be performed in the same way as described in
Section 3.2.

3.4. Training via sparsity regularization

Our model is overcomplete in that the size of the rep-
resentation is much larger than the size of the inputs.
In fact, since the first hidden layer of the network con-
tains K groups of units, each roughly the size of the
image, it is overcomplete roughly by a factor of K. In
general, overcomplete models run the risk of learning
trivial solutions, such as feature detectors represent-
ing single pixels. One common solution is to force the
representation to be “sparse,” in that only a tiny frac-
tion of the units should be active in relation to a given
stimulus (Olshausen & Field, 1996; Lee et al., 2008).
In our approach, like Lee et al. (2008), we regularize
the objective function (data log-likelihood) to encour-
age each of the hidden units to have a mean activation
close to some small constant ρ. For computing the
gradient of sparsity regularization term, we followed
Lee et al. (2008)’s method.

3.5. Convolutional deep belief network

Finally, we are ready to define the convolutional deep
belief network (CDBN), our hierarchical generative
model for full-sized images. Analogously to DBNs, this
architecture consists of several max-pooling-CRBMs
stacked on top of one another. The network defines an
energy function by summing together the energy func-
tions for all of the individual pairs of layers. Training
is accomplished with the same greedy, layer-wise pro-
cedure described in Section 2.2: once a given layer is
trained, its weights are frozen, and its activations are
used as input to the next layer.

3.6. Hierarchical probabilistic inference

Once the parameters have all been learned, we com-
pute the network’s representation of an image by sam-
pling from the joint distribution over all of the hidden
layers conditioned on the input image. To sample from
this distribution, we use block Gibbs sampling, where
the units of each layer are sampled in parallel (see Sec-
tions 2.1 & 3.3).

To illustrate the algorithm, we describe a case with one
visible layer V , a detection layer H, a pooling layer P ,
and another, subsequently-higher detection layer H ′.
Suppose H ′ has K ′ groups of nodes, and there is a

set of shared weights Γ = {Γ1,1, . . . ,ΓK,K
′}, where

Γk,` is a weight matrix connecting pooling unit P k to
detection unit H ′`. The definition can be extended to
deeper networks in a straightforward way.

Note that an energy function for this sub-network con-
sists of two kinds of potentials: unary terms for each
of the groups in the detection layers, and interaction
terms between V and H and between P and H ′:

E(v,h,p,h′) = −
∑
k

v • (W k ∗ hk)−
∑
k

bk
∑
ij

hkij

−
∑
k,`

pk • (Γk` ∗ h′`)−
∑
`

b′`
∑
ij

h′
`
ij

To sample the detection layer H and pooling layer P ,
note that the detection layer Hk receives the following
bottom-up signal from layer V :

I(hkij) , bk + (W̃ k ∗ v)ij , (3)

and the pooling layer P k receives the following top-
down signal from layer H ′:

I(pkα) ,
∑
`

(Γk` ∗ h′`)α. (4)

Now, we sample each of the blocks independently as a
multinomial function of their inputs, as in Section 3.3.
If (i, j) ∈ Bα, the conditional probability is given by:

P (hki,j = 1|v,h′) =
exp(I(hki,j) + I(pkα))

1 +
P

(i′,j′)∈Bα exp(I(hki′,j′) + I(pkα))

P (pkα = 0|v,h′) =
1

1 +
P

(i′,j′)∈Bα exp(I(hki′,j′) + I(pkα))
.

As an alternative to block Gibbs sampling, mean-field
can be used to approximate the posterior distribution.2

3.7. Discussion

Our model used undirected connections between lay-
ers. This contrasts with Hinton et al. (2006), which
used undirected connections between the top two lay-
ers, and top-down directed connections for the layers
below. Hinton et al. (2006) proposed approximat-
ing the posterior distribution using a single bottom-up
pass. This feed-forward approach often can effectively
estimate the posterior when the image contains no oc-
clusions or ambiguities, but the higher layers cannot
help resolve ambiguities in the lower layers. Although
Gibbs sampling may more accurately estimate the pos-
terior in this network, applying block Gibbs sampling
would be difficult because the nodes in a given layer

2In all our experiments except for Section 4.5, we used
the mean-field approximation to estimate the hidden layer
activations given the input images. We found that five
mean-field iterations sufficed.
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are not conditionally independent of one another given
the layers above and below. In contrast, our treatment
using undirected edges enables combining bottom-up
and top-down information more efficiently, as shown
in Section 4.5.

In our approach, probabilistic max-pooling helps to
address scalability by shrinking the higher layers;
weight-sharing (convolutions) further speeds up the
algorithm. For example, inference in a three-layer
network (with 200x200 input images) using weight-
sharing but without max-pooling was about 10 times
slower. Without weight-sharing, it was more than 100
times slower.

In work that was contemporary to and done indepen-
dently of ours, Desjardins and Bengio (2008) also ap-
plied convolutional weight-sharing to RBMs and ex-
perimented on small image patches. Our work, how-
ever, develops more sophisticated elements such as
probabilistic max-pooling to make the algorithm more
scalable.

4. Experimental results

4.1. Learning hierarchical representations
from natural images

We first tested our model’s ability to learn hierarchi-
cal representations of natural images. Specifically, we
trained a CDBN with two hidden layers from the Ky-
oto natural image dataset.3 The first layer consisted
of 24 groups (or “bases”)4 of 10x10 pixel filters, while
the second layer consisted of 100 bases, each one 10x10
as well.5 As shown in Figure 2 (top), the learned first
layer bases are oriented, localized edge filters; this re-
sult is consistent with much prior work (Olshausen &
Field, 1996; Bell & Sejnowski, 1997; Ranzato et al.,
2006). We note that the sparsity regularization dur-
ing training was necessary for learning these oriented
edge filters; when this term was removed, the algo-
rithm failed to learn oriented edges.

The learned second layer bases are shown in Fig-
ure 2 (bottom), and many of them empirically re-
sponded selectively to contours, corners, angles, and
surface boundaries in the images. This result is qual-
itatively consistent with previous work (Ito & Ko-
matsu, 2004; Lee et al., 2008).

4.2. Self-taught learning for object recognition

Raina et al. (2007) showed that large unlabeled data
can help in supervised learning tasks, even when the

3http://www.cnbc.cmu.edu/cplab/data_kyoto.html
4We will call one hidden group’s weights a “basis.”
5Since the images were real-valued, we used Gaussian

visible units for the first-layer CRBM. The pooling ratio C
for each layer was 2, so the second-layer bases cover roughly
twice as large an area as the first-layer ones.

Figure 2. The first layer bases (top) and the second layer
bases (bottom) learned from natural images. Each second
layer basis (filter) was visualized as a weighted linear com-
bination of the first layer bases.

unlabeled data do not share the same class labels, or
the same generative distribution, as the labeled data.
This framework, where generic unlabeled data improve
performance on a supervised learning task, is known
as self-taught learning. In their experiments, they used
sparse coding to train a single-layer representation,
and then used the learned representation to construct
features for supervised learning tasks.

We used a similar procedure to evaluate our two-layer
CDBN, described in Section 4.1, on the Caltech-101
object classification task.6 The results are shown in
Table 1. First, we observe that combining the first
and second layers significantly improves the classifica-
tion accuracy relative to the first layer alone. Overall,
we achieve 57.7% test accuracy using 15 training im-
ages per class, and 65.4% test accuracy using 30 train-
ing images per class. Our result is competitive with
state-of-the-art results using highly-specialized single
features, such as SIFT, geometric blur, and shape-
context (Lazebnik et al., 2006; Berg et al., 2005; Zhang
et al., 2006).7 Recall that the CDBN was trained en-

6Details: Given an image from the Caltech-101
dataset (Fei-Fei et al., 2004), we scaled the image so that
its longer side was 150 pixels, and computed the activations
of the first and second (pooling) layers of our CDBN. We
repeated this procedure after reducing the input image by
half and concatenated all the activations to construct fea-
tures. We used an SVM with a spatial pyramid matching
kernel for classification, and the parameters of the SVM
were cross-validated. We randomly selected 15/30 training
set and 15/30 test set images respectively, and normal-
ized the result such that classification accuracy for each
class was equally weighted (following the standard proto-
col). We report results averaged over 10 random trials.

7Varma and Ray (2007) reported better performance
than ours (87.82% for 15 training images/class), but they
combined many state-of-the-art features (or kernels) to im-
prove the performance. In another approach, Yu et al.
(2009) used kernel regularization using a (previously pub-
lished) state-of-the-art kernel matrix to improve the per-
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Table 1. Classification accuracy for the Caltech-101 data

Training Size 15 30
CDBN (first layer) 53.2±1.2% 60.5±1.1%
CDBN (first+second layers) 57.7±1.5% 65.4±0.5%
Raina et al. (2007) 46.6% -
Ranzato et al. (2007) - 54.0%
Mutch and Lowe (2006) 51.0% 56.0%
Lazebnik et al. (2006) 54.0% 64.6%
Zhang et al. (2006) 59.0±0.56% 66.2±0.5%

tirely from natural scenes, which are completely un-
related to the classification task. Hence, the strong
performance of these features implies that our CDBN
learned a highly general representation of images.

4.3. Handwritten digit classification

We further evaluated the performance of our model
on the MNIST handwritten digit classification task,
a widely-used benchmark for testing hierarchical rep-
resentations. We trained 40 first layer bases from
MNIST digits, each 12x12 pixels, and 40 second layer
bases, each 6x6. The pooling ratio C was 2 for both
layers. The first layer bases learned “strokes” that
comprise the digits, and the second layer bases learned
bigger digit-parts that combine the strokes. We con-
structed feature vectors by concatenating the first and
second (pooling) layer activations, and used an SVM
for classification using these features. For each labeled
training set size, we report the test error averaged over
10 randomly chosen training sets, as shown in Table 2.
For the full training set, we obtained 0.8% test error.
Our result is comparable to the state-of-the-art (Ran-
zato et al., 2007; Weston et al., 2008).8

4.4. Unsupervised learning of object parts

We now show that our algorithm can learn hierarchi-
cal object-part representations in an unsupervised set-
ting. Building on the first layer representation learned
from natural images, we trained two additional CDBN
layers using unlabeled images from single Caltech-101
categories.9 As shown in Figure 3, the second layer
learned features corresponding to object parts, even
though the algorithm was not given any labels speci-
fying the locations of either the objects or their parts.
The third layer learned to combine the second layer’s
part representations into more complex, higher-level
features. Our model successfully learned hierarchi-
cal object-part representations of most of the other
Caltech-101 categories as well. We note that some of

formance of their convolutional neural network model.
8We note that Hinton and Salakhutdinov (2006)’s

method is non-convolutional.
9The images were unlabeled in that the position of the

object is unspecified. Training was on up to 100 images,
and testing was on different images than the training set.
The pooling ratio for the first layer was set as 3. The
second layer contained 40 bases, each 10x10, and the third
layer contained 24 bases, each 14x14. The pooling ratio in
both cases was 2.

these categories (such as elephants and chairs) have
fairly high intra-class appearance variation, due to de-
formable shapes or different viewpoints. Despite this,
our model still learns hierarchical, part-based repre-
sentations fairly robustly.

Higher layers in the CDBN learn features which are
not only higher level, but also more specific to particu-
lar object categories. We now quantitatively measure
the specificity of each layer by determining how in-
dicative each individual feature is of object categories.
(This contrasts with most work in object classifica-
tion, which focuses on the informativeness of the en-
tire feature set, rather than individual features.) More
specifically, we consider three CDBNs trained on faces,
motorbikes, and cars, respectively. For each CDBN,
we test the informativeness of individual features from
each layer for distinguishing among these three cate-
gories. For each feature,10 we computed area under the
precision-recall curve (larger means more specific).11
As shown in Figure 4, the higher-level representations
are more selective for the specific object class.

We further tested if the CDBN can learn hierarchi-
cal object-part representations when trained on im-
ages from several object categories (rather than just
one). We trained the second and third layer represen-
tations using unlabeled images randomly selected from
four object categories (cars, faces, motorbikes, and air-
planes). As shown in Figure 3 (far right), the second
layer learns class-specific as well as shared parts, and
the third layer learns more object-specific representa-
tions. (The training examples were unlabeled, so in a
sense, this means the third layer implicitly clusters the
images by object category.) As before, we quantita-
tively measured the specificity of each layer’s individ-
ual features to object categories. Because the train-
ing was completely unsupervised, whereas the AUC-
PR statistic requires knowing which specific object or
object parts the learned bases should represent, we
instead computed conditional entropy.12 Informally
speaking, conditional entropy measures the entropy of

10For a given image, we computed the layerwise activa-
tions using our algorithm, partitioned the activation into
LxL regions for each group, and computed the q% highest
quantile activation for each region and each group. If the
q% highest quantile activation in region i is γ, we then de-
fine a Bernoulli random variable Xi,L,q with probability γ
of being 1. To measure the informativeness between a fea-
ture and the class label, we computed the mutual informa-
tion between Xi,L,q and the class label. Results reported
are using (L, q) values that maximized the average mutual
information (averaging over i).

11For each feature, by comparing its values over pos-
itive examples and negative examples, we obtained the
precision-recall curve for each classification problem.

12We computed the quantile features γ for each layer
as previously described, and measured conditional entropy
H(class|γ > 0.95).
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Table 2. Test error for MNIST dataset

Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).
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Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Conditional entropy

 

 

first layer
second layer
third layer

Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference

Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-
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ever, with full Gibbs sampling, the bottom-up inputs
combine with the context provided by the third layer
which has detected the object. This combined evi-
dence significantly improves the second layer represen-
tation. Selected examples are shown in Figure 6.

5. Conclusion
We presented the convolutional deep belief network, a
scalable generative model for learning hierarchical rep-
resentations from unlabeled images, and showed that
our model performs well in a variety of visual recog-
nition tasks. We believe our approach holds promise
as a scalable algorithm for learning hierarchical repre-
sentations from high-dimensional, complex data.
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