CSC 311: Introduction to Machine Learning
 Tutorial 10 - EM Algorithm

University of Toronto

Overview

- First, brief overview of Expectation-Maximization algorithm.
- In the lecture we were using Gaussian Mixture Model fitted with Maximum Likelihood (ML) estimation.
- Today, practice with the E-M algorithm in an image completion task.
- We will use Mixture of Bernoullis fitted with Maximum a posteriori (MAP) estimation.
- Learning the parameters
- Posterior inference

The Generative Model

- We'll be working with the following generative model for data \mathcal{D}
- Assume a datapoint \mathbf{x} is generated as follows:
- Choose a cluster z from $\{1, \ldots, K\}$ such that $p(z=k)=\pi_{k}$
- Given z, sample \mathbf{x} from a probability distribution. (Earlier you saw Guassian $\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{z}, \mathbf{I}\right)$, now we will work with $\left.\operatorname{Bernoulli}\left(\theta_{z}\right)\right)$
- Can also be written:

$$
\begin{gathered}
p(z=k)=\pi_{k} \\
p(\mathbf{x} \mid z=k)=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \mathbf{I}\right) / \text { Bernoulli }\left(\theta_{k}\right)
\end{gathered}
$$

Maximum Likelihood with Latent Variables

- How should we choose the parameters $\left\{\pi_{k}, \boldsymbol{\mu}_{k}\right\}_{k=1}^{K}$?
- Maximum likelihood principle: choose parameters to maximize likelihood of observed data
- We don't observe the cluster assignments z, we only see the data \mathbf{x}
- Given data $\mathcal{D}=\left\{\mathbf{x}^{(n)}\right\}_{n=1}^{N}$, choose parameters to maximize:

$$
\log p(\mathcal{D})=\sum_{n=1}^{N} \log p\left(\mathbf{x}^{(n)}\right)
$$

- We can find $p(\mathbf{x})$ by marginalizing out z :

$$
p(\mathbf{x})=\sum_{k=1}^{K} p(z=k, \mathbf{x})=\sum_{k=1}^{K} p(z=k) p(\mathbf{x} \mid z=k)
$$

Log-likelihood derivatives

$$
\frac{\partial}{\partial \theta} \log p(x)=\frac{\partial}{\partial \theta} \log \sum_{z} p(x, z)
$$

Log-likelihood derivatives

$$
\begin{aligned}
& \frac{\partial}{\partial \theta} \log p(x)=\frac{\partial}{\partial \theta} \log \sum_{z} p(x, z) \\
&=\frac{\partial}{\partial \theta} \sum_{z} p(x, z) \\
& \sum_{z^{\prime}} p\left(x, z^{\prime}\right)
\end{aligned}
$$

Log-likelihood derivatives

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log p(x) & =\frac{\partial}{\partial \theta} \log \sum_{z} p(x, z) \\
& =\frac{\frac{\partial}{\partial \theta} \sum_{z} p(x, z)}{\sum_{z^{\prime}} p\left(x, z^{\prime}\right)} \\
& =\frac{\sum_{z} \frac{\partial}{\partial \theta} p(x, z)}{\sum_{z^{\prime}} p\left(x, z^{\prime}\right)}
\end{aligned}
$$

Log-likelihood derivatives

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log p(x) & =\frac{\partial}{\partial \theta} \log \sum_{z} p(x, z) \\
& =\frac{\frac{\partial}{\partial \theta} \sum_{z} p(x, z)}{\sum_{z^{\prime}} p\left(x, z^{\prime}\right)} \\
& =\frac{\sum_{z} \frac{\partial}{\partial \theta} p(x, z)}{\sum_{z^{\prime}} p\left(x, z^{\prime}\right)} \\
& =\frac{\sum_{z} p(x, z) \frac{\partial}{\partial \theta} \log p(x, z)}{\sum_{z^{\prime}} p\left(x, z^{\prime}\right)}
\end{aligned}
$$

Log-likelihood derivatives

$$
\begin{aligned}
& \frac{\partial}{\partial \theta} \log p(x)=\frac{\partial}{\partial \theta} \log \sum_{z} p(x, z) \\
&=\frac{\partial \partial}{\partial \theta} \sum_{z} p(x, z) \\
& \sum_{z^{\prime}} p\left(x, z^{\prime}\right) \\
&=\frac{\sum_{z} \frac{\partial}{z} p(x, z)}{\sum_{z^{\prime}} p\left(x, z^{\prime}\right)} \\
&=\frac{\sum_{z} p(x, z) \frac{\partial}{\partial \theta} \log p(x, z)}{\sum_{z^{\prime}} p\left(x, z^{\prime}\right)} \\
&=\sum_{z}\left(\frac{p(x, z)}{\sum_{z^{\prime}} p\left(x, z^{\prime}\right)} \frac{\partial}{\partial \theta} \log p(x, z)\right)
\end{aligned}
$$

Log-likelihood derivatives

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log p(x) & =\frac{\partial}{\partial \theta} \log \sum_{z} p(x, z) \\
& =\frac{\frac{\partial}{\partial \theta} \sum_{z} p(x, z)}{\sum_{z^{\prime}} p\left(x, z^{\prime}\right)} \\
& =\frac{\sum_{z} \frac{\partial}{\partial \theta} p(x, z)}{\sum_{z^{\prime}} p\left(x, z^{\prime}\right)} \\
& =\frac{\sum_{z} p(x, z) \frac{\partial}{\partial \theta}}{\sum_{z^{\prime}} p\left(x, z^{\prime}\right)} \log (x, z) \\
& =\sum_{z}\left(\frac{p(x, z)}{\sum_{z^{\prime}} p\left(x, z^{\prime}\right)} \frac{\partial}{\partial \theta} \log p(x, z)\right) \\
& =\sum_{z} p(z \mid x) \frac{\partial}{\partial \theta} \log p(x, z)
\end{aligned}
$$

Expectation-Maximization algorithm

- The Expectation-Maximization algorithm alternates between two steps:

1. E-step: Compute the posterior probabilities $r_{k}^{(n)}=p\left(z^{(n)}=k \mid \mathbf{x}^{(n)}\right)$ given our current model - i.e. how much do we think a cluster is responsible for generating a datapoint.
2. M-step: Use the equations on the last slide to update the parameters, assuming $r_{k}^{(n)}$ are held fixed- change the parameters of each distribution to maximize the probability that it would generate the data it is currently responsible for.

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log p(\mathcal{D}) & =\frac{\partial}{\partial \theta} \sum_{n=1}^{N} \log \sum_{k=1}^{K} p\left(z^{(n)}=k, \mathbf{x}^{(n)}\right) \\
= & \sum_{i=1}^{N} \sum_{k=1}^{K} p\left(z^{(n)}=k \mid \mathbf{x}^{(n)}\right) \frac{\partial}{\partial \theta} \log p\left(x^{(n)}, z^{(n)}\right) \\
= & \sum_{i=1}^{N} \sum_{k=1}^{K} r_{k}^{(i)}\left[\frac{\partial}{\partial \theta} \log \operatorname{Pr}\left(z^{(i)}=k\right)+\frac{\partial}{\partial \theta} \log p\left(\mathbf{x}^{(i)} \mid z^{(i)}=k\right)\right]
\end{aligned}
$$

Image Completion using Mixture of Bernoullis ${ }^{1}$

- A probabilistic model for the task of image completion.
- We observe the top half of an image of a handwritten digit, we would like to predict whats in the bottom half.

Given these observations...

... you want to make these predictions

5	0	4	1	9	7	1	3
1	4	3	5	3	6	1	9
2	8	6	9	4	0	9	1
4	2	4	3	3	9	3	8
6	9	0	5	6	0	7	6
1	8	7	9	2	9	8	5
9	3	3	0	7	4	4	8
0	9	4	1	4	4	6	0

Mixture of Bernoullis model

- Our dataset is a set of 28×28 binary images represented as 784-dimensional binary vectors.
- $N=60,000$, the number of training cases. The training cases are indexed by i.
- $D=28 \times 28=784$, the dimension of each observation vector. The dimensions are indexed by j.
- Conditioned on the latent variable $z=k$, each pixel x_{j} is an independent Bernoulli random variable with parameter $\theta_{k, j}$:

$$
\begin{aligned}
p\left(\mathbf{x}^{(i)} \mid z=k\right) & =\prod_{j=1}^{D} p\left(x_{j}^{(i)} \mid z=k\right) \\
& =\prod_{j=1}^{D} \theta_{k, j}^{x_{j}^{(i)}}\left(1-\theta_{k, j}\right)^{1-x_{j}^{(i)}}
\end{aligned}
$$

The Generative Process

This can be written out as the following generative process:
Sample z from a multinomial distribution $\boldsymbol{\pi}$.
For $j=1, \ldots, D$:
Sample x_{j} from a Bernoulli distribution with parameter $\theta_{k, j}$, where k is the value of z.
It can also be written mathematically as:

$$
\begin{aligned}
z & \sim \operatorname{Multinomial}(\boldsymbol{\pi}) \\
x_{j} \mid z=k & \sim \operatorname{Bernoulli}\left(\theta_{k, j}\right)
\end{aligned}
$$

Part 1: Learning the Parameters

- In the first step, well learn the parameters of the model given the responsibilities (M-step of the E-M algorithm).
- We want to use the MAP criterion instead of maximum likelihood (ML) to fit the Mixture of Bernoullis model.
- The only difference is that we add a prior probability term to the ML objective function in the M-step.
- ML objective function:

$$
\sum_{i=1}^{N} \sum_{k=1}^{K} r_{k}^{(i)}\left[\log \operatorname{Pr}\left(z^{(i)}=k\right)+\log p\left(\mathbf{x}^{(i)} \mid z^{(i)}=k\right)\right]
$$

- MAP objective function:

$$
\sum_{i=1}^{N} \sum_{k=1}^{K} r_{k}^{(i)}\left[\log \operatorname{Pr}\left(z^{(i)}=k\right)+\log p\left(\mathbf{x}^{(i)} \mid z^{(i)}=k\right)\right]+\log p(\boldsymbol{\pi})+\log p(\boldsymbol{\Theta})
$$

Part 1: Learning the Parameters (Prior Distribution)

- Use Beta distribution as the prior for $\boldsymbol{\Theta}$: Every entry is drawn independently from a beta distribution with parameters a and b :

$$
p\left(\theta_{k, j}\right) \propto \theta_{k, j}^{a-1}\left(1-\theta_{k, j}\right)^{b-1}
$$

- Use Dirichlet distribution as the prior over mixing proportions π :

$$
p(\boldsymbol{\pi}) \propto \pi_{1}^{a_{1}-1} \pi_{2}^{a_{2}-1} \cdots \pi_{K}^{a_{K}-1}
$$

Part 1: Learning the Parameters

- Derive the M-step update rules for $\boldsymbol{\Theta}$ and $\boldsymbol{\pi}$ by setting the partial derivatives of the MAP objective function to zero.

$$
\begin{aligned}
J(\theta, \pi) & =\sum_{i=1}^{N} \sum_{k=1}^{K} r_{k}^{(i)}\left[\log \operatorname{Pr}\left(z^{(i)}=k\right)+\log p\left(\mathbf{x}^{(i)} \mid z^{(i)}=k\right)\right] \\
& +\log p(\boldsymbol{\pi})+\log p(\boldsymbol{\Theta})
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{k} \leftarrow \ldots \\
& \theta_{k, j} \leftarrow \ldots
\end{aligned}
$$

Part 1: Learning the Parameters

$$
\begin{aligned}
& J(\boldsymbol{\Theta}, \boldsymbol{\pi})=\sum_{i=1}^{N} \sum_{k=1}^{K} r_{k}^{(i)}\left[\log \operatorname{Pr}\left(z^{(i)}=k\right)+\log p\left(\mathbf{x}^{(i)} \mid z^{(i)}=k\right)\right]+\log p(\boldsymbol{\pi})+\log p(\boldsymbol{\Theta}) \\
& =\sum_{i=1}^{N} \sum_{k=1}^{K} r_{k}^{(i)}\left[\log \pi_{k}+\sum_{j=1}^{D} x_{j}^{(i)} \log \theta_{k, j}+\left(1-x_{j}^{(i)}\right) \log \left(1-\theta_{k, j}\right)\right] \\
& \quad+\sum_{k=1}^{K}\left(a_{k}-1\right) \log \pi_{k}+\sum_{k=1}^{K} \sum_{j=1}^{D}\left[(a-1) \log \theta_{k, j}+(b-1) \log \left(1-\theta_{k, j}\right)\right]+C
\end{aligned}
$$

Derivative wrt. $\theta_{k, j}$

$$
\begin{aligned}
J(\boldsymbol{\Theta}, \boldsymbol{\pi}) & =\sum_{i=1}^{N} \sum_{k=1}^{K} r_{k}^{(i)}\left[\log \pi_{k}+\sum_{j=1}^{D} x_{j}^{(i)} \log \theta_{k, j}+\left(1-x_{j}^{(i)}\right) \log \left(1-\theta_{k, j}\right)\right] \\
& +\sum_{k=1}^{K}\left(a_{k}-1\right) \log \pi_{k}+\sum_{k=1}^{K} \sum_{j=1}^{D}\left[(a-1) \log \theta_{k, j}+(b-1) \log \left(1-\theta_{k, j}\right)\right]+C
\end{aligned}
$$

- First we take derivative wrt. $\theta_{k, j}$:

$$
\begin{aligned}
\frac{\partial J}{\partial \theta_{k, j}} & =\sum_{i=1}^{N} r_{k}^{(i)}\left[x_{j}^{(i)} \frac{1}{\theta_{k, j}}+\left(1-x_{j}^{(i)}\right) \frac{1}{\theta_{k, j}-1}\right]+(a-1) \frac{1}{\theta_{k, j}}+(b-1) \frac{1}{\theta_{k, j}-1} \\
& =\frac{1}{\theta_{k, j}}\left(\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+(a-1)\right)+\frac{1}{\theta_{k, j}-1}\left(\sum_{i=1}^{N}\left[r_{k}^{(i)}\right]-\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+(b-1)\right.
\end{aligned}
$$

Derivative wrt. $\theta_{k, j}$

$$
\begin{aligned}
\frac{\partial J}{\partial \theta_{k, j}} & =\sum_{i=1}^{N} r_{k}^{(i)}\left[x_{j}^{(i)} \frac{1}{\theta_{k, j}}+\left(1-x_{j}^{(i)}\right) \frac{1}{\theta_{k, j}-1}\right]+(a-1) \frac{1}{\theta_{k, j}}+(b-1) \frac{1}{\theta_{k, j}-1} \\
& =\frac{1}{\theta_{k, j}}\left(\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+(a-1)\right)+\frac{1}{\theta_{k, j}-1}\left(\sum_{i=1}^{N}\left[r_{k}^{(i)}\right]-\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+(b-1\right.
\end{aligned}
$$

- Setting this to zero, and multiplying both sides by $\theta_{k, j}\left(\theta_{k, j}-1\right)$ yields:

$$
0=\left(\theta_{k, j}-1\right)\left(\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+(a-1)\right)+\theta_{k, j}\left(\sum_{i=1}^{N}\left[r_{k}^{(i)}\right]-\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+(b-1)\right)
$$

Derivative wrt. $\theta_{k, j}$

$$
\begin{aligned}
\frac{\partial J}{\partial \theta_{k, j}} & =\sum_{i=1}^{N} r_{k}^{(i)}\left[x_{j}^{(i)} \frac{1}{\theta_{k, j}}+\left(1-x_{j}^{(i)}\right) \frac{1}{\theta_{k, j}-1}\right]+(a-1) \frac{1}{\theta_{k, j}}+(b-1) \frac{1}{\theta_{k, j}-1} \\
& =\frac{1}{\theta_{k, j}}\left(\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+(a-1)\right)+\frac{1}{\theta_{k, j}-1}\left(\sum_{i=1}^{N}\left[r_{k}^{(i)}\right]-\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+(b-1)\right.
\end{aligned}
$$

- Setting this to zero, and multiplying both sides by $\theta_{k, j}\left(\theta_{k, j}-1\right)$ yields:

$$
0=\left(\theta_{k, j}-1\right)\left(\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+(a-1)\right)+\theta_{k, j}\left(\sum_{i=1}^{N}\left[r_{k}^{(i)}\right]-\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+(b-1)\right)
$$

- This gives:

$$
\begin{aligned}
\theta_{k, j} & =\frac{\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+(a-1)}{\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+(a-1)+\sum_{i=1}^{N}\left[r_{k}^{(i)}\right]-\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+(b-1)} \\
& =\frac{\sum_{i=1}^{N}\left[r_{k}^{(i)} x_{j}^{(i)}\right]+a-1}{\sum_{i=1}^{N}\left[r_{k}^{(i)}\right]+a+b-2}
\end{aligned}
$$

Derivative wrt. π_{k}

- Now we take derivative wrt. π_{k}.
- Note that it is a bit trickier because we need to account for the condition $\sum_{k=1}^{K} \pi_{k}=1$.
- This can be done with the use of a Lagrange multiplier.
- Let $J_{\lambda}=J+\lambda\left(\sum_{k=1}^{K}\left[\pi_{k}\right]-1\right)$

$$
\frac{\partial J_{\lambda}}{\partial \pi_{k}}=\sum_{i=1}^{N} r_{k}^{(i)} \frac{1}{\pi_{k}}+\left(a_{k}-1\right) \frac{1}{\pi_{k}}+\lambda
$$

Derivative wrt. π_{k}

- Now we take derivative wrt. π_{k}.
- Note that it is a bit trickier because we need to account for the condition $\sum_{k=1}^{K} \pi_{k}=1$.
- This can be done with the use of a Lagrange multiplier.
- Let $J_{\lambda}=J+\lambda\left(\sum_{k=1}^{K}\left[\pi_{k}\right]-1\right)$

$$
\frac{\partial J_{\lambda}}{\partial \pi_{k}}=\sum_{i=1}^{N} r_{k}^{(i)} \frac{1}{\pi_{k}}+\left(a_{k}-1\right) \frac{1}{\pi_{k}}+\lambda
$$

- Setting this to zero, we get:

$$
\pi_{k}=\frac{\left(a_{k}-1\right)+\sum_{i=1}^{N}\left[r_{k}^{(i)}\right]}{\lambda}
$$

- Knowing that π_{k} sums to one, we obtain:

$$
\pi_{k}=\frac{\left(a_{k}-1\right)+\sum_{i=1}^{N}\left[r_{k}^{(i)}\right]}{\sum_{k=1}^{K}\left[\left(a_{k}-1\right)+\sum_{i=1}^{N}\left[r_{k}^{(i)}\right]\right]}=\frac{\left(a_{k}-1\right)+\sum_{i=1}^{N}\left[r_{k}^{(i)}\right]}{N+\sum_{k=1}^{K}\left(a_{k}-1\right)}
$$

- (We used $\left.\sum_{i=1}^{N} \sum_{k=1}^{K} r_{k}^{(i)}=\sum_{i=1}^{N} 1=N\right)$

Part 2: Posterior inference

- We represent partial observations in terms of variables $m_{j}^{(i)}$, where $m_{j}^{(i)}=1$ if the j th pixel of the i th image is observed, and 0 otherwise.
- Derive the posterior probability distribution $p\left(z \mid \mathbf{x}_{\text {obs }}\right)$, where $\mathbf{x}_{\text {obs }}$ denotes the subset of the pixels which are observed.
- Using Bayes rule, we have:

$$
\begin{aligned}
p(z=k \mid x) & =\frac{p(x \mid z=k) p(z=k)}{p(x)} \\
& =\frac{\pi_{k} \prod_{j=1}^{D} \theta_{k, j}^{m_{j} x_{j}}\left(1-\theta_{k, j}^{m_{j}\left(1-x_{j}\right)}\right)}{\sum_{l=1}^{K} \pi_{l} \prod_{j=1}^{D} \theta_{l, j}^{m_{j} x_{j}}\left(1-\theta_{l, j}^{m_{j}\left(1-x_{j}\right)}\right)}
\end{aligned}
$$

Part 3: Posterior Predictive Mean

- Computes the posterior predictive means of the missing pixels given the observed ones.
- The posterior predictive distribution is:

$$
p\left(x_{2} \mid x_{1}\right)=\sum_{z} p\left(z \mid x_{1}\right) p\left(x_{2} \mid z, x_{1}\right)
$$

- Assume that the x_{i} values are conditionally independent given z.
- For instance, the pixels in one half of an image are clearly not independent of the pixels in the other half. But they are roughly independent, conditioned on a detailed description of everything going on in the image.
- So we have:

$$
\begin{aligned}
\mathbb{E}\left[p\left(x_{m i s} \mid x_{o b s}\right)\right]= & \sum_{k=1}^{K} r_{k} p\left(x_{m i s}=1 \mid z=k\right)=\sum_{k=1}^{K} r_{k} \operatorname{Bernoulli}\left(\theta_{k, m i s}\right) \\
& =\sum_{k=1}^{K} r_{k} \theta_{k, m i s}
\end{aligned}
$$

Questions?

?

