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Matrix Decomposition

We can decompose an integer into its prime factors, e.g.,

12 = 2⇥ 2⇥ 3.

Similarly, matrices can be decomposed into product of other

matrices.

A = Vdiag(�)V�1

Examples are Eigendecomposition, SVD, Schur decomposition, LU

decomposition, . . . .
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Eigenvectors

An eigenvector of a square matrix A is a nonzero vector v such

that multiplication by A only changes the scale of v.

Av = �v

The scalar � is known as the eigenvalue.

If v is an eigenvector of A, so is any rescaled vector sv. Moreover,

sv still has the same eigenvalue. Thus, we constrain the

eigenvector to be of unit length:

||v||2 = 1
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Characteristic Polynomial(1)

Eigenvalue equation of matrix A.

Av = �v

�v �Av = 0

(�I�A)v = 0

If nonzero solution for v exists, then it must be the case that:

det(�I�A) = 0

Unpacking the determinant as a function of �, we get:

PA(�) = det(�I�A) = 1⇥ �n
+ cn�1 ⇥ �n�1

+ . . .+ c0

This is called the characterisitc polynomial of A.
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Characteristic Polynomial(2)

If �1,�2, . . . ,�n are roots of the characteristic polynomial, they are

eigenvalues of A and we have PA(�) =
Qn

i=1(�� �i).

cn�1 = �
Pn

i=1 �i = �tr(A). This means that the sum of

eigenvalues equals to the trace of the matrix.

c0 = (�1)
nQn

i=1 �i = (�1)
ndet(A). The determinant is equal to

the product of eigenvalues.

Roots might be complex. If a root has multiplicity of rj > 1 (This

is called the algebraic dimension of eigenvalue), then the geometric

dimension of eigenspace for that eigenvalue might be less than rj
(or equal but never more). But for every eigenvalue, one

eigenvector is guaranteed.
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Example

Consider the matrix:

A =


2 1

1 2

�

The characteristic polynomial is:

det(�I�A) = det


�� 2 �1

�1 �� 2

�
= 3� 4�+ �2

= 0

It has roots � = 1 and � = 3 which are the two eigenvalues of A.

We can then solve for eigenvectors using Av = �v:

v�=1 = [1,�1]
>

and v�=3 = [1, 1]>
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Eigendecomposition

Suppose that n⇥ n matrix A has n linearly independent

eigenvectors {v(1), . . . ,v(n)} with eigenvalues {�1, . . . ,�n}.

Concatenate eigenvectors (as columns) to form matrix V.

Concatenate eigenvalues to form vector � = [�1, . . . ,�n]
>
.

The eigendecomposition of A is given by:

AV = Vdiag(�) =) A = Vdiag(�)V�1
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Symmetric Matrices

Every symmetric (hermitian) matrix of dimension n has a set of

(not necessarily unique) n orthogonal eigenvectors. Furthermore,

all eigenvalues are real.

Every real symmetric matrix A can be decomposed into

real-valued eigenvectors and eigenvalues:

A = Q⇤Q
>

Q is an orthogonal matrix of the eigenvectors of A, and ⇤ is a

diagonal matrix of eigenvalues.

We can think of A as scaling space by �i in direction v
(i)
.
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Eigendecomposition is not Unique

Decomposition is not unique when two eigenvalues are the same.

By convention, order entries of ⇤ in descending order. Then,

eigendecomposition is unique if all eigenvalues have multiplicity

equal to one.

If any eigenvalue is zero, then the matrix is singular. Because if v

is the corresponding eigenvector we have: Av = 0v = 0.
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Positive Definite Matrix

If a symmetric matrix A has the property:

x
>
Ax > 0 for any nonzero vector x

Then A is called positive definite.

If the above inequality is not strict then A is called positive

semidefinite.

For positive (semi)definite matrices all eigenvalues are positive(non

negative).
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Singular Value Decomposition (SVD)

If A is not square, eigendecomposition is undefined.

SVD is a decomposition of the form A = UDV
>
.

SVD is more general than eigendecomposition.

Every real matrix has a SVD.
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SVD Definition (1)

Write A as a product of three matrices: A = UDV
>
.

If A is m⇥ n, then U is m⇥m, D is m⇥ n, and V is n⇥ n.

U and V are orthogonal matrices, and D is a diagonal matrix (not

necessarily square).

Diagonal entries of D are called singular values of A.

Columns of U are the left singular vectors, and columns of V

are the right singular vectors.
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SVD Definition (2)

SVD can be interpreted in terms of eigendecompostion.

Left singular vectors of A are the eigenvectors of AA
>
.

Right singular vectors of A are the eigenvectors of A
>
A.

Nonzero singular values of A are square roots of eigenvalues of

A
>
A and AA

>
.

Numbers on the diagonal of D are sorted largest to smallest and

are non-negative (A
>
A and AA

>
are semipositive definite.).
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Matrix norms

We may define norms for matrices too. We can either treat a

matrix as a vector, and define a norm based on an entrywise norm

(example: Frobenius norm). Or we may use a vector norm to

“induce” a norm on matrices.

Frobenius norm:

kAkF =

sX

i,j

a2i,j .

Vector-induced (or operator, or spectral) norm:

kAk2 = sup

kxk2=1
kAxk2 .
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SVD Optimality

Given a matrix A, SVD allows us to find its “best” (to be defined)

rank-r approximation Ar.

We can write A = UDV
>
as A =

Pn
i=1 diuiv

>
i .

For r  n, construct Ar =
Pr

i=1 diuiv
>
i .

The matrix Ar is a rank-r approximation of A. Moreover, it is the

best approximation of rank r by many norms:

When considering the operator (or spectral) norm, it is optimal.

This means that kA�Ark2  kA�Bk2 for any rank r matrix B.

When considering Frobenius norm, it is optimal. This means that

kA�ArkF  kA�BkF for any rank r matrix B. One way to

interpret this inequality is that rows (or columns) of Ar are the

projection of rows (or columns) of A on the best r dimensional

subspace, in the sense that this projection minimizes the sum of

squared distances.

Intro ML (UofT) CSC311 – Tut 2 – Linear Algebra 28 / 28


