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Matrix Decomposition

@ We can decompose an integer into its prime factors, e.g.,
12 =2x2x 3.

e Similarly, matrices can be decomposed into product of other
matrices.

A = VdiagA\) V™!

e Examples are Eigendecomposition, SVD, Schur decomposition, LU
decomposition, . ...
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Figenvectors

@ An eigenvector of a square matrix A is a nonzero vector v such
that multiplication by A only changes the scale of v.

Av = )v
@ The scalar A is known as the eigenvalue.

o If v is an eigenvector of A, so is any rescaled vector sv. Moreover,
sv still has the same eigenvalue. Thus, we constrain the
eigenvector to be of unit length:

vll2 =1
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Characteristic Polynomial(1)

e Eigenvalue equation of matrix A.
Av = )v
Av—Av =0
(M—-—A)v =0

o If nonzero solution for v exists, then it must be the case that:

det(\I-A) = 0

Unpacking the determinant as a function of A\, we get:

Pa(A) =det(AI—A) =1 x A"+ cpg x A" L+ + ¢

This is called the characterisitc polynomial of A.
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Characteristic Polynomial(2)

If A1, Ag, ..., A, are roots of the characteristic polynomial, they are
eigenvalues of A and we have Pa(\) = [[i; (A — Ni).

Cn—1=— i1 A = —tr(A). This means that the sum of
eigenvalues equals to the trace of the matrix.

co = ()" Ty A = (—1)"det(A). The determinant is equal to
the product of eigenvalues.

e Roots might be complex. If a root has multiplicity of r; > 1 (This
is called the algebraic dimension of eigenvalue), then the geometric
dimension of eigenspace for that eigenvalue might be less than r;
(or equal but never more). But for every eigenvalue, one
eigenvector is guaranteed.
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Example

o Consider the matrix:
2 1
S
@ The characteristic polynomial is:

A—2 -1

det(/\I—A):det[_1 N9

]:3—4)\+)\2:0

@ It has roots A = 1 and A = 3 which are the two eigenvalues of A.
@ We can then solve for eigenvectors using Av = A\v:

vaz1 = [1,-1]T and vy_3=[1,1]T
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Eigendecomposition

Suppose that n x n matrix A has n linearly independent
eigenvectors {v(D), ... v(®} with eigenvalues {A1,..., A\, }.

e Concatenate eigenvectors (as columns) to form matrix V.
o Concatenate eigenvalues to form vector A = [A1,..., A",
o The eigendecomposition of A is given by:

AV = Vdiag(\) = A = Vdiag(A\)V !
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Symmetric Matrices

e Every symmetric (hermitian) matrix of dimension n has a set of
(not necessarily unique) n orthogonal eigenvectors. Furthermore,
all eigenvalues are real.

e Every real symmetric matrix A can be decomposed into
real-valued eigenvectors and eigenvalues:

A = QAQT

@ Q is an orthogonal matrix of the eigenvectors of A, and A is a
diagonal matrix of eigenvalues.

e We can think of A as scaling space by \; in direction v(?).

Plot of unit vectors #€R* Plot of vectors Au
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Eigendecomposition is not Unique

@ Decomposition is not unique when two eigenvalues are the same.

e By convention, order entries of A in descending order. Then,
eigendecomposition is unique if all eigenvalues have multiplicity
equal to one.

o If any eigenvalue is zero, then the matrix is singular. Because if v
is the corresponding eigenvector we have: Av = 0v = 0.
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Positive Definite Matrix

o If a symmetric matrix A has the property:
xAx >0 for any nonzero vector x
Then A is called positive definite.

e If the above inequality is not strict then A is called positive
semidefinite.

e For positive (semi)definite matrices all eigenvalues are positive(non
negative).
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Singular Value Decomposition (SVD)

If A is not square, eigendecomposition is undefined.

e SVD is a decomposition of the foorm A = UDV',

SVD is more general than eigendecomposition.

Every real matrix has a SVD.
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SVD Definition (1)

e Write A as a product of three matrices: A = UDV',

If Aism xn,then Uis m xm, Dism xn, and V is n X n.

U and V are orthogonal matrices, and D is a diagonal matrix (not
necessarily square).

Diagonal entries of D are called singular values of A.

Columns of U are the left singular vectors, and columns of V
are the right singular vectors.
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SVD Definition (2)

SVD can be interpreted in terms of eigendecompostion.

Left singular vectors of A are the eigenvectors of AAT.

Right singular vectors of A are the eigenvectors of AT A.

e Nonzero singular values of A are square roots of eigenvalues of
ATA and AAT.

@ Numbers on the diagonal of D are sorted largest to smallest and
are non-negative (AT A and AAT are semipositive definite.).
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Matrix norms

e We may define norms for matrices too. We can either treat a
matrix as a vector, and define a norm based on an entrywise norm
(example: Frobenius norm). Or we may use a vector norm to
“induce” a norm on matrices.

e Frobenius norm:

e Vector-induced (or operator, or spectral) norm:

[Ally = sup [|Az[], .

llzll,=1
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SVD Optimality

e Given a matrix A, SVD allows us to find its “best” (to be defined)
rank-r approximation A,.

o We can write A=UDV ' as A ="  duv,.

For r < n, construct A, = Z:Zl diuiviT.

The matrix A, is a rank-r approximation of A. Moreover, it is the
best approximation of rank r by many norms:

o When considering the operator (or spectral) norm, it is optimal.
This means that ||A — A,||2 < ||A — B||2 for any rank r matrix B.

e When considering Frobenius norm, it is optimal. This means that
|A— A, || < ||A— Blr for any rank r matrix B. One way to
interpret this inequality is that rows (or columns) of A, are the
projection of rows (or columns) of A on the best r dimensional
subspace, in the sense that this projection minimizes the sum of
squared distances.
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