Linear Algebra Review Problems

CSC311, Fall 2021

1 Commute times

1. Suppose we are trying to predict commute times based on the distance traveled and day of the week. We have the following data:

dist	day	commute time
2.7	1	25
3.4	1	31
5.2	2	45
1.0	3	16
2.8	5	22

(a) We estimate that commute times have the following relationship:

$$
\text { commute time }=10 \times \text { dist }- \text { day }
$$

What are our predicted commute times? How can we use matrices to compute this quickly? (Solution: Let X denote our matrix of features i.e.

$$
\left[\begin{array}{cc}
2.7 & 1 \\
3.4 & 1 \\
\ldots & \\
2.8 & 5
\end{array}\right]
$$

Denoting

$$
w=\left[\begin{array}{c}
10 \\
-1
\end{array}\right]
$$

we compute $X w$ to get our predictions. Note that we often append an additional column of 1 s (a bias term) so that our linear model is not constrained to passing through the origin. In numpy, we use $n p \cdot \operatorname{dot}(X, w)$.)
(b) Suppose we want to calculate the average mean squared error between the predictions and the ground truth. How do we do this?
(Solution: Letting y denote the vector of ground truth commute times, we compute

$$
\frac{1}{n}|X w-y|_{2}^{2}=\frac{1}{5}(X w-y)^{T}(X w-y)
$$

We can do this in code with np.mean $\left((\operatorname{np} \cdot \operatorname{dot}(X, w)-y)^{* *} 2\right)$
)

2 Misc problems

1. Are the following set of vectors linearly independent or dependent? Justify.

$$
\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right\}
$$

(Solution: They are linearly dependent, since we have 3 vectors in 2 dimensions.)
2. Compute the projection of the vector $a=\left[\begin{array}{l}7 \\ 2\end{array}\right]$ onto the direction $b=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
(Solution: From geometry, the length of the projected vector is $|a| \cos \theta$, where θ is the angle between the two vectors. We multiply this by the unit vector in the direction:

$$
(|a| \cos \theta) \frac{b}{|b|}=|a| \frac{a \cdot b}{|a||b|} \frac{b}{|b|}=\frac{a \cdot b}{b \cdot b} b=\frac{16}{5}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
6.4 \\
3.2
\end{array}\right]
$$

