
CSC 311: Introduction to Machine Learning
Lecture 11 - k-Means and EM Algorithm

Roger Grosse Rahul G. Krishnan Guodong Zhang

University of Toronto, Fall 2021

Intro ML (UofT) CSC311-Lec11 1 / 57

Overview

In the previous lecture, we covered PCA, Autoencoders and
Matrix Factorization—all unsupervised learning algorithms.

I Each algorithm can be used to approximate high dimensional data
using some lower dimensional form.

Those methods made an interesting assumption that data depends
on some latent variables that are never observed. Such models are
called latent variable models.

I For PCA, these correspond to the code vectors (representation).

Today’s lecture:
I First, introduce K-means, a simple algorithm for clustering, i.e.

grouping data points into clusters
I Then, we will reformulate clustering as a latent variable model,

apply the EM algorithm

Intro ML (UofT) CSC311-Lec11 2 / 57

Clustering

Sometimes the data form clusters, where samples within a cluster
are similar to each other, and samples in different clusters are
dissimilar:

Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.

Grouping data points into clusters, with no observed labels, is
called clustering. It is an unsupervised learning technique.

E.g. clustering machine learning papers based on topic (deep
learning, Bayesian models, etc.)

I But topics are never observed (unsupervised).

Intro ML (UofT) CSC311-Lec11 3 / 57

K-means intuition

K-means assumes there are k clusters, and each point is close to its
cluster center, or mean (the mean of points in the cluster).

I If we knew the cluster assignment, we could easily compute the
centers.

I If we knew the centers, we could easily compute cluster assignment.
I Chicken and egg problem!

Very simple (and useful) heuristic - start randomly and alternate
between the two!

Intro ML (UofT) CSC311-Lec11 4 / 57

K-means

Initialization: randomly initialize cluster centers

The algorithm iteratively alternates between two steps:

I Assignment step: Assign each data point to the closest cluster
I Refitting step: Move each cluster center to the center of gravity of

the data assigned to it

Assignments Refitted
means

Intro ML (UofT) CSC311-Lec11 5 / 57

Figure from Bishop Simple demo: http://syskall.com/kmeans.js/

Intro ML (UofT) CSC311-Lec11 6 / 57

http://syskall.com/kmeans.js/

K-means Objective

What is actually being optimized?

K-means Objective:
Find cluster centers m and assignments r to minimize the sum of squared
distances of data points {x(n)} to their assigned cluster centers

min
{m},{r}

J({m}, {r}) = min
{m},{r}

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2

s.t.
∑
k

r
(n)
k = 1,∀n, where r

(n)
k ∈ {0, 1},∀k, n

where r
(n)
k = 1 means that x(n) is assigned to cluster k (with center mk)

Finding the exact optimum can be shown to be NP-hard.

K-means can be seen as block coordinate descent on this objective
(analogous to ALS for matrix completion)

I Assignment step = minimize w.r.t. {r(n)k }
I Refitting step = minimize w.r.t. {mk}

Intro ML (UofT) CSC311-Lec11 7 / 57

How to optimize?: Alternating Minimization

Optimization problem:

min
{mk},{r(n)}

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2

If we fix the centers {mk} then we can easily find the optimal
assignments {r(n)} for each sample n

min
r(n)

K∑
k=1

r
(n)
k ||mk − x(n)||2

I Assign each point to the cluster with the nearest center

r
(n)
k =

{
1 if k = arg minj ‖x(n) −mj‖2
0 otherwise

I E.g. if x(n) is assigned to cluster k̂,

r(n) = [0, 0, ..., 1, ..., 0]>︸ ︷︷ ︸
Only k̂-th entry is 1

Intro ML (UofT) CSC311-Lec11 8 / 57

Alternating Minimization

Likewise, if we fix the assignments {r(n)} then can easily find optimal
centers {mk}

0 =
∂

∂ml

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2

=2
N∑

n=1

r
(n)
l (ml − x(n)) =⇒ ml =

∑
n r

(n)
l x(n)∑
n r

(n)
l

K-Means simply alternates bewteen minimizing w.r.t. assignments and
centers. This is an instance of alternating minimization, or block
coordinate descent.

Intro ML (UofT) CSC311-Lec11 9 / 57

The K-means Algorithm

Initialization: Set K cluster means m1, . . . ,mK to random values

Repeat until convergence (until assignments do not change):

I Assignment: Optimize J w.r.t. {r}: Each data point x(n) assigned
to nearest center

k̂(n) = arg min
k
||mk − x(n)||2

and Responsibilities (1-hot or 1-of-K encoding)

r
(n)
k = I[k̂(n) = k] for k = 1, ..,K

I Refitting: Optimize J w.r.t. {m}: Each center is set to mean of
data assigned to it

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k

.

Intro ML (UofT) CSC311-Lec11 10 / 57

Why K-means Converges

K-means algorithm reduces the cost at each iteration.

I Whenever an assignment is changed, the sum squared distances J of
data points from their assigned cluster centers is reduced.

I Whenever a cluster center is moved, J is reduced.

Test for convergence: If the assignments do not change in the
assignment step, we have converged (to at least a local minimum).

This will always happen after a finite number of iterations, since the
number of possible cluster assignments is finite

K-means cost function after each assignment step (blue) and refitting
step (red). The algorithm has converged after the third refitting step.

Intro ML (UofT) CSC311-Lec11 11 / 57

Local Minima

The objective J is non-convex (so
coordinate descent on J is not
guaranteed to converge to the global
minimum)

There is nothing to prevent k-means
getting stuck at local minima.

We could try many random starting
points

A bad local optimum

Intro ML (UofT) CSC311-Lec11 12 / 57

K-means for Vector Quantization

Figure from Bishop

Given image, construct “dataset” of pixels represented by their RGB
pixel intensities

Run k-means, replace each pixel by its cluster center

Intro ML (UofT) CSC311-Lec11 13 / 57

K-means for Image Segmentation

Given image, construct “dataset” of pixels, represented by their RGB
pixel intensities and grid locations

Run k-means (with some modifications) to get superpixels

Intro ML (UofT) CSC311-Lec11 14 / 57

Soft K-means

Instead of making hard assignments of data points to clusters, we can
make soft assignments. One cluster may have a responsibility of .7 for a
datapoint and another may have a responsibility of .3.

I Allows a cluster to use more information about the data in the
refitting step.

I How do we decide on the soft assignments?
I We already saw this in multi-class classification:

I 1-of-K encoding vs softmax assignments

Intro ML (UofT) CSC311-Lec11 15 / 57

Soft K-means Algorithm

Initialization: Set K means {mk} to random values

Repeat until convergence (measured by how much J changes):

I Assignment: Each data point n given soft “degree of assignment” to
each cluster mean k, based on responsibilities

r
(n)
k =

exp[−β‖mk − x(n)‖2]∑
j exp[−β‖mj − x(n)‖2]

=⇒ r(n) = softmax(−β{‖mk − x(n)‖2}Kk=1)

I Refitting: Model parameters, means, are adjusted to match sample
means of datapoints they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k

Intro ML (UofT) CSC311-Lec11 16 / 57

Questions about Soft K-means

Some remaining issues

How to set β?

Clusters with unequal weight and width?

These aren’t straightforward to address with K-means. Instead, in the sequel,
we’ll reformulate clustering using a generative model.

As β →∞, soft k-Means becomes k-Means! (Exercise)

Intro ML (UofT) CSC311-Lec11 17 / 57

Gaussian Mixture Models

Intro ML (UofT) CSC311-Lec11 18 / 57

A Generative View of Clustering

What if the data don’t look like spherical blobs?

I elongated clusters
I discrete data

Remainder of this lecture: formulating clustering as a probabilistic
model

I specify assumptions about how the observations relate to latent
variables

I use an algorithm called E-M to (approximtely) maximize the
likelihood of the observations

This lets us generalize clustering to non-spherical centers or to
non-Gaussian observation models (as in this week’s tutorial).

This lecture is when probabilistic modeling starts to shine!

Intro ML (UofT) CSC311-Lec11 19 / 57

Generative Models Recap

Recall generative (Bayes) classifiers:

p(x, t) = p(x | t) p(t)

I We fit p(t) and p(x | t) using labeled data.

If t is never observed, we call it a latent variable, or hidden
variable, and generally denote it with z instead.

I The things we can observe (i.e. x) are called observables.

By marginalizing out z, we get a density over the observables:

p(x) =
∑
z

p(x, z) =
∑
z

p(x | z) p(z)

This is called a latent variable model.

If p(z) is a categorial distribution, this is a mixture model, and
different values of z correspond to different components.

Intro ML (UofT) CSC311-Lec11 20 / 57

Gaussian Mixture Model (GMM)

Most common mixture model: Gaussian mixture model (GMM)

A GMM represents a distribution as

p(x) =

K∑
k=1

πkN (x |µk,Σk)

with πk the mixing coefficients, where:

K∑
k=1

πk = 1 and πk ≥ 0 ∀k

This defines a density over x, so we can fit the parameters using
maximum likelihood. We’re try to match the data density of x as closely
as possible.

I This is a hard optimization problem (and the focus of this lecture).

GMMs are universal approximators of densities (analogously to our
universality result for MLPs). Even diagonal GMMs are universal
approximators.

Intro ML (UofT) CSC311-Lec11 21 / 57

Gaussian Mixture Model (GMM)

We can also write the model as a generative process:

For i = 1, . . . , N :

z(i) ∼ Categorical(π)

x(i) | z(i) ∼ N (µz(i) ,Σz(i))

Intro ML (UofT) CSC311-Lec11 22 / 57

The Generative Model

500 points drawn from a mixture of 3 Gaussians.

a) Samples from p(x | z) b) Samples from the marginal p(x) c) Responsibilities p(z |x)

Intro ML (UofT) CSC311-Lec11 23 / 57

Maximum Likelihood with Latent Variables

How should we choose the parameters {πk,µk,Σk}Kk=1?

Maximum likelihood principle: choose parameters to maximize
likelihood of observed data

We don’t observe the cluster assignments z, we only see the data x

Given data D = {x(n)}Nn=1, choose parameters to maximize:

log p(D) =

N∑
n=1

log p(x(n))

We can find p(x) by marginalizing out z:

p(x) =

K∑
k=1

p(z = k,x) =

K∑
k=1

p(z = k)p(x|z = k)

Intro ML (UofT) CSC311-Lec11 24 / 57

Visualizing a Mixture of Gaussians – 1D Gaussians

If you fit a Gaussian to data:

Now, we are trying to fit a GMM (with K = 2 in this example):

[Slide credit: K. Kutulakos]

Intro ML (UofT) CSC311-Lec11 25 / 57

Visualizing a Mixture of Gaussians – 2D Gaussians

Intro ML (UofT) CSC311-Lec11 26 / 57

Expectation-Maximization (E-M)

Intro ML (UofT) CSC311-Lec11 27 / 57

Fitting GMMs: Maximum Likelihood

Some shorthand notation: let θ = {πk,µk,Σk} denote the full set of
model parameters. Let X = {x(i)} and Z = {z(i)}.

Maximum likelihood objective:

log p(X;θ) =

N∑
i=1

log

(
K∑

k=1

πkN (x(i);µk,Σk)

)

In general, no closed-form solution

Not identifiable: solution is invariant to permutations

Challenges in optimizing this using gradient descent?

I Non-convex (due to permutation symmetry)
I Need to enforce non-negativity constraint on πk and PSD constraint

on Σk

I Derivatives w.r.t. Σk are expensive/complicated.

We need a different approach!

Intro ML (UofT) CSC311-Lec11 28 / 57

Fitting GMMs: Maximum Likelihood

Warning: you don’t want the global maximum. You can achieve
arbitrarily high training likelihood by placing a small-variance
Gaussian component on a training example.

This is known as a singularity.

Intro ML (UofT) CSC311-Lec11 29 / 57

Latent Variable Models: Inference

If we knew the parameters θ = {πk,µk,Σk}, we could infer which
component a data point x(i) probably belongs to by inferring its
latent variable z(i).

This is just posterior inference, which we do using Bayes’ Rule:

Pr(z(i) = k |x(i)) =
Pr(z = k) p(x | z = k)∑
` Pr(z = `) p(x | z = `)

Just like Näıve Bayes, GDA, etc. at test time.

Intro ML (UofT) CSC311-Lec11 30 / 57

Latent Variable Models: Learning

If we somehow knew the latent variables for every data point, we
could simply maximize the joint log-likelihood.

log p(X,Z;θ) =
N∑
i=1

log p(x(i), z(i);θ)

=
N∑
i=1

log p(z(i)) + log p(x(i) | z(i)).

This is just like GDA at training time. Our formulas from Week 8,
written in a suggestive notation:

πk =
1

N

N∑
i=1

r
(i)
k

µk =

∑N
i=1 r

(i)
k · x

(i)∑N
i=1 r

(i)
k

Σk =
1∑N

i=1 r
(i)
k

N∑
i=1

r
(i)
k (x(i) − µk)(x

(i) − µk)
>

r
(i)
k = 1[z(i) = k]

Intro ML (UofT) CSC311-Lec11 31 / 57

Latent Variable Models

But we don’t know the z(i), so we need to marginalize them out. Now
the log-likelihood is more awkward.

log p(X;θ) =

N∑
i=1

log p(x(i) |θ)

=

N∑
i=1

log

K∑
z(i)=1

p(x(i) | z(i); {µk}, {Σk}) p(z(i) |π)

Problem: the log is outside the sum, so things don’t simplify.

We have a chicken-and-egg problem, just like with K-Means!

I Given θ, inferring the z(i) is easy.
I Given the z(i), learning θ (with maximum likelihood) is easy.
I Doing both simultaneously is hard.

Can you guess the algorithm?

Intro ML (UofT) CSC311-Lec11 32 / 57

Intuitively, How Can We Fit a Mixture of Gaussians?

We use the Expectation-Maximization algorithm, which alternates
between two steps:

1. Expectation step (E-step): Compute the posterior probability over
z given our current model - i.e. how much do we think each
Gaussian generates each datapoint.

2. Maximization step (M-step): Assuming that the data really was
generated this way, change the parameters of each Gaussian to
maximize the probability that it would generate the data it is
currently responsible for.

.95

.5

.5

.05

.5
.5

.95
.05

Intro ML (UofT) CSC311-Lec11 33 / 57

Expectation Maximization for GMM Overview

1. E-step:

I Assign the responsibility r
(i)
k of component k for data point i using

the posterior probability:

r
(i)
k = Pr(z(i) = k |x(i);θ)

2. M-step:

I Apply the maximum likelihood updates, where each component is
fit with a weighted dataset. The weights are proportional to the
responsibilities.

πk =
1

N

N∑
i=1

r
(i)
k

µk =

∑N
i=1 r

(i)
k · x

(i)∑N
i=1 r

(i)
k

Σk =
1∑N

i=1 r
(i)
k

N∑
i=1

r
(i)
k (x(i) − µk)(x

(i) − µk)
>

Intro ML (UofT) CSC311-Lec11 34 / 57

Example

Suppose we recorded a bunch of temperatures in March for
Toronto and Miami, but forgot to record which was which, and
they’re all jumbled together.

Let’s try to separate them out using a mixture of Gaussians and
E-M.

Intro ML (UofT) CSC311-Lec11 35 / 57

Example

Random initialization

Intro ML (UofT) CSC311-Lec11 36 / 57

Example

Step 1:

E-step M-step

Intro ML (UofT) CSC311-Lec11 37 / 57

Example

Step 2:

E-step M-step

Intro ML (UofT) CSC311-Lec11 38 / 57

Example

Step 3:

E-step M-step

Intro ML (UofT) CSC311-Lec11 39 / 57

Example

Step 10:

E-step M-step

Intro ML (UofT) CSC311-Lec11 40 / 57

Expectation-Maximization

EM for Multivariate Gaussians:

In tutorial, you will fit a mixture of Bernoullis model.

Intro ML (UofT) CSC311-Lec11 41 / 57

Relation to k-Means

The K-Means Algorithm:

1. Assignment step: Assign each data point to the closest cluster
2. Refitting step: Move each cluster center to the average of the data

assigned to it

The EM Algorithm:

1. E-step: Compute the posterior probability over z given our current
model

2. M-step: Maximize the probability that it would generate the data it
is currently responsible for.

Can you find the similarities between the soft k-Means algorithm
and EM algorithm with shared covariance 1

β I?

Both rely on alternating optimization methods and can suffer from
bad local optima.

Intro ML (UofT) CSC311-Lec11 42 / 57

Why EM Works
(the rest of this lecture is optional)

Intro ML (UofT) CSC311-Lec11 43 / 57

Jensen’s Inequality (optional)

Recall: if a function f is convex, then

f

(∑
i

λixi

)
≤
∑
i

λif(xi),

where {λi} are such that each λi ≥ 0 and∑
i λi = 1.

If we treat the λi as the parameters of a
categorical distribution, λi = Pr(X = xi),
this can be rewritten as:

f(E[X]) ≤ E[f(X)].

This is known as Jensen’s Inequality. It

holds for continuous distributions as well.

Intro ML (UofT) CSC311-Lec11 44 / 57

Jensen’s Inequality (optional)

A function f(x) is concave if −f(x) is convex. In this case, we flip
Jensen’s Inequality:

f(E[X]) ≥ E[f(X)].

When would you expect the inequality to be tight?
Intro ML (UofT) CSC311-Lec11 45 / 57

Where does EM come from? (optional)

Recall: the log-likelihood function is awkward because it has a
summation inside the log:

log p(X;θ) =
∑
i

log(p(x(i);θ)) =
∑
i

log

(∑
z(i)

p(x(i), z(i);θ)

)

Introduce a new distribution q(z(i)) (we’ll see what this is shortly):

log p(X;θ) =
∑
i

log

(∑
z(i)

q(z(i))
p(x(i), z(i);θ)

q(z(i))

)

=
∑
i

logEq(z(i))

[
p(x(i), z(i);θ)

q(z(i))

]
Notice that log is a concave function. So we can use Jensen’s Inequality
to push the log inwards, obtaining the variational lower bound:

log p(X;θ) ≥
∑
i

Eq(z(i))

[
log

p(x(i), z(i);θ)

q(z(i))

]
, L(q,θ)

Intro ML (UofT) CSC311-Lec11 46 / 57

Where does EM come from? (optional)

Just derived a lower bound on the log-likelihood:

log p(X;θ) ≥
∑
i

Eq(z(i))

[
log

p(x(i), z(i);θ)

q(z(i))

]
, L(q,θ)

Simplifying the right-hand-side:

L(q,θ) =
∑
i

Eq(z(i))[log p(x(i), z(i);θ)]− Eq(z(i))[log q(z(i))]︸ ︷︷ ︸
constant w.r.t. θ

The expected log-probability will turn out to be nice.

Intro ML (UofT) CSC311-Lec11 47 / 57

Where does EM come from? (optional)

Everything so far holds for any choice of q. But what should we
actually pick?

Jensen’s inequality gives a lower bound on the log-likelihood, so
the best we can achieve is to make the bound tight (i.e. equality).

Denote the current parameters as θold.

It turns out the posterior probability p(z(i) |x(i);θold) is a very
good choice for q. Plugging it in to the lower bound:∑

i

Eq(z(i))

[
log

p(x(i), z(i);θold)

q(z(i))

]
=
∑
i

Eq(z(i))

[
log

p(x(i), z(i);θold)

p(z(i) |x(i);θold)

]
=
∑
i

Eq(z(i))

[
log p(x(i);θold)

]
=
∑
i

log p(x(i);θold)

= log p(X;θold)

Equality achieved!

Intro ML (UofT) CSC311-Lec11 48 / 57

Where does EM come from? (optional)

An aside:

How could you pick
q(z(i)) = p(z(i) |x(i);θold) if you didn’t
already know the answer?

Observe: if f is strictly concave, then
Jensen’s inequality becomes an
equality exactly when the random
variable X is determinisic.

Hence, to solve

logEq(z(i))

[
p(x(i), z(i);θ)

q(z(i))

]
= Eq(z(i))

[
log

p(x(i), z(i);θ)

q(z(i))

]
,

we should set q(z(i)) ∝ p(x(i), z(i);θ).

Intro ML (UofT) CSC311-Lec11 49 / 57

Where does EM come from? (optional)

E-step: compute the responsibilities using Bayes’ Rule:

r
(i)
k , q(z(i) = k) = Pr(z(i) = k |x(i);θold)

Rewriting the variational lower bound in terms of the
responsibilities:

L(q,θ) =
∑
i

∑
k

r
(i)
k log Pr(z(i) = k;π)

+
∑
i

∑
k

r
(i)
k log p(x(i) | z(i) = k; {µk}, {Σk})

+ const

M-step: maximize L(q,θ) with respect to θ, giving θnew. This
can be done analytically, and gives the parameter updates we saw
previously.

The two steps are guaranteed to improve the log-likelihood:

log p(X;θnew) ≥ L(q,θnew) ≥ L(q,θold) = log p(X;θold).

Intro ML (UofT) CSC311-Lec11 50 / 57

EM: Recap (optional)

Recap of EM derivation:

We’re trying to maximize the log-likelihood log p(X;θ).

The exact log-likelihood is awkward, but we can use Jensen’s
Inequality to lower bound it with a nicer function L(q,θ), the
variatonal lower bound, which depends on a choice of q.

The E-step chooses q to make the bound tight at the current
parameters θold. Mechanistically, this means computing the

responsibilities r
(i)
k = Pr(z(i) = k |x(i);θold).

The M-step maximizes L(q,θ) with respect to θ, giving θnew. For
GMMs, this can be done analytically.

The combination of the E-step and M-step is guaranteed to
improve the true log-likelihood.

Intro ML (UofT) CSC311-Lec11 51 / 57

Visualization of the EM Algorithm (optional)

The EM algorithm involves alternately computing a lower bound on the
log likelihood for the current parameter values and then maximizing this
bound to obtain the new parameter values.

Intro ML (UofT) CSC311-Lec11 52 / 57

GMM E-Step: Responsibilities (optional)

Lets see how it works on GMM:

Conditional probability (using Bayes’ rule) of z given x

rk = Pr(z = k |x) =
Pr(z = k) p(x | z = k)

p(x)

=
p(z = k) p(x | z = k)∑K
j=1 p(z = j) p(x | z = j)

=
πkN (x |µk,Σk)∑K
j=1 πj N (x |µj ,Σj)

Intro ML (UofT) CSC311-Lec11 53 / 57

GMM E-Step (optional)

Once we computed r
(i)
k = Pr(z(i) = k |x(i)) we can compute the expected

likelihood

Ep(z(i) |x(i))

[∑
i

log(p(x(i), z(i) |θ))

]
=

∑
i

∑
k

r
(i)
k

(
log(Pr(z(i) = k |θ)) + log(p(x(i) | z(i) = k,θ))

)
=

∑
i

∑
k

r
(i)
k

(
log(πk) + log(N (x(i);µk,Σk))

)
=

∑
k

∑
i

r
(i)
k log(πk) +

∑
k

∑
i

r
(i)
k log(N (x(i);µk,Σk))

We need to fit k Gaussians, just need to weight examples by rk

Intro ML (UofT) CSC311-Lec11 54 / 57

GMM M-Step (optional)

Need to optimize∑
k

∑
i

r
(i)
k log(πk) +

∑
k

∑
i

r
(i)
k log(N (x(i);µk,Σk))

Solving for µk and Σk is like fitting k separate Gaussians but with

weights r
(i)
k .

Solution is similar to what we have already seen:

µk =
1

Nk

N∑
i=1

r
(i)
k x(i)

Σk =
1

Nk

N∑
i=1

r
(i)
k (x(i) − µk)(x(i) − µk)T

πk =
Nk

N
with Nk =

N∑
i=1

r
(N)
k

Intro ML (UofT) CSC311-Lec11 55 / 57

EM Algorithm for GMM (optional)
Initialize the means µk, covariances Σk and mixing coefficients πk

Iterate until convergence:
I E-step: Evaluate the responsibilities given current parameters

r
(i)
k = p(z(i) |x(i)) =

πkN (x(i) |µk,Σk)∑K
j=1 πjN (x(i) |µj ,Σj)

I M-step: Re-estimate the parameters given current responsibilities

µk =
1

Nk

N∑
i=1

r
(i)
k x(i)

Σk =
1

Nk

N∑
i=1

r
(i)
k (x(i) − µk)(x

(i) − µk)
>

πk =
Nk

N
with Nk =

N∑
i=1

r
(i)
k

I Evaluate log likelihood and check for convergence

log p(X |π,µ,Σ) =

N∑
i=1

log

(
K∑

k=1

πkN (x(i) |µk,Σk)

)
Intro ML (UofT) CSC311-Lec11 56 / 57

GMM Recap

A probabilistic view of clustering - Each cluster corresponds to a
different Gaussian.

Model using latent variables.

General approach, can replace Gaussian with other distributions
(continuous or discrete)

More generally, mixture models are very powerful models, i.e.
universal distribution approximators

Optimization is done using the EM algorithm.

Intro ML (UofT) CSC311-Lec11 57 / 57

	Introduction

