CSC 311: Introduction to Machine Learning Lecture 8 - Multivariate Gaussians, GDA

Roger Grosse Rahul G. Krishnan Guodong Zhang

University of Toronto, Fall 2021

Overview

- Last week, we started our tour of probabilistic models, and introduced the fundamental concepts in the discrete setting.
- Continuous random variables:
- Manipulating Gaussians to tackle interesting problems requires lots of linear algebra, so we'll begin with a linear algebra review.
- Additional reference: See also Chapter 4 of Mathematics for Machine Learning, by Desienroth et al. https://mml-book.github.io/
- Regression: Linear regression as maximum likelihood estimation under a Gaussian distribution.
- Generative classifier for continuous data: Gaussian discriminant analysis, a Bayes classifier for continuous variables.
- Next week's lecture (PCA) draws heavily on today's linear algebra content, so be sure to review it offline.

Linear Algebra Review

Eigenvectors and Eigenvalues

- Let \mathbf{B} be a square matrix. An eigenvector of \mathbf{B} is a vector \mathbf{v} such that

$$
\mathbf{B} \mathbf{v}=\lambda \mathbf{v}
$$

for a scalar λ, which is called an eigenvalue.

- A matrix of size $D \times D$ has at most D distinct eigenvalues, but may have fewer.
- I will have very little to say about the general case, since in this course we will only be concerned with the case of symmetric matrices, which is much simpler.
- Today's tutorial covers the general case, as well as how to compute eigenvectors/eigenvalues.

Spectral Decomposition

- If a matrix \mathbf{A} is symmetric, then the situation is much simpler, due to a result called the Spectral Theorem.
- All of the eigenvalues are real-valued.
- There is a full set of linearly independent eigenvectors (i.e. D for a $D \times D$ matrix) .
- I.e., these eigenvectors form a basis for \mathbb{R}^{D}.
- These eigenvectors can be chosen to be real-valued.
- The eigenvectors can be chosen to be orthonormal.
- In this class, we will only need to use eigenvectors and eigenvalues in the symmetric case. But it's important to remember why this case is so special.

Spectral Decomposition

- Equivalently to the Spectral Theorem, a symmetric matrix A can be factorized with the Spectral Decomposition:

$$
\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}
$$

where

- \mathbf{Q} is an orthogonal matrix
- The columns \mathbf{q}_{i} of \mathbf{Q} are eigenvectors.
- $\boldsymbol{\Lambda}$ is a diagonal matrix.
- The diagonal entries λ_{i} are the corresponding eigenvalues.
- Check that this is reasonable:
$\mathbf{A q}_{i}=$

Spectral Decomposition

- Because A has a full set of orthonormal eigenvectors $\left\{\mathbf{q}_{i}\right\}$, we can use these as an orthonormal basis for \mathbb{R}^{D}.
- I.e., a vector \mathbf{x} can be written in an alternate coordinate system:

$$
\mathbf{x}=\tilde{x}_{1} \mathbf{q}_{1}+\cdots+\tilde{x}_{D} \mathbf{q}_{D}
$$

- Converting between the two coordinate systems:

$$
\tilde{\mathbf{x}}=\mathbf{Q}^{\top} \mathbf{x} \quad \mathbf{x}=\mathbf{Q} \tilde{\mathbf{x}}
$$

- In the alternate coordinate system, \mathbf{A} acts by rescaling the individual coordinates (i.e. "stretching" the space):

$$
\begin{aligned}
\mathbf{A} \mathbf{x} & =\tilde{x}_{1} \mathbf{A} \mathbf{q}_{1}+\cdots+\tilde{x}_{D} \mathbf{A} \mathbf{q}_{D} \\
& =\lambda_{1} \tilde{x}_{1} \mathbf{q}_{1}+\cdots+\lambda_{D} \tilde{x}_{D} \mathbf{q}_{D}
\end{aligned}
$$

PSD Matrices

- Symmetric matrices are important because they represent quadratic forms, $f(\mathbf{v})=\mathbf{v}^{\top} \mathbf{A} \mathbf{v}$.

negative definite

indefinite
- If $\mathbf{v}^{\top} \mathbf{A} \mathbf{v}>0$ for all $\mathbf{v} \neq \mathbf{0}$, i.e. the quadratic form curves upwards, we say that \mathbf{A} is positive definite and denote this $\mathbf{A} \succ \mathbf{0}$.
- If $\mathbf{v}^{\top} \mathbf{A} \mathbf{v} \geq 0$ for all \mathbf{v}, we say \mathbf{A} is positive semidefinite (PSD), denoted $\mathbf{A} \succeq \mathbf{0}$.
- If $\mathbf{v}^{\top} \mathbf{A v}<0$ for all $\mathbf{v} \neq \mathbf{0}$, we say \mathbf{A} is negative definite, denoted $\mathbf{A} \prec \mathbf{0}$.
- If $\mathbf{v}^{\top} \mathbf{A v}$ can be positive or negative then \mathbf{A} is indefinite.

PSD Matrices

- Exercise: Show from the definition that nonnegative linear combinations of PSD matrices are PSD.
- Related: If \mathbf{A} is a random matrix which is always PSD, then $\mathbb{E}[\mathbf{A}]$ is PSD. (The discrete case is a special case of the above.)
- Exercise: Show that for any matrix \mathbf{B}, the matrix $\mathbf{B B}^{\top}$ is PSD.
- Corollary: For a random vector \mathbf{x}, the covariance matrix $\operatorname{Cov}(\mathbf{x})=\mathbf{E}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right]$ is a PSD matrix. (Special case of above, since $\mathbf{x}-\boldsymbol{\mu}$ is a column vector, i.e. a $D \times 1$ matrix.)

PSD Matrices

- Claim: A is positive definite iff all of its eigenvalues are positive. It is PSD iff all of its eigenvalues are nonnegative.
- Expressing \mathbf{v} in terms of the eigenbasis, $\tilde{\mathbf{v}}=\mathbf{Q}^{\top} \mathbf{v}$,

$$
\begin{aligned}
\mathbf{v}^{\top} \mathbf{A} \mathbf{v} & =\mathbf{v}^{\top} \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top} \mathbf{v} \\
& =\tilde{\mathbf{v}}^{\top} \boldsymbol{\Lambda} \tilde{\mathbf{v}} \\
& =\sum_{i} \lambda_{i} \tilde{v}_{i}^{2}
\end{aligned}
$$

- This is positive (nonnegative) for all \mathbf{v} iff all the λ_{i} are positive (nonnegative).

PSD Matrices

- If \mathbf{A} is positive definite, then the contours of the quadratic form are elliptical.
- If \mathbf{A} is both diagonal and positive definite (i.e. its diagonal entries are positive), then the ellipses are axis-aligned.

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{cc}
0.5 & 0 \\
0 & 1
\end{array}\right) \\
& \begin{aligned}
f(\mathbf{v}) & =\mathbf{v}^{\top} \mathbf{A} \mathbf{v} \\
& =\sum_{i} a_{i} v_{i}^{2}
\end{aligned}
\end{aligned}
$$

PSD Matrices

- For general positive definite $\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}$, the contours of the quadratic form are elliptical, and the principal axes of the ellipses are aligned with the eigenvectors.

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) \\
f(\mathbf{v}) & =\mathbf{v}^{\top} \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top} \mathbf{v} \\
& =\tilde{\mathbf{v}}^{\top} \boldsymbol{\Lambda} \tilde{\mathbf{v}} \\
& =\sum_{i} \lambda_{i} \tilde{v}_{i}^{2}
\end{aligned}
$$

- In this example, $\lambda_{1}>\lambda_{2}$.
- All symmetric matrices are diagonal if you choose the right coordinate system.

Matrix Powers

- The Spectral Decomposition makes it easy to compute powers of a matrix. Observe that

$$
\mathbf{A}^{2}=\left(\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}\right)^{2}=\mathbf{Q} \boldsymbol{\Lambda} \underbrace{\mathbf{Q}^{\top} \mathbf{Q}}_{=\mathbf{I}} \boldsymbol{\Lambda} \mathbf{Q}^{\top}=\mathbf{Q} \boldsymbol{\Lambda}^{2} \mathbf{Q}^{\top}
$$

- Iterating this, for any integer $k>0$,

$$
\mathbf{A}^{k}=\mathbf{Q} \boldsymbol{\Lambda}^{k} \mathbf{Q}^{\top}
$$

- Similarly, if \mathbf{A} is invertible, then

$$
\mathbf{A}^{-1}=\left(\mathbf{Q}^{\top}\right)^{-1} \Lambda^{-1} \mathbf{Q}^{-1}=\mathbf{Q} \Lambda^{-1} \mathbf{Q}^{\top}
$$

- If \mathbf{A} is PSD , then we can easily define the matrix square root:

$$
\mathbf{A}^{1 / 2}=\mathbf{Q} \boldsymbol{\Lambda}^{1 / 2} \mathbf{Q}^{\top}
$$

- Observe that $\mathbf{A}^{1 / 2}$ is PSD and $\left(\mathbf{A}^{1 / 2}\right)^{2}=\mathbf{A}$. This is the unique PSD matrix with this property (but we won't show this).

Determinant

- The determinant $|\mathbf{B}|$ of a square matrix \mathbf{B} determines how volumes change under linear transformation by \mathbf{B}.

- The definition of the determinant is complicated, and we won't need it in this course.

Figure: Mathematics for Machine Learning

Determinant

- Some basic properties:
- $|\mathbf{B C}|=|\mathbf{B}| \cdot|\mathbf{C}|$
- $|\mathbf{B}|=0$ iff \mathbf{B} is singular
- $\left|\mathbf{B}^{-1}\right|=|\mathbf{B}|^{-1}$ if \mathbf{B} is invertible (nonsingular)
- $\left|\mathbf{B}^{\top}\right|=|\mathbf{B}|$
- If \mathbf{Q} is orthogonal, then $|\mathbf{Q}|= \pm 1$ (i.e. orthogonal transformations preserve volume)
- If $\boldsymbol{\Lambda}$ is diagonal with entries $\left\{\lambda_{i}\right\}$, then $|\boldsymbol{\Lambda}|=\prod_{i} \lambda_{i}$.
- The determinant of a matrix equals the product of its eigenvalues. This is easy to show in the symmetric case:

$$
|\mathbf{A}|=\left|\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}\right|=\left|\mathbf{Q}\|\boldsymbol{\Lambda}\| \mathbf{Q}^{\top}\right|=|\boldsymbol{\Lambda}|=\prod_{i} \lambda_{i}
$$

- Corollary: the determinant of a PSD matrix is nonnegative, and the determinant of a positive definite matrix is positive.

Multivariate Gaussian Distribution

Univariate Gaussian distribution

- Recall the Gaussian, or normal, distribution:
$\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$
- Parameterized by mean μ and variance σ^{2}.
- The Central Limit Theorem says that sums of lots of independent random variables are approximately Gaussian.
- In machine learning, we use

Gaussians a lot because they make the calculations easy.

Multivariate Mean and Covariance

- Mean

$$
\boldsymbol{\mu}=\mathbb{E}[\mathbf{x}]=\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{d}
\end{array}\right)
$$

- Covariance

$$
\boldsymbol{\Sigma}=\operatorname{Cov}(\mathbf{x})=\mathbb{E}\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\top}\right]=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 D} \\
\sigma_{12} & \sigma_{2}^{2} & \cdots & \sigma_{2 D} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{D 1} & \sigma_{D 2} & \cdots & \sigma_{D}^{2}
\end{array}\right)
$$

- The statistics ($\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$) uniquely define a multivariate Gaussian (or multivariate Normal) distribution, denoted $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ or $\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})$
- This is not true for distributions in general!

Multivariate Gaussian Distribution

- PDF of the multivariate Gaussian distribution:

$$
\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
$$

- Compare to the univariate case $\left(d=1, \boldsymbol{\Sigma}=\sigma^{2}\right)$:

$$
\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Bivariate Gaussian

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \boldsymbol{\Sigma}=0.5\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \boldsymbol{\Sigma}=2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Figure: Probability density function

Figure: Contour plot of the pdf

Bivariate Gaussian

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \boldsymbol{\Sigma}=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \quad \boldsymbol{\Sigma}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

Figure: Probability density function

Figure: Contour plot of the pdf

Bivariate Gaussian

$$
\begin{array}{rll}
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \boldsymbol{\Sigma}=\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right) & \boldsymbol{\Sigma}=\left(\begin{array}{cc}
1 & 0.8 \\
0.8 & 1
\end{array}\right) \\
& =\mathbf{Q}_{1}\left(\begin{array}{cc}
1.5 & 0 . \\
0 . & 0.5
\end{array}\right) \mathbf{Q}_{1}^{\top} & =\mathbf{Q}_{2}\left(\begin{array}{cc}
1.8 & 0 . \\
0 . & 0.2
\end{array}\right) \mathbf{Q}_{2}^{\top}
\end{array}
$$

Test your intuition: Does $Q_{1}=Q_{2}$?

Figure: Probability density function

Figure: Contour plot of the pdf

Bivariate Gaussian

$$
\begin{array}{rll}
\boldsymbol{\Sigma}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) & \boldsymbol{\Sigma}=\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right) & \boldsymbol{\Sigma}=\left(\begin{array}{cc}
1 & -0.5 \\
-0.5 & 1
\end{array}\right) \\
=\mathbf{Q}_{1}\left(\begin{array}{cc}
1.5 & 0 . \\
0 . & 0.5
\end{array}\right) \mathbf{Q}_{1}^{\top} & =\mathbf{Q}_{2}\left(\begin{array}{cc}
\lambda_{1} & 0 . \\
0 . & \lambda_{2}
\end{array}\right) \mathbf{Q}_{2}^{\top}
\end{array}
$$

Test your intuition: Does $Q_{1}=Q_{2}$? What are λ_{1} and λ_{2} ?

Figure: Probability density function

Figure: Contour plot of the pdf

Gaussian Intuition: (Multivariate) Shift + Scale

- Recall that in the univariate case, all normal distributions are shaped like the standard normal distribution
- The densities are related to the standard normal by a shift (μ), a scale (or stretch, or dilation) σ, and a normalization factor

Shift + Scale: Multivariate Case

- Start with a standard (spherical) Gaussian $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. So $\mathbb{E}[\mathbf{x}]=\mathbf{0}$ and $\operatorname{Cov}(\mathbf{x})=\mathbf{I}$.
- Consider what happens if we map $\hat{\mathbf{x}}=\mathbf{S x}+\mathbf{b}$.
- By linearity of expecation,

$$
\mathbb{E}[\hat{\mathbf{x}}]=\mathbf{S E}[\mathbf{x}]+\mathbf{b}=\mathbf{b}
$$

- By the linear transformation rule for covariance,

$$
\operatorname{Cov}(\hat{\mathbf{x}})=\mathbf{S} \operatorname{Cov}(\mathbf{x}) \mathbf{S}^{\top}=\mathbf{S S}^{\top}
$$

- It's possible to show that $\hat{\mathbf{x}}$ is also Gaussian distributed (but we won't show this here).

Shift + Scale: Multivariate Case

$$
\begin{gathered}
\mathbb{E}[\mathbf{S} \mathbf{x}+\mathbf{b}]=\mathbf{b} \\
\operatorname{Cov}(\mathbf{S x}+\mathbf{b})=\mathbf{S S}^{\top}
\end{gathered}
$$

- In the univariate case, we obtain $\mathcal{N}\left(\mu, \sigma^{2}\right)$ by starting with $\mathcal{N}(0,1)$ and shifting by μ and stretching by $\sigma=\sqrt{\sigma^{2}}$.
- In the multivariate case, to obtain $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, we start with $\mathcal{N}(\mathbf{0}, \mathbf{I})$ and shift by $\boldsymbol{\mu}$ and scale by the matrix square root $\boldsymbol{\Sigma}^{1 / 2}$.
- Recall: $\boldsymbol{\Sigma}^{1 / 2}=\mathbf{Q} \boldsymbol{\Lambda}^{1 / 2} \mathbf{Q}$.
- Intuition: for each eigenvector \mathbf{q}_{i} with corresponding eigenvalue λ_{i}, we stretch by a factor of $\sqrt{\lambda_{i}}$ in the direction \mathbf{q}_{i}.

Gaussian Maximum Likelihood

- Suppose we want to model the distribution of highest and lowest temperatures in Toronto in March, and we've recorded the following observations $) \cdot$

$$
(-2.5,-7.5) \quad(-9.9,-14.9) \quad(-12.1,-17.5) \quad(-8.9,-13.9) \quad(-6.0,-11.1)
$$

- Assume they're drawn from a Gaussian distribution with mean $\boldsymbol{\mu}$, and covariance $\boldsymbol{\Sigma}$. We want to estimate these using data.
- Log-likelihood function:

$$
\begin{aligned}
\ell(\boldsymbol{\mu}, \boldsymbol{\Sigma}) & =\log \prod_{i=1}^{N}\left[\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)\right\}\right] \\
& =\sum_{i=1}^{N} \log \left[\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)\right\}\right] \\
& =\sum_{i=1}^{N} \underbrace{-\log (2 \pi)^{d / 2}}_{\text {constant }}-\log |\boldsymbol{\Sigma}|^{1 / 2}-\frac{1}{2}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)
\end{aligned}
$$

Gaussian Maximum Likelihood

- Maximize the log-likelihood by setting the derivative to zero:

$$
\begin{aligned}
0=\frac{\mathrm{d} \ell}{\mathrm{~d} \boldsymbol{\mu}} & =-\sum_{i=1}^{N} \frac{\mathrm{~d}}{\mathrm{~d} \boldsymbol{\mu}} \frac{1}{2}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right) \\
& =-\sum_{i=1}^{N} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)=0
\end{aligned}
$$

- Here we use the identity $\nabla_{\mathbf{x}} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}=2 \mathbf{A x}$
- Solving we get $\hat{\boldsymbol{\mu}}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}$. In general, "hat" means estimator
- This is just the sample mean of the observed values, or the empirical mean.

Gaussian Maximum Likelihood

- We can do a similar calculation for the covariance matrix $\boldsymbol{\Sigma}$ (we skip the details).
- Setting the partial derivatives to zero, just like before, we get:

$$
\begin{aligned}
0=\frac{\partial \ell}{\partial \boldsymbol{\Sigma}} \Longrightarrow \hat{\boldsymbol{\Sigma}} & =\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}^{(i)}-\hat{\boldsymbol{\mu}}\right)\left(\mathbf{x}^{(i)}-\hat{\boldsymbol{\mu}}\right)^{\top} \\
& =\frac{1}{N}\left(\mathbf{X}-\mathbf{1} \boldsymbol{\mu}^{\top}\right)^{\top}\left(\mathbf{X}-\mathbf{1} \boldsymbol{\mu}^{\top}\right)
\end{aligned}
$$

where 1 is an N-dimensional vector of 1 s .

- This is called the empirical covariance and comes up quite often (e.g., PCA soon!)
- Derivation in multivariate case is tedious. No need to worry about it. But it is good practice to derive this in one dimension. See supplement (next slide).

Supplement: MLE for univariate Gaussian

$$
\begin{aligned}
0=\frac{\partial \ell}{\partial \mu} & =-\frac{1}{\sigma^{2}} \sum_{i=1}^{N} \mathbf{x}^{(i)}-\mu \\
0=\frac{\partial \ell}{\partial \sigma} & =\frac{\partial}{\partial \sigma}\left[\sum_{i=1}^{N}-\frac{1}{2} \log 2 \pi-\log \sigma-\frac{1}{2 \sigma^{2}}\left(\mathbf{x}^{(i)}-\mu\right)^{2}\right] \\
& =\sum_{i=1}^{N}-\frac{1}{2} \frac{\partial}{\partial \sigma} \log 2 \pi-\frac{\partial}{\partial \sigma} \log \sigma-\frac{\partial}{\partial \sigma} \frac{1}{2 \sigma}\left(\mathbf{x}^{(i)}-\mu\right)^{2} \\
& =\sum_{i=1}^{N} 0-\frac{1}{\sigma}+\frac{1}{\sigma^{3}}\left(\mathbf{x}^{(i)}-\mu\right)^{2} \\
& =-\frac{N}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i=1}^{N}\left(\mathbf{x}^{(i)}-\mu\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\hat{\mu}_{\mathrm{ML}} & =\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)} \\
\hat{\sigma}_{\mathrm{ML}} & =\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}^{(i)}-\mu\right)^{2}}
\end{aligned}
$$

Revisiting Linear Regression

Recap: Linear Regression

- Given a training set of inputs and targets $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
- Linear model:

$$
y=\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x})
$$

- Squared error loss:

$$
\mathcal{L}(y, t)=\frac{1}{2}(t-y)^{2}
$$

- L_{2} regularization:

$$
\mathcal{R}(\mathbf{w})=\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

- Solution 1: solve analytically by setting the gradient to 0

$$
\mathbf{w}=\left(\mathbf{\Psi}^{\top} \mathbf{\Psi}+\lambda \mathbf{I}\right)^{-1} \mathbf{\Psi}^{\top} \mathbf{t}
$$

- Solution 2: solve approximately using gradient descent

$$
\mathbf{w} \leftarrow(1-\alpha \lambda) \mathbf{w}-\alpha \mathbf{\Psi}^{\top}(\mathbf{y}-\mathbf{t})
$$

Linear Regression as Maximum Likelihood

- We can give linear regression a probabilistic interpretation by assuming a Gaussian noise model:

$$
t \mid \mathbf{x} \sim \mathcal{N}\left(\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \sigma^{2}\right)
$$

- Linear regression is just maximum likelihood under this model:

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} \log p\left(t^{(i)} \mid \mathbf{x}^{(i)} ; \mathbf{w}, b\right) & =\frac{1}{N} \sum_{i=1}^{N} \log \mathcal{N}\left(t^{(i)} ; \mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x}), \sigma^{2}\right) \\
& =\frac{1}{N} \sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(t^{(i)}-\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x})\right)^{2}}{2 \sigma^{2}}\right)\right] \\
& =\text { const }-\frac{1}{2 N \sigma^{2}} \sum_{i=1}^{N}\left(t^{(i)}-\mathbf{w}^{\top} \boldsymbol{\psi}(\mathbf{x})\right)^{2}
\end{aligned}
$$

Regularization as MAP Inference

- We can view an L_{2} regularizer as MAP inference with a Gaussian prior.
- Recall MAP inference:

$$
\arg \max _{\mathbf{w}} \log p(\mathbf{w} \mid \mathcal{D})=\arg \max _{\mathbf{w}}[\log p(\mathbf{w})+\log p(\mathcal{D} \mid \mathbf{w})]
$$

- We just derived the likelihood term $\log p(\mathcal{D} \mid \mathbf{w})$:

$$
\log p(\mathcal{D} \mid \mathbf{w})=-\frac{1}{2 N \sigma^{2}} \sum_{i=1}^{N}\left(t^{(i)}-\mathbf{w}^{\top} \mathbf{x}-b\right)^{2}+\mathrm{const}
$$

- Assume a Gaussian prior, $\mathbf{w} \sim \mathcal{N}(\mathbf{m}, \mathbf{S})$:

$$
\begin{aligned}
\log p(\mathbf{w}) & =\log \mathcal{N}(\mathbf{w} ; \mathbf{m}, \mathbf{S}) \\
& =\log \left[\frac{1}{(2 \pi)^{D / 2}|\mathbf{S}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{w}-\mathbf{m})^{\top} \mathbf{S}^{-1}(\mathbf{w}-\mathbf{m})\right)\right] \\
& =-\frac{1}{2}(\mathbf{w}-\mathbf{m})^{\top} \mathbf{S}^{-1}(\mathbf{w}-\mathbf{m})+\text { const }
\end{aligned}
$$

- Commonly, $\mathbf{m}=\mathbf{0}$ and $\mathbf{S}=\eta \mathbf{I}$, so

$$
\log p(\mathbf{w})=-\frac{1}{2 \eta}\|\mathbf{w}\|^{2}+\text { const. }
$$

This is just L_{2} regularization!

Gaussian Discriminant Analysis

Generative vs Discriminative (Recap)

Two approaches to classification:

- Discriminative approach: estimate parameters of decision boundary/class separator directly from labeled examples.
- Model $p(t \mid \mathbf{x})$ directly (logistic regression models)
- Learn mappings from inputs to classes (linear/logistic regression, decision trees etc)
- Tries to solve: How do I separate the classes?
- Generative approach: model the distribution of inputs characteristic of the class (Bayes classifier).
- Model $p(\mathbf{x} \mid t)$
- Apply Bayes Rule to derive $p(t \mid \mathbf{x})$.
- Tries to solve: What does each class "look" like?

Classification: Diabetes Example

- Gaussian discriminant analysis (GDA) is a Bayes classifier for continuous-valued inputs.
- Observation per patient: White blood cell count \& glucose value.

- $p(\mathbf{x} \mid t=k)$ for each class is shaped like an ellipse
\Longrightarrow we model each class as a multivariate Gaussian

Gaussian Discriminant Analysis

- Gaussian Discriminant Analysis in its general form assumes that $p(\mathbf{x} \mid t)$ is distributed according to a multivariate Gaussian distribution
- Multivariate Gaussian distribution:

$$
p(\mathbf{x} \mid t=k)=\frac{1}{(2 \pi)^{D / 2}\left|\boldsymbol{\Sigma}_{k}\right|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)^{T} \boldsymbol{\Sigma}_{k}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)\right]
$$

where $\left|\boldsymbol{\Sigma}_{k}\right|$ denotes the determinant of the matrix.

- Each class k has associated mean vector $\boldsymbol{\mu}_{k}$ and covariance matrix $\boldsymbol{\Sigma}_{k}$
- How many parameters?
- Each $\boldsymbol{\mu}_{k}$ has D parameters, for $D K$ total.
- Each $\boldsymbol{\Sigma}_{k}$ has $\mathcal{O}\left(D^{2}\right)$ parameters, for $\mathcal{O}\left(D^{2} K\right)$ - could be hard to estimate (more on that later).

GDA: Learning

- Learn the parameters for each class using maximum likelihood
- For simplicity, assume binary classification

$$
p(t \mid \phi)=\phi^{t}(1-\phi)^{1-t}
$$

- You can compute the ML estimates in closed form (ϕ and $\boldsymbol{\mu}_{k}$ are easy, $\boldsymbol{\Sigma}_{k}$ is tricky)

$$
\begin{aligned}
\phi & =\frac{1}{N} \sum_{i=1}^{N} r_{1}^{(i)} \\
\boldsymbol{\mu}_{k} & =\frac{\sum_{i=1}^{N} r_{k}^{(i)} \cdot \mathbf{x}^{(i)}}{\sum_{i=1}^{N} r_{k}^{(i)}} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{\sum_{i=1}^{N} r_{k}^{(i)}} \sum_{i=1}^{N} r_{k}^{(i)}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}_{k}\right)\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}_{k}\right)^{\top} \\
r_{k}^{(i)} & =\mathbb{1}\left[t^{(i)}=k\right]
\end{aligned}
$$

GDA Decision Boundary

- Recall: for Bayes classifiers, we compute the decision boundary with Bayes' Rule:

$$
p(t \mid \mathbf{x})=\frac{p(t) p(\mathbf{x} \mid t)}{\sum_{t^{\prime}} p\left(t^{\prime}\right) p\left(\mathbf{x} \mid t^{\prime}\right)}
$$

- Plug in the Gaussian $p(\mathbf{x} \mid t)$:

$$
\begin{aligned}
\log p\left(t_{k} \mid \mathbf{x}\right)= & \log p\left(\mathbf{x} \mid t_{k}\right)+\log p\left(t_{k}\right)-\log p(\mathbf{x}) \\
= & -\frac{D}{2} \log (2 \pi)-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{k}\right|-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)+ \\
& +\log p\left(t_{k}\right)-\log p(\mathbf{x})
\end{aligned}
$$

- Decision boundary:

$$
\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)=\left(\mathbf{x}-\boldsymbol{\mu}_{\ell}\right)^{\top} \boldsymbol{\Sigma}_{\ell}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{\ell}\right)+\text { Const }
$$

- What's the shape of the boundary?
- We have a quadratic function in \mathbf{x}, so the decision boundary is a conic section!

GDA Decision Boundary

GDA Decision Boundary

- Our equation for the decision boundary:

$$
\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)=\left(\mathbf{x}-\boldsymbol{\mu}_{\ell}\right)^{\top} \boldsymbol{\Sigma}_{\ell}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{\ell}\right)+\mathrm{Const}
$$

- Expand the product and factor out constants (w.r.t. \mathbf{x}):

$$
\mathbf{x}^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{x}-2 \boldsymbol{\mu}_{k}^{\top} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{x}=\mathbf{x}^{\top} \boldsymbol{\Sigma}_{\ell}^{-1} \mathbf{x}-2 \boldsymbol{\mu}_{\ell}^{\top} \boldsymbol{\Sigma}_{\ell}^{-1} \mathbf{x}+\text { Const }
$$

- What if all classes share the same covariance $\boldsymbol{\Sigma}$?
- We get a linear decision boundary!

$$
\begin{aligned}
-2 \boldsymbol{\mu}_{k}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} & =-2 \boldsymbol{\mu}_{\ell}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}+\text { Const } \\
\left(\boldsymbol{\mu}_{k}-\boldsymbol{\mu}_{\ell}\right)^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x} & =\text { Const }
\end{aligned}
$$

GDA Decision Boundary: Shared Covariances

GDA vs Logistic Regression

- Binary classification: If you examine $p(t=1 \mid \mathbf{x})$ under GDA and assume $\boldsymbol{\Sigma}_{0}=\boldsymbol{\Sigma}_{1}=\boldsymbol{\Sigma}$, you will find that it looks like this:

$$
p\left(t \mid \mathbf{x}, \phi, \boldsymbol{\mu}_{0}, \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}\right)=\frac{1}{1+\exp \left(-\mathbf{w}^{T} \mathbf{x}-b\right)}
$$

where ($\mathbf{w}, b)$ are chosen based on $\left(\phi, \boldsymbol{\mu}_{0}, \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}\right)$.

- Same model as logistic regression!

GDA vs Logistic Regression

When should we prefer GDA to logistic regression, and vice versa?

- GDA makes a stronger modeling assumption: assumes class-conditional data is multivariate Gaussian
- If this is true, GDA is asymptotically efficient (best model in limit of large N)
- If it's not true, the quality of the predictions might suffer.
- Many class-conditional distributions lead to logistic classifier.
- When these distributions are non-Gaussian (i.e., almost always), LR usually beats GDA
- GDA can handle easily missing features (how do you do that with LR?)

Gaussian Naive Bayes

- What if \mathbf{x} is high-dimensional?
- The $\boldsymbol{\Sigma}_{k}$ have $\mathcal{O}\left(D^{2} K\right)$ parameters, which can be a problem if D is large.
- We already saw we can save some a factor of K by using a shared covariance for the classes.
- Any other idea you can think of?
- Naive Bayes: Assumes features independent given the class

$$
p(\mathbf{x} \mid t=k)=\prod_{j=1}^{D} p\left(x_{j} \mid t=k\right)
$$

- Assuming likelihoods are Gaussian, how many parameters required for Naive Bayes classifier?
- This is equivalent to assuming the x_{j} are uncorrelated, i.e. $\boldsymbol{\Sigma}$ is diagonal.
- Hence, only D parameters for $\boldsymbol{\Sigma}$!

Gaussian Naïve Bayes

- Gaussian Naïve Bayes classifier assumes that the likelihoods are Gaussian:

$$
p\left(x_{j} \mid t=k\right)=\frac{1}{\sqrt{2 \pi} \sigma_{j k}} \exp \left[\frac{-\left(x_{j}-\mu_{j k}\right)^{2}}{2 \sigma_{j k}^{2}}\right]
$$

(this is just a 1-dim Gaussian, one for each input dimension)

- Model the same as GDA with diagonal covariance matrix
- Maximum likelihood estimate of parameters

$$
\begin{aligned}
\mu_{j k} & =\frac{\sum_{i=1}^{N} r_{k}^{(i)} x_{j}^{(i)}}{\sum_{i=1}^{N} r_{k}^{(i)}} \\
\sigma_{j k}^{2} & =\frac{\sum_{i=1}^{N} r_{k}^{(i)}\left(x_{j}^{(i)}-\mu_{j k}\right)^{2}}{\sum_{i=1}^{N} r_{k}^{(i)}} \\
r_{k}^{(i)} & =\mathbb{1}\left[t^{(i)}=k\right]
\end{aligned}
$$

Decision Boundary: Isotropic

- We can go even further and assume the covariances are spherical, or isotropic.
- In this case: $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$ (just need one parameter!)
- Going back to the class posterior for GDA:

$$
\begin{aligned}
\log p\left(t_{k} \mid \mathbf{x}\right)= & \log p\left(\mathbf{x} \mid t_{k}\right)+\log p\left(t_{k}\right)-\log p(\mathbf{x}) \\
= & -\frac{D}{2} \log (2 \pi)-\frac{1}{2} \log \left|\boldsymbol{\Sigma}_{k}^{-1}\right|-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)+ \\
& +\log p\left(t_{k}\right)-\log p(\mathbf{x})
\end{aligned}
$$

- Suppose for simplicity that $p(t)$ is uniform. Plugging in $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$ and simplifying a bit,

$$
\begin{aligned}
\log p\left(t_{k} \mid \mathbf{x}\right)-\log p\left(t_{\ell} \mid \mathbf{x}\right) & =-\frac{1}{2 \sigma^{2}}\left[\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)^{\top}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)-\left(\mathbf{x}-\boldsymbol{\mu}_{\ell}\right)^{\top}\left(\mathbf{x}-\boldsymbol{\mu}_{\ell}\right)\right] \\
& =-\frac{1}{2 \sigma^{2}}\left[\left\|\mathbf{x}-\boldsymbol{\mu}_{k}\right\|^{2}-\left\|\mathbf{x}-\boldsymbol{\mu}_{\ell}\right\|^{2}\right]
\end{aligned}
$$

Decision Boundary: Isotropic

- The decision boundary bisects the class means!

Example

Generative models - Recap

- GDA has quadratic (conic) decision boundary.
- With shared covariance, GDA is similar to logistic regression.
- Generative models:
- Flexible models, easy to add/remove class.
- Handle missing data naturally.
- More "natural" way to think about things, but usually doesn't work as well.
- Tries to solve a hard problem (model $p(\mathbf{x}))$ in order to solve a easy problem (model $p(t \mid \mathbf{x})$).

Next up: Unsupervised learning with PCA!

