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Overview

Last week, we started our tour of probabilistic models, and
introduced the fundamental concepts in the discrete setting.

Continuous random variables:
I Manipulating Gaussians to tackle interesting problems requires lots

of linear algebra, so we’ll begin with a linear algebra review.
I Additional reference: See also Chapter 4 of Mathematics for

Machine Learning, by Desienroth et al.
https://mml-book.github.io/

Regression: Linear regression as maximum likelihood estimation
under a Gaussian distribution.

Generative classifier for continuous data: Gaussian
discriminant analysis, a Bayes classifier for continuous variables.

Next week’s lecture (PCA) draws heavily on today’s linear algebra
content, so be sure to review it offline.
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Linear Algebra Review
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Eigenvectors and Eigenvalues

Let B be a square matrix. An eigenvector of B is a vector v such
that

Bv = λv

for a scalar λ, which is called an eigenvalue.

A matrix of size D ×D has at most D distinct eigenvalues, but
may have fewer.

I will have very little to say about the general case, since in this
course we will only be concerned with the case of symmetric
matrices, which is much simpler.

I Today’s tutorial covers the general case, as well as how to compute
eigenvectors/eigenvalues.

Intro ML (UofT) CSC311-Lec8 4 / 51



Spectral Decomposition

If a matrix A is symmetric, then the situation is much simpler,
due to a result called the Spectral Theorem.

I All of the eigenvalues are real-valued.
I There is a full set of linearly independent eigenvectors (i.e. D for a
D ×D matrix).

I I.e., these eigenvectors form a basis for RD.
I These eigenvectors can be chosen to be real-valued.
I The eigenvectors can be chosen to be orthonormal.

In this class, we will only need to use eigenvectors and eigenvalues
in the symmetric case. But it’s important to remember why this
case is so special.
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Spectral Decomposition

Equivalently to the Spectral Theorem, a symmetric matrix A can
be factorized with the Spectral Decomposition:

A = QΛQ>

where
I Q is an orthogonal matrix

I The columns qi of Q are eigenvectors.

I Λ is a diagonal matrix.
I The diagonal entries λi are the corresponding eigenvalues.

Check that this is reasonable:

Aqi =
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Spectral Decomposition

Because A has a full set of orthonormal eigenvectors {qi}, we can
use these as an orthonormal basis for RD.

I.e., a vector x can be written in an alternate coordinate system:

x = x̃1q1 + · · ·+ x̃DqD

Converting between the two coordinate systems:

x̃ = Q>x x = Qx̃

In the alternate coordinate system, A acts by rescaling the
individual coordinates (i.e. “stretching” the space):

Ax = x̃1Aq1 + · · ·+ x̃DAqD

= λ1x̃1q1 + · · ·+ λDx̃DqD
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PSD Matrices

Symmetric matrices are important because they represent
quadratic forms, f(v) = v>Av.

positive definite non-strictly PSD

negative definite indefinite

If v>Av > 0 for all v 6= 0, i.e. the quadratic form curves upwards, we
say that A is positive definite and denote this A � 0.
If v>Av ≥ 0 for all v, we say A is positive semidefinite (PSD), denoted
A � 0.
If v>Av < 0 for all v 6= 0, we say A is negative definite, denoted A ≺ 0.

If v>Av can be positive or negative then A is indefinite.
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PSD Matrices

Exercise: Show from the definition that nonnegative linear
combinations of PSD matrices are PSD.

Related: If A is a random matrix which is always PSD, then
E[A] is PSD. (The discrete case is a special case of the above.)

Exercise: Show that for any matrix B, the matrix BB> is PSD.

Corollary: For a random vector x, the covariance matrix
Cov(x) = E[(x− µ)(x− µ)>] is a PSD matrix. (Special case of
above, since x− µ is a column vector, i.e. a D × 1 matrix.)
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PSD Matrices

Claim: A is positive definite iff all of its eigenvalues are positive.
It is PSD iff all of its eigenvalues are nonnegative.

I Expressing v in terms of the eigenbasis, ṽ = Q>v,

v>Av = v>QΛQ>v

= ṽ>Λṽ

=
∑
i

λiṽ
2
i

I This is positive (nonnegative) for all v iff all the λi are positive
(nonnegative).
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PSD Matrices

If A is positive definite, then the contours of the quadratic form
are elliptical.

If A is both diagonal and positive definite (i.e. its diagonal entries
are positive), then the ellipses are axis-aligned.

A =

(
0.5 0
0 1

)

f(v) = v>Av

=
∑
i

aiv
2
i
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PSD Matrices

For general positive definite A = QΛQ>, the contours of the
quadratic form are elliptical, and the principal axes of the ellipses
are aligned with the eigenvectors.

A =

(
1 −1
−1 2

)

f(v) = v>QΛQ>v

= ṽ>Λṽ

=
∑
i

λiṽ
2
i

In this example, λ1 > λ2.

All symmetric matrices are diagonal if you choose the right
coordinate system.
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Matrix Powers

The Spectral Decomposition makes it easy to compute powers of a
matrix. Observe that

A2 = (QΛQ>)2 = QΛ Q>Q︸ ︷︷ ︸
=I

ΛQ> = QΛ2Q>

Iterating this, for any integer k > 0,

Ak = QΛkQ>.

Similarly, if A is invertible, then

A−1 = (Q>)−1Λ−1Q−1 = QΛ−1Q>.

If A is PSD, then we can easily define the matrix square root:

A1/2 = QΛ1/2Q>.

Observe that A1/2 is PSD and (A1/2)2 = A. This is the unique
PSD matrix with this property (but we won’t show this).
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Determinant

The determinant |B| of a square matrix B determines how
volumes change under linear transformation by B.

The definition of the determinant is complicated, and we won’t
need it in this course.

Figure: Mathematics for Machine Learning
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Determinant

Some basic properties:
I |BC| = |B| · |C|
I |B| = 0 iff B is singular
I |B−1| = |B|−1 if B is invertible (nonsingular)
I |B>| = |B|
I If Q is orthogonal, then |Q| = ±1 (i.e. orthogonal transformations

preserve volume)
I If Λ is diagonal with entries {λi}, then |Λ| =

∏
i λi.

The determinant of a matrix equals the product of its eigenvalues.
This is easy to show in the symmetric case:

|A| = |QΛQ>| = |Q||Λ||Q>| = |Λ| =
∏
i

λi.

Corollary: the determinant of a PSD matrix is nonnegative, and
the determinant of a positive definite matrix is positive.
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Multivariate Gaussian Distribution
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Univariate Gaussian distribution

Recall the Gaussian, or normal,
distribution:

N (x;µ, σ2) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
Parameterized by mean µ and
variance σ2.

The Central Limit Theorem says
that sums of lots of independent
random variables are
approximately Gaussian.

In machine learning, we use
Gaussians a lot because they make
the calculations easy.
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Multivariate Mean and Covariance

Mean

µ = E[x] =

µ1

...
µd


Covariance

Σ = Cov(x) = E[(x− µ)(x− µ)>] =


σ2
1 σ12 · · · σ1D

σ12 σ2
2 · · · σ2D

...
...

. . .
...

σD1 σD2 · · · σ2
D



The statistics (µ and Σ) uniquely define a multivariate Gaussian (or
multivariate Normal) distribution, denoted N (µ,Σ) or N (x;µ,Σ)

I This is not true for distributions in general!
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Multivariate Gaussian Distribution

PDF of the multivariate Gaussian distribution:

N (x;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]

Compare to the univariate case (d = 1, Σ = σ2):

N (x;µ, σ2) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ = 0.5

(
1 0
0 1

)
Σ = 2

(
1 0
0 1

)

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ =

(
2 0
0 1

)
Σ =

(
1 0
0 2

)

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ =

(
1 0.5
0.5 1

)
Σ =

(
1 0.8
0.8 1

)
= Q1

(
1.5 0.
0. 0.5

)
Q>1 = Q2

(
1.8 0.
0. 0.2

)
Q>2

Test your intuition: Does Q1 = Q2?

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ =

(
1 0.5
0.5 1

)
Σ =

(
1 −0.5
−0.5 1

)
= Q1

(
1.5 0.
0. 0.5

)
Q>1 = Q2

(
λ1 0.
0. λ2

)
Q>2

Test your intuition: Does Q1 = Q2? What are λ1 and λ2?

Figure: Probability density function

Figure: Contour plot of the pdf
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Gaussian Intuition: (Multivariate) Shift + Scale

Recall that in the univariate case, all normal distributions are shaped
like the standard normal distribution

The densities are related to the standard normal by a shift (µ), a scale
(or stretch, or dilation) σ, and a normalization factor
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Shift + Scale: Multivariate Case

Start with a standard (spherical) Gaussian x ∼ N (0, I). So
E[x] = 0 and Cov(x) = I.

Consider what happens if we map x̂ = Sx + b.

By linearity of expecation,

E[x̂] = SE[x] + b = b.

By the linear transformation rule for covariance,

Cov(x̂) = S Cov(x)S> = SS>.

It’s possible to show that x̂ is also Gaussian distributed (but we
won’t show this here).

Intro ML (UofT) CSC311-Lec8 25 / 51



Shift + Scale: Multivariate Case

E[Sx + b] = b

Cov(Sx + b) = SS>.

In the univariate case, we obtain N (µ, σ2) by starting with N (0, 1)
and shifting by µ and stretching by σ =

√
σ2.

In the multivariate case, to obtain N (µ,Σ), we start with N (0, I)

and shift by µ and scale by the matrix square root Σ1/2.
I Recall: Σ1/2 = QΛ1/2Q.
I Intuition: for each eigenvector qi with corresponding eigenvalue
λi, we stretch by a factor of

√
λi in the direction qi.
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Gaussian Maximum Likelihood

Suppose we want to model the distribution of highest and lowest
temperatures in Toronto in March, and we’ve recorded the following
observations /

(-2.5,-7.5) (-9.9,-14.9) (-12.1,-17.5) (-8.9,-13.9) (-6.0,-11.1)

Assume they’re drawn from a Gaussian distribution with mean µ, and
covariance Σ. We want to estimate these using data.

Log-likelihood function:

`(µ,Σ) = log

N∏
i=1

[
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x(i) − µ)TΣ−1(x(i) − µ)

}]

=

N∑
i=1

log

[
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(x(i) − µ)TΣ−1(x(i) − µ)

}]

=
N∑
i=1

− log(2π)d/2︸ ︷︷ ︸
constant

− log |Σ|1/2 − 1

2
(x(i) − µ)TΣ−1(x(i) − µ)

Optional intuition building: why does |Σ|1/2 show up in the Gaussian density p(x)? Hint:determinantisproductofeigenvalues
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Gaussian Maximum Likelihood

Maximize the log-likelihood by setting the derivative to zero:

0 =
d`

dµ
= −

N∑
i=1

d

dµ

1

2
(x(i) − µ)TΣ−1(x(i) − µ)

= −
N∑
i=1

Σ−1(x(i) − µ) = 0

Here we use the identity ∇xx>Ax = 2Ax

Solving we get µ̂ = 1
N

∑N
i=1 x(i). In general, “hat” means estimator

This is just the sample mean of the observed values, or the
empirical mean.
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Gaussian Maximum Likelihood

We can do a similar calculation for the covariance matrix Σ (we
skip the details).

Setting the partial derivatives to zero, just like before, we get:

0 =
∂`

∂Σ
=⇒ Σ̂ =

1

N

N∑
i=1

(x(i) − µ̂)(x(i) − µ̂)>

=
1

N
(X− 1µ>)>(X− 1µ>)

where 1 is an N -dimensional vector of 1s.

This is called the empirical covariance and comes up quite often
(e.g., PCA soon!)

Derivation in multivariate case is tedious. No need to worry about
it. But it is good practice to derive this in one dimension. See
supplement (next slide).
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Supplement: MLE for univariate Gaussian

0 =
∂`

∂µ
= −

1

σ2

N∑
i=1

x(i) − µ

0 =
∂`

∂σ
=

∂

∂σ

[
N∑
i=1

−
1

2
log 2π − log σ −

1

2σ2
(x(i) − µ)2

]

=
N∑
i=1

−
1

2

∂

∂σ
log 2π −

∂

∂σ
log σ −

∂

∂σ

1

2σ
(x(i) − µ)2

=
N∑
i=1

0−
1

σ
+

1

σ3
(x(i) − µ)2

= −
N

σ
+

1

σ3

N∑
i=1

(x(i) − µ)2

µ̂ML =
1

N

N∑
i=1

x(i)

σ̂ML =

√√√√ 1

N

N∑
i=1

(x(i) − µ)2
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Revisiting Linear Regression
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Recap: Linear Regression

Given a training set of inputs and targets {(x(i), t(i))}Ni=1

Linear model:
y = w>ψ(x)

Squared error loss:

L(y, t) =
1

2
(t− y)2

L2 regularization:

R(w) =
λ

2
‖w‖2

Solution 1: solve analytically by setting the gradient to 0

w = (Ψ>Ψ + λI)−1Ψ>t

Solution 2: solve approximately using gradient descent

w← (1− αλ)w − αΨ>(y − t)

Intro ML (UofT) CSC311-Lec8 32 / 51



Linear Regression as Maximum Likelihood

We can give linear regression a probabilistic interpretation by assuming a
Gaussian noise model:

t |x ∼ N (w>ψ(x), σ2)

Linear regression is just maximum likelihood under this model:

1

N

N∑
i=1

log p(t(i) |x(i);w, b) =
1

N

N∑
i=1

logN (t(i);w>ψ(x), σ2)

=
1

N

N∑
i=1

log

[
1√
2πσ

exp

(
− (t(i) −w>ψ(x))2

2σ2

)]

= const− 1

2Nσ2

N∑
i=1

(t(i) −w>ψ(x))2
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Regularization as MAP Inference

We can view an L2 regularizer as MAP inference with a Gaussian prior.

Recall MAP inference:

argmax
w

log p(w | D) = argmax
w

[log p(w) + log p(D |w)]

We just derived the likelihood term log p(D |w):

log p(D |w) = − 1

2Nσ2

N∑
i=1

(t(i) −w>x− b)2 + const

Assume a Gaussian prior, w ∼ N (m,S):

log p(w) = logN (w;m,S)

= log

[
1

(2π)D/2|S|1/2
exp

(
− 1

2
(w −m)>S−1(w −m)

)]
= − 1

2
(w −m)>S−1(w −m) + const

Commonly, m = 0 and S = ηI, so

log p(w) = − 1

2η
‖w‖2 + const.

This is just L2 regularization!
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Gaussian Discriminant Analysis
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Generative vs Discriminative (Recap)

Two approaches to classification:

Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

I Model p(t|x) directly (logistic regression models)

I Learn mappings from inputs to classes (linear/logistic regression,
decision trees etc)

I Tries to solve: How do I separate the classes?

Generative approach: model the distribution of inputs
characteristic of the class (Bayes classifier).

I Model p(x|t)
I Apply Bayes Rule to derive p(t|x).

I Tries to solve: What does each class ”look” like?
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Classification: Diabetes Example

Gaussian discriminant analysis (GDA) is a Bayes classifier for
continuous-valued inputs.

Observation per patient: White blood cell count & glucose value.

p(x | t = k) for each class is shaped like an ellipse
=⇒ we model each class as a multivariate Gaussian
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Gaussian Discriminant Analysis

Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate Gaussian distribution

Multivariate Gaussian distribution:

p(x | t = k) =
1

(2π)D/2|Σk|1/2
exp

[
−1

2
(x− µk)TΣ−1k (x− µk)

]
where |Σk| denotes the determinant of the matrix.

Each class k has associated mean vector µk and covariance matrix Σk

How many parameters?

I Each µk has D parameters, for DK total.
I Each Σk has O(D2) parameters, for O(D2K) — could be hard to

estimate (more on that later).
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GDA: Learning

Learn the parameters for each class using maximum likelihood

For simplicity, assume binary classification

p(t |φ) = φt(1− φ)1−t

You can compute the ML estimates in closed form (φ and µk are easy,
Σk is tricky)

φ =
1

N

N∑
i=1

r
(i)
1

µk =

∑N
i=1 r

(i)
k · x(i)∑N

i=1 r
(i)
k

Σk =
1∑N

i=1 r
(i)
k

N∑
i=1

r
(i)
k (x(i) − µk)(x(i) − µk)>

r
(i)
k = 1[t(i) = k]
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GDA Decision Boundary

Recall: for Bayes classifiers, we compute the decision boundary with
Bayes’ Rule:

p(t |x) =
p(t) p(x | t)∑
t′ p(t

′) p(x | t′)

Plug in the Gaussian p(x | t):

log p(tk|x) = log p(x|tk) + log p(tk)− log p(x)

= −D
2

log(2π)− 1

2
log |Σk| −

1

2
(x− µk)>Σ−1k (x− µk) +

+ log p(tk)− log p(x)

Decision boundary:

(x− µk)>Σ−1k (x− µk) = (x− µ`)
>Σ−1` (x− µ`) + Const

What’s the shape of the boundary?

I We have a quadratic function in x, so the decision boundary is a
conic section!
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GDA Decision Boundary

likelihoods)

posterior)for)t1)

discriminant:!!
P!(t1|x")!=!0.5!
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GDA Decision Boundary

Our equation for the decision boundary:

(x− µk)>Σ−1k (x− µk) = (x− µ`)>Σ−1` (x− µ`) + Const

Expand the product and factor out constants (w.r.t. x):

x>Σ−1k x− 2µ>k Σ−1k x = x>Σ−1` x− 2µ>` Σ−1` x + Const

What if all classes share the same covariance Σ?
I We get a linear decision boundary!

−2µ>k Σ−1x = −2µ>` Σ−1x + Const

(µk − µ`)
>Σ−1x = Const
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GDA Decision Boundary: Shared Covariances

variances may be 
different 
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GDA vs Logistic Regression

Binary classification: If you examine p(t = 1 |x) under GDA and assume
Σ0 = Σ1 = Σ, you will find that it looks like this:

p(t |x, φ,µ0,µ1,Σ) =
1

1 + exp(−wTx− b)

where (w, b) are chosen based on (φ,µ0,µ1,Σ).

Same model as logistic regression!
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GDA vs Logistic Regression

When should we prefer GDA to logistic regression, and vice versa?

GDA makes a stronger modeling assumption: assumes class-conditional
data is multivariate Gaussian

I If this is true, GDA is asymptotically efficient (best model in limit
of large N)

I If it’s not true, the quality of the predictions might suffer.

Many class-conditional distributions lead to logistic classifier.

I When these distributions are non-Gaussian (i.e., almost always), LR
usually beats GDA

GDA can handle easily missing features (how do you do that with LR?)
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Gaussian Naive Bayes

What if x is high-dimensional?

I The Σk have O(D2K) parameters, which can be a problem if D is
large.

I We already saw we can save some a factor of K by using a shared
covariance for the classes.

I Any other idea you can think of?

Naive Bayes: Assumes features independent given the class

p(x | t = k) =

D∏
j=1

p(xj | t = k)

Assuming likelihoods are Gaussian, how many parameters required for
Naive Bayes classifier?

I This is equivalent to assuming the xj are uncorrelated, i.e. Σ is
diagonal.

I Hence, only D parameters for Σ!
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Gaussian Näıve Bayes

Gaussian Näıve Bayes classifier assumes that the likelihoods are
Gaussian:

p(xj | t = k) =
1√

2πσjk
exp

[
−(xj − µjk)2

2σ2
jk

]
(this is just a 1-dim Gaussian, one for each input dimension)

Model the same as GDA with diagonal covariance matrix

Maximum likelihood estimate of parameters

µjk =

∑N
i=1 r

(i)
k x

(i)
j∑N

i=1 r
(i)
k

σ2
jk =

∑N
i=1 r

(i)
k (x

(i)
j − µjk)2∑N

i=1 r
(i)
k

r
(i)
k = 1[t(i) = k]
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Decision Boundary: Isotropic

We can go even further and assume the covariances are spherical, or
isotropic.

In this case: Σ = σ2I (just need one parameter!)

Going back to the class posterior for GDA:

log p(tk|x) = log p(x | tk) + log p(tk)− log p(x)

= −D
2

log(2π)− 1

2
log |Σ−1k | −

1

2
(x− µk)>Σ−1k (x− µk) +

+ log p(tk)− log p(x)

Suppose for simplicity that p(t) is uniform. Plugging in Σ = σ2I and
simplifying a bit,

log p(tk |x)− log p(t` |x) = − 1

2σ2

[
(x− µk)>(x− µk)− (x− µ`)

>(x− µ`)
]

= − 1

2σ2

[
‖x− µk‖2 − ‖x− µ`‖2

]
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Decision Boundary: Isotropic

* ? 

The decision boundary bisects the class means!
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Example
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Generative models - Recap

GDA has quadratic (conic) decision boundary.

With shared covariance, GDA is similar to logistic regression.

Generative models:
I Flexible models, easy to add/remove class.

I Handle missing data naturally.

I More “natural” way to think about things, but usually doesn’t work
as well.

Tries to solve a hard problem (model p(x)) in order to solve a easy
problem (model p(t |x)).

Next up: Unsupervised learning with PCA!
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