CSC 311: Introduction to Machine Learning Lecture 2 - Decision Trees & Bias-Variance Decomposition

Roger Grosse

Rahul G. Krishnan

Guodong Zhang

University of Toronto, Fall 2021

Today

- Announcement: HW1 released
- Decision Trees
 - ▶ Simple but powerful learning algorithm
 - Used widely in Kaggle competitions
 - Lets us motivate concepts from information theory (entropy, mutual information, etc.)
- Bias-variance decomposition
 - ▶ Concept to motivate combining different classifiers.
- Ideas we will need in today's lecture
 - ▶ Trees [from algorithms]
 - ▶ Expectations, marginalization, chain rule [from probability]

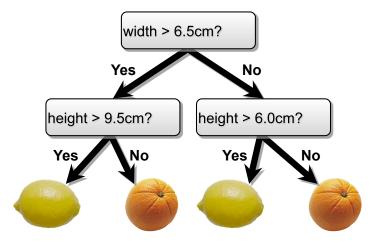
Lemons or Oranges

Scenario: You run a sorting facility for citrus fruits

- Binary classification: lemons or oranges
- Features measured by sensor on conveyor belt: height and width

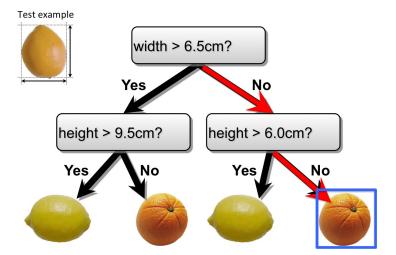
Decision Trees

• Make predictions by splitting on features according to a tree structure.



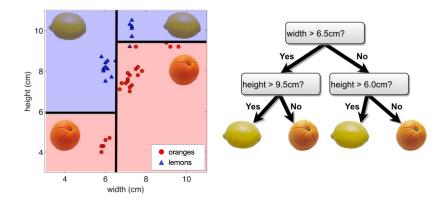
Decision Trees

• Make predictions by splitting on features according to a tree structure.

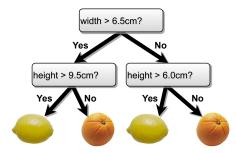


Decision Trees—Continuous Features

- Split *continuous features* by checking whether that feature is greater than or less than some threshold.
- Decision boundary is made up of axis-aligned planes.



Decision Trees

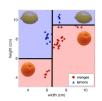


- Internal nodes test a feature
- Branching is determined by the feature value
- Leaf nodes are outputs (predictions)

Question: What are the hyperparameters of this model?

Decision Trees—Classification and Regression

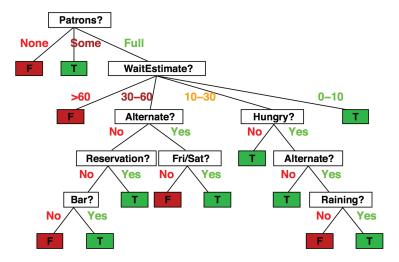
- Each path from root to a leaf defines a region R_m of input space
- Let $\{(x^{(m_1)}, t^{(m_1)}), \dots, (x^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m
- m = 4 on the right and k is the same across each region



- Regression tree:
 - continuous output
 - leaf value y^m typically set to the mean value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$
- Classification tree (we will focus on this):
 - discrete output
 - ► leaf value y^m typically set to the most common value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

Decision Trees—Discrete Features

• Will I eat at this restaurant?



Decision Trees—Discrete Features

• Split *discrete features* into a partition of possible values.

Example	Input Attributes							Goal			
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = \mathit{No}$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Yes$

1.	Alternate: whether there is a suitable alternative restaurant nearby.			
2.	Bar: whether the restaurant has a comfortable bar area to wait in.			
3.	Fri/Sat: true on Fridays and Saturdays.			
4.	Hungry: whether we are hungry.			
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).			
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).			
7.	Raining: whether it is raining outside.			
8.	Reservation: whether we made a reservation.			
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).			
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).			

Features:

Intro ML (UofT)

Learning Decision Trees

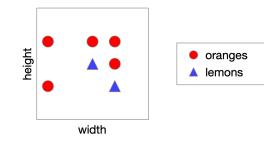
• Decision trees are universal function approximators.

- For any training set we can construct a decision tree that has exactly the one leaf for every training point, but it probably won't generalize.
- Example If all D features were binary, and we had $N = 2^D$ unique training examples, a **Full Binary Tree** would have one leaf per example.
- Finding the smallest decision tree that correctly classifies a training set is NP complete.
 - ▶ If you are interested, check: Hyafil & Rivest'76.
- So, how do we construct a useful decision tree?

Learning Decision Trees

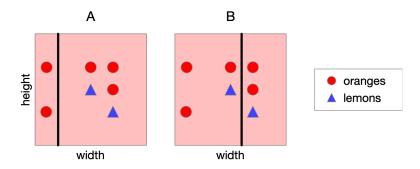
- Resort to a greedy heuristic:
 - ▶ Start with the whole training set and an empty decision tree.
 - ▶ Pick a feature and candidate split that would most reduce a loss
 - ▶ Split on that feature and recurse on subpartitions.
- What is a loss?
 - ▶ When learning a model, we use a scalar number to assess whether we're on track
 - Scalar value: low is good, high is bad
- Which loss should we use?
 - Let's see if misclassification rate is a good loss.

• Consider the following data. Let's split on width.



Choosing a Good Split

• Recall: classify by majority.



• A and B have the same misclassification rate, so which is the best split? Vote!

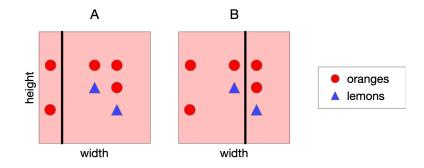
- The story thus far
 - ▶ To learn a decision tree, we're going to implement a greedy heuristic
 - The heuristic requires specification of a rule to guide decision making
 - ▶ What rule should we use?
- Next: Use ideas from how probability theory

Three concepts you should page into memory for the next fifteen minutes:

- Expectation: $\mathbb{E}_x[f(x)] = \sum_{x \in X} p(x)f(x)$
- Chain rule of probabilities: p(y|x)p(x) = p(x,y)
- Marginalization of joint probabilities: $p(x) = \sum_{y} p(x, y)$

Choosing a Good Split

• A feels like a better split, because the left-hand region is very certain about whether the fruit is an orange.



• Can we quantify this?

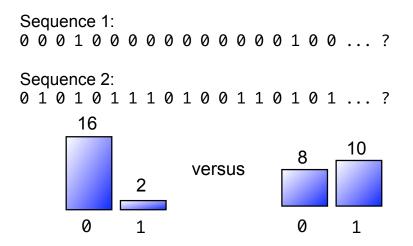
- How can we quantify uncertainty in prediction for a given leaf node?
 - ▶ If all examples in leaf have same class: good, low uncertainty
 - ▶ If each class has same amount of examples in leaf: bad, high uncertainty
- Idea: Use counts at leaves to define probability distributions; use a probabilistic notion of uncertainty to decide splits.
- A brief detour through information theory...

Entropy - Quantifying uncertainty

- You may have encountered the term entropy quantifying the state of chaos in chemical and physical systems,
- In statistics, it is a property of a random variable,
- The entropy of a discrete random variable is a number that quantifies the uncertainty inherent in its possible outcomes.
- The mathematical definition of entropy that we give in a few slides may seem arbitrary, but it can be motivated axiomatically.
 - ▶ If you're interested, check: *Information Theory* by Robert Ash or Elements of Information Theory by Cover and Thomas.
- To explain entropy, consider flipping two different coins...

We Flip Two Different Coins

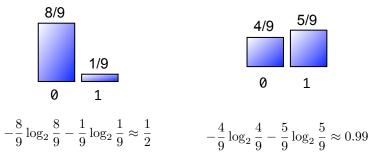
Each coin is a binary random variable with outcomes Heads (1) or Tails (1)



Quantifying Uncertainty

• The entropy of a loaded coin with probability p of heads is given by

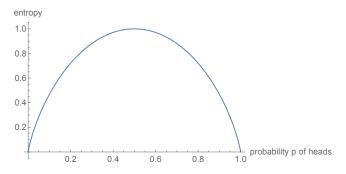
$$-p\log_2(p) - (1-p)\log_2(1-p)$$



- Notice: the coin whose outcomes are more certain has a lower entropy.
- In the extreme case p = 0 or p = 1, we were certain of the outcome before observing. So, we gained no certainty by observing it, i.e., entropy is 0.

Quantifying Uncertainty

• Can also think of entropy as the expected information content of a random draw from a probability distribution.



- Claude Shannon showed: you cannot store the outcome of a random draw using fewer expected bits than the entropy without losing information.
- So units of entropy are bits; a fair coin flip has 1 bit of entropy.

Intro ML (UofT)

Entropy

• More generally, the entropy of a discrete random variable Y is given by

$$H(Y) = -\sum_{y \in Y} p(y) \log_2 p(y)$$

• "High Entropy":

- ▶ Variable has a uniform like distribution over many outcomes
- Flat histogram
- ▶ Values sampled from it are less predictable

• "Low Entropy"

- Distribution is concentrated on only a few outcomes
- ▶ Histogram is concentrated in a few areas
- ▶ Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]

- Suppose we observe partial information X about a random variable Y
 - For example, $X = \operatorname{sign}(Y)$.
- We want to work towards a definition of the expected amount of information that will be conveyed about Y by observing X.
 - Or equivalently, the expected reduction in our uncertainty about Y after observing X.

Entropy of a Joint Distribution

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$

= $-\frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100}$
 ≈ 1.56 bits

Conditional Entropy

• Example: $X = \{ \text{Raining}, \text{Not raining} \}, Y = \{ \text{Cloudy}, \text{Not cloudy} \}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness Y, given that it is raining?

$$H(Y|X = x) = -\sum_{y \in Y} p(y|x) \log_2 p(y|x)$$

= $-\frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}$
 ≈ 0.24 bits

• We used: $p(y|x) = \frac{p(x,y)}{p(x)}$, and $p(x) = \sum_{y} p(x,y)$ (sum in a row)

Conditional Entropy

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• The expected conditional entropy:

l

$$\begin{aligned} H(Y|X) &= & \mathbb{E}_x[H[Y|x]] \\ &= & \sum_{x \in X} p(x)H(Y|X=x) \\ &= & -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(y|x) \end{aligned}$$

Conditional Entropy

• Example: $X = \{\text{Raining}, \text{Not raining}\}, Y = \{\text{Cloudy}, \text{Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$\begin{split} H(Y|X) &= \sum_{x \in X} p(x) H(Y|X=x) \\ &= \frac{1}{4} H(\text{cloudy}|\text{is raining}) + \frac{3}{4} H(\text{cloudy}|\text{not raining}) \\ &\approx 0.75 \text{ bits} \end{split}$$

Intro ML (UofT)

- Some useful properties:
 - \blacktriangleright *H* is always non-negative
 - Chain rule: H(X, Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)
 - If X and Y independent, then X does not affect our uncertainty about Y: H(Y|X) = H(Y)
 - ▶ But knowing Y makes our knowledge of Y certain: H(Y|Y) = 0
 - ▶ By knowing X, we can only decrease uncertainty about Y: $H(Y|X) \le H(Y)$

- Some useful properties:
 - \blacktriangleright *H* is always non-negative
 - Chain rule: H(X, Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)
 - If X and Y independent, then X does not affect our uncertainty about Y: H(Y|X) = H(Y)
 - ▶ But knowing Y makes our knowledge of Y certain: H(Y|Y) = 0
 - ▶ By knowing X, we can only decrease uncertainty about Y: $H(Y|X) \le H(Y)$

- Some useful properties:
 - \blacktriangleright *H* is always non-negative
 - Chain rule: H(X, Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)
 - If X and Y independent, then X does not affect our uncertainty about Y: H(Y|X) = H(Y)
 - ▶ But knowing Y makes our knowledge of Y certain: H(Y|Y) = 0
 - ▶ By knowing X, we can only decrease uncertainty about Y: $H(Y|X) \le H(Y)$

Information Gain

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

- How much more certain am I about whether it's cloudy if I'm told whether it is raining? My uncertainty in Y minus my expected uncertainty that would remain in Y after seeing X.
- This is called the information gain IG(Y|X) in Y due to X, or the mutual information of Y and X

$$IG(Y|X) = H(Y) - H(Y|X)$$
(1)

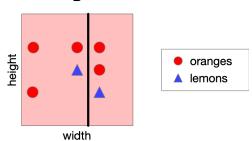
- If X is completely uninformative about Y: IG(Y|X) = 0
- If X is completely informative about Y: IG(Y|X) = H(Y)

- Previously: Use ideas from how probability theory to come up with a rule
- Goal: What rule should we use?
- The story thus far
 - Entropy H(Y) [bits]: characterizes the uncertainty in a draw of a random variable
 - Conditional Entropy H(Y|X) [bits] : characterizes the uncertainty in a draw of Y after observing X

- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree split!
- The information gain of a split: how much information (over the training set) about the class label Y is gained by knowing which side of a split you're on.

Revisiting Our Original Example

• What is the information gain of split B? Not terribly informative...

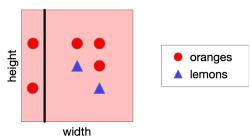


В

- Root entropy of class outcome: $H(Y) = -\frac{2}{7}\log_2(\frac{2}{7}) \frac{5}{7}\log_2(\frac{5}{7}) \approx 0.86$
- Leaf conditional entropy of class outcome: $H(Y|left) \approx 0.81$, $H(Y|right) \approx 0.92$
- $IG(split) \approx 0.86 (\frac{4}{7} \cdot 0.81 + \frac{3}{7} \cdot 0.92) \approx 0.006$

Revisiting Our Original Example

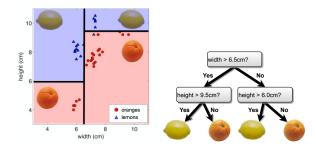
• What is the information gain of split A? Very informative!



А

- Root entropy of class outcome: $H(Y) = -\frac{2}{7}\log_2(\frac{2}{7}) \frac{5}{7}\log_2(\frac{5}{7}) \approx 0.86$
- Leaf conditional entropy of class outcome: H(Y|left) = 0, $H(Y|right) \approx 0.97$
- $IG(split) \approx 0.86 (\frac{2}{7} \cdot 0 + \frac{5}{7} \cdot 0.97) \approx 0.17!!$

Constructing Decision Trees



- At each level, one must choose:
 - 1. Which feature to split.
 - 2. Possibly where to split it.
- Choose them based on how much information we would gain from the decision! (choose feature that gives the highest gain)

Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node
 - 1. pick a feature to split at a non-terminal node
 - 2. split examples into groups based on feature value
 - 3. for each group:
 - ▶ if no examples return majority from parent
 - else if all examples in same class return class
 - else loop to step 1
- Terminates when all leaves contain only examples in the same class or are empty.
- Questions for discussion:
 - ▶ How do you choose the feature to split on?
 - ▶ How do you choose the threshold for each feature?

Back to Our Example

Example	Input Attributes										Goal
pio	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = \mathit{No}$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = \mathit{No}$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = \mathit{No}$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Yes$

- 1. Alternate: whether there is a suitable alternative restaurant nearby. 2.
- Bar: whether the restaurant has a comfortable bar area to wait in.
- Fri/Sat: true on Fridays and Saturdays.
- 4. Hungry: whether we are hungry.
- 5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
- 6. Price: the restaurant's price range (\$, \$\$, \$\$\$).
- Raining: whether it is raining outside.
- 8. Reservation: whether we made a reservation.
 - Type: the kind of restaurant (French, Italian, Thai or Burger).
- [from: Russell & Norvig] WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

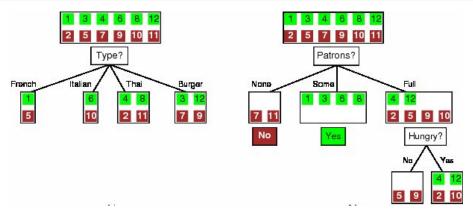
Features:

Intro ML (UofT)

9.

CSC311-Lec2

Feature Selection



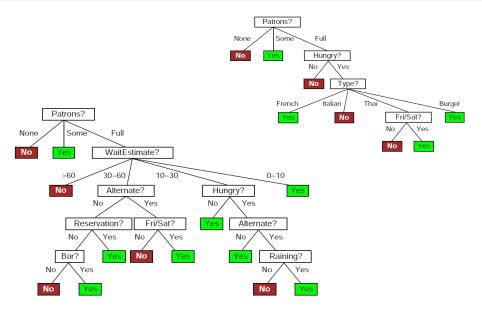
$$IG(Y) = H(Y) - H(Y|X)$$

$$IG(type) = 1 - \left[\frac{2}{12}H(Y|\text{Fr.}) + \frac{2}{12}H(Y|\text{It.}) + \frac{4}{12}H(Y|\text{Thai}) + \frac{4}{12}H(Y|\text{Bur.})\right] = 0$$

$$IG(Patrons) = 1 - \left[\frac{2}{12}H(0,1) + \frac{4}{12}H(1,0) + \frac{6}{12}H(\frac{2}{6},\frac{4}{6})\right] \approx 0.541$$

Intro ML (UofT)

Which Tree is Better? Vote!



What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - Computational efficiency (avoid redundant, spurious attributes)
 - Avoid over-fitting training examples
 - Human interpretability
- "Occam's Razor": find the simplest hypothesis that fits the observations
 - ▶ Useful principle, but hard to formalize (how to define simplicity?)
 - See Domingos, 1999, "The role of Occam's razor in knowledge discovery"
- We desire small trees with informative nodes near the root

• Problems:

- ▶ You have exponentially less data at lower levels
- ▶ Too big of a tree can overfit the data
- Greedy algorithms don't necessarily yield the global optimum
- Handling continuous attributes
 - ▶ Split based on a threshold, chosen to maximize information gain
- Decision trees can also be used for regression on real-valued outputs. Choose splits to minimize squared error, rather than maximize information gain.

Advantages of decision trees over KNNs

- Simple to deal with discrete features, missing values, and poorly scaled data
- Fast at test time
- More interpretable

Advantages of KNNs over decision trees

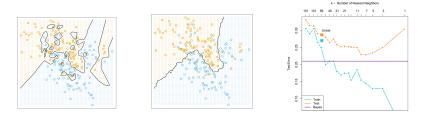
- Few hyperparameters
- Can incorporate interesting distance measures (e.g. shape contexts)

- We've seen many classification algorithms.
- We can combine multiple classifiers into an ensemble, which is a set of predictors whose individual decisions are combined in some way to classify new examples
 - ▶ E.g., (possibly weighted) majority vote
- For this to be nontrivial, the classifiers must differ somehow, e.g.
 - Different algorithm
 - ▶ Different choice of hyperparameters
 - Trained on different data
 - ▶ Trained with different weighting of the training examples
- Next lecture, we will study some specific ensembling techniques.

- Today, we deepen our understanding of generalization through a bias-variance decomposition.
 - ▶ This will help us understand ensembling methods.

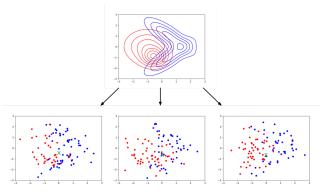
Bias-Variance Decomposition

• Recall that overly simple models underfit the data, and overly complex models overfit.



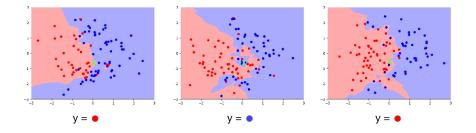
- We can quantify this effect in terms of the bias/variance decomposition.
 - Bias and variance of what?

- Suppose the training set \mathcal{D} consists of pairs (\mathbf{x}_i, t_i) sampled independent and identically distributed (i.i.d.) from a single data generating distribution p_{sample} .
- Pick a fixed query point **x** (denoted with a green x).
- Consider an experiment where we sample lots of training sets independently from p_{sample} .

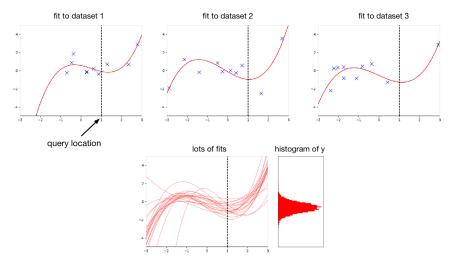


CSC311-Lec2

- Let's run our learning algorithm on each training set, and compute its prediction y at the query point **x**.
- We can view y as a random variable, where the randomness comes from the choice of training set.
- The classification accuracy is determined by the distribution of y.



Here is the analogous setup for regression:



Since y is a random variable, we can talk about its expectation, variance, etc.

CSC311-Lec2

- Recap of basic setup:
 - ► Fix a query point **x**.
 - ▶ Repeat:
 - ▶ Sample a random training dataset \mathcal{D} i.i.d. from the data generating distribution p_{sample} .
 - Run the learning algorithm on \mathcal{D} to get a prediction y at \mathbf{x} .
 - Sample the (true) target from the conditional distribution $p(t|\mathbf{x})$.
 - Compute the loss L(y, t).
- Notice: y is independent of t. (Why?)
- This gives a distribution over the loss at \mathbf{x} , with expectation $\mathbb{E}[L(y,t) | \mathbf{x}]$.
- For each query point **x**, the expected loss is different. We are interested in minimizing the expectation of this with respect to **x** ~ p_{sample} .

- For now, focus on squared error loss, $L(y,t) = \frac{1}{2}(y-t)^2$.
- A first step: suppose we knew the conditional distribution $p(t | \mathbf{x})$. What value y should we predict?
 - Here, we are treating t as a random variable and choosing y.
- Claim: $y_* = \mathbb{E}[t | \mathbf{x}]$ is the best possible prediction.
- Proof:

$$\mathbb{E}[(y-t)^2 | \mathbf{x}] = \mathbb{E}[y^2 - 2yt + t^2 | \mathbf{x}]$$

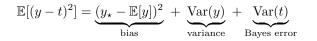
= $y^2 - 2y\mathbb{E}[t | \mathbf{x}] + \mathbb{E}[t^2 | \mathbf{x}]$
= $y^2 - 2y\mathbb{E}[t | \mathbf{x}] + \mathbb{E}[t | \mathbf{x}]^2 + \operatorname{Var}[t | \mathbf{x}]$
= $y^2 - 2yy_* + y_*^2 + \operatorname{Var}[t | \mathbf{x}]$
= $(y - y_*)^2 + \operatorname{Var}[t | \mathbf{x}]$

$$\mathbb{E}[(y-t)^2 \mid \mathbf{x}] = (y-y_*)^2 + \operatorname{Var}[t \mid \mathbf{x}]$$

- The first term is nonnegative, and can be made 0 by setting $y = y_*$.
- The second term corresponds to the inherent unpredictability, or noise, of the targets, and is called the Bayes error.
 - This is the best we can ever hope to do with any learning algorithm. An algorithm that achieves it is Bayes optimal.
 - ▶ Notice that this term doesn't depend on *y*.
- This process of choosing a single value y_* based on $p(t | \mathbf{x})$ is an example of decision theory.

- Now return to treating y as a random variable (where the randomness comes from the choice of dataset).
- We can decompose out the expected loss (suppressing the conditioning on **x** for clarity):

$$\begin{split} \mathbb{E}[(y-t)^2] &= \mathbb{E}[(y-y_{\star})^2] + \operatorname{Var}(t) \\ &= \mathbb{E}[y_{\star}^2 - 2y_{\star}y + y^2] + \operatorname{Var}(t) \\ &= y_{\star}^2 - 2y_{\star}\mathbb{E}[y] + \mathbb{E}[y^2] + \operatorname{Var}(t) \\ &= y_{\star}^2 - 2y_{\star}\mathbb{E}[y] + \mathbb{E}[y]^2 + \operatorname{Var}(y) + \operatorname{Var}(t) \\ &= \underbrace{(y_{\star} - \mathbb{E}[y])^2}_{\text{bias}} + \underbrace{\operatorname{Var}(y)}_{\text{variance}} + \underbrace{\operatorname{Var}(t)}_{\text{Bayes error}} \end{split}$$

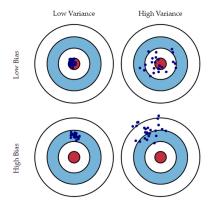


• We just split the expected loss into three terms:

- bias: how wrong the expected prediction is (corresponds to underfitting)
- variance: the amount of variability in the predictions (corresponds to overfitting)
- ▶ Bayes error: the inherent unpredictability of the targets
- Even though this analysis only applies to squared error, we often loosely use "bias" and "variance" as synonyms for "underfitting" and "overfitting".

Bias and Variance

• Throwing darts = predictions for each draw of a dataset



- Be careful, what doesn't this capture?
 - \blacktriangleright We average over points ${\bf x}$ from the data distribution.