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Abstract

In the standard model of voting, it is assumed that a voting rule observes the ranked preferences of
each individual over a set of alternatives and makes a collective decision. In practice, however, not every
individual votes. Is it possible to make a good collective decision for a group given the preferences of
only a few of its members?

We propose a framework in which we are given the ranked preferences of k out of n individuals
sampled from a distribution, and the goal is to predict what a given voting rule would output if applied
on the underlying preferences of all n individuals. We focus on the family of positional scoring rules,
derive a strong negative result when the underlying preferences can be arbitrary, and discover interesting
phenomena when they are generated from a known distribution.

1 Introduction

The aim of voting is to make a good collective decision for a group of individuals based on the preferences
of its members over a set of alternatives. In the vast literature published on voting since the work of
[9], numerous voting rules have been proposed which intuitively provide different notions of what makes an
outcome best for the group. Additionally, the literature offers several frameworks that define which collective
decisions are good, and allow evaluating as well as systematically designing voting rules; examples include
the axiomatic approach [1, 20], distance rationalizability [19, 12], noisy voting [26, 7], and implicit utilitarian
voting [21, 5]. However, most of this literature assumes that the voting rule in question is able to observe
the preferences of every individual in the group.

In most real-world applications, only a fraction of the members actually participate in voting. The goal
of the decision-making system is then to predict what the right collective decision is for the whole group
(including individuals whose preferences are not observed) given the preferences of some of its members. In
this work, we assume that there are n individuals (a.k.a. voters), and we are given a voting rule f1 which can
make the desired collective decision given the preferences of all n voters. Instead, we observe the preferences
of only k out of n voters, and our goal is to design a voting rule f2 which, when applied on the k observed
preferences, predicts the outcome of f1 on all n preferences.

This framework has two immediate motivations. As described so far, we could think of f1 as the idealized
voting rule we would like to implement if every individual votes, and f2 as the voting rule we should really
implement if only a fraction of individuals are expected to vote. Alternatively, we can imagine a setting
where voting rule f1 is implemented for an upcoming election, and we would like to conduct a poll to observe
a subset of preferences and use f2 to predict the outcome of the upcoming election. Predicting outcomes of
political elections using surveys has been extensively studied [23, 22, 24, 13, 18, 17, 10].

One question still lingers: Which k out of n voters would participate? If they are adversarially chosen, it
is not difficult to see that predicting the election outcome is impossible. For instance, if 49 out of 100 voters
report that they prefer alternative a over alternative b, it is impossible to know if this is in fact the majority

∗A preliminary version appeared in the Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020.
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opinion. In the worst case, each of the remaining 51 voters might prefer b over a. However, we can argue
that this is an unlikely scenario.

In this work, we assume that the k voters are sampled from a distribution.1 This raises a number of
questions: Which voting rule f2, given the k observed votes, would best predict the outcome of f1 on all n
votes? When is it optimal to simply apply the same voting rule on the observed votes (i.e. f2 = f1)? Which
voting rules f1 can be predicted well? If we have stochastic information about the unobserved votes, how
do we incorporate it into the prediction rule f2? Such questions are the focus of this work.

1.1 Our Results

We study a setting with m alternatives and n voters who have ranked preferences over the alternatives. A
voting rule takes as input a set of rankings and returns a societal ranking. In case of ties, it may return a
set of societal rankings.

We use ~σn to denote the profile of all n ranked votes, and ~πk to denote the sample of k votes. For
simplicity, assume for now that the k votes are selected uniformly at random. We focus on the family of
positional scoring rules, which includes popular voting rules such as plurality, Borda count, harmonic rule,
k-approval, and veto. Given positional scoring rules f1 and f2, we are interested in the probability that
f2(~πk) ⊆ f1(~σn), i.e., that f2 predicts the outcome of f1 on ~σn by producing a refinement of this outcome.

This probability depends on the underlying profile ~σn. In Section 3, we consider the prediction accuracy
in the worst case over ~σn. We show that for a positional scoring rule f1 other than plurality and veto, no
positional scoring rule f2 can predict its outcome with a positive probability in the worst case, when n and
k have different parity (Theorems 1 and 2). This holds for any distribution from which the k observed votes
are sampled. When f1 is plurality or veto, and the distribution of samples is uniform, we show that f1 is the
optimal predictor of itself among all positional scoring rules (Theorem 3), but its prediction accuracy is still
small when the number of alternatives is large (Theorems 4 and 5). In summary, it is impossible to predict
the outcome of any positional scoring rule with a reasonable accuracy when no additional information is
known about ~σn.2

In Section 4, we consider the expected prediction accuracy when ~σn is drawn from a known prior. Using
the simplest case of two alternatives, where our goal is to predict the majority rule f1, we show that the
knowledge of prior can have little to significant effect on the optimal prediction rule f2, depending on how
large k is compared to n and how concentrated the prior is (Theorem 6).

Our experiments in Section 5 show that when ~σn is drawn from a concentrated prior (the Mallows model
with ϕ = 1/3), most voting rules can be predicted with at least 98% accuracy given only 3% of the votes.
However, when ~σn is drawn from the uniform prior, most voting rules cannot be predicted with accuracy
more than 4% given only 3% of the votes, although the accuracy increases with more observed votes. We
also curiously discover that, in certain settings, the harmonic rule predicts other voting rules better than
they predict themselves.

1.2 Related Work

Most closely related to ours is the work of Dey and Bhattacharyya [10]. They consider voting rules which
output a single alternative instead of a ranking, and study the problem of predicting the output of a given
voting rule on an unknown election by sampling votes. Their work differs from ours in two key aspects. First,
they sample with replacement and allow the prediction rule to determine how many votes to sample. In
contrast, our sampling is without replacement (which becomes dramatically different when k is comparable
to n) and the sampled votes are given. But more importantly, they assume that the underlying election has
a margin of victory that is at least a constant fraction of n, that is, the underlying election is such that
changing a constant fraction of the votes cannot change the outcome of the voting rule. We do not make this

1Our main results hold for all possible distributions, but we provide additional results for the special case where the k voters
are sampled uniformly at random from all n voters.

2This is partly due to the fact that we want to predict the entire ranking of alternatives returned by the rule. In Section 6, we
consider the weaker requirement of predicting only the winning alternative, and present a mix of positive and negative results.
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assumption. In fact, our negative results are derived precisely by considering elections that are borderline. In
that sense, our results complement the results of Dey and Bhattacharyya [10] by showing that their positive
results are replaced by strong negative results when their margin of victory assumption is dropped.

Our results also have a surprising connection to the work of Borodin et al. [4]. They consider an implicit
utilitarian voting framework, in which voters and alternatives are embedded in an underlying metric space,
each voter ranks the alternatives, and the social cost of an alternative is measured by its total distance from
the voters. One of their results (informally) shows that given a voting rule and an arbitrary set of k votes,
where k = Θ(n), it is possible to produce an alternative that is almost as good as the alternative that would
be produced by the voting rule with all n votes. That is, in their framework, it is possible to do almost as
well as the idealized voting rule even if the sampled votes are adversarially. This is fundamentally impossible
in our setting.

A bit further afield, there is also work on predicting election outcomes under different types of uncertainty
such as partial preferences [11, 3, 15, 2], uncertainty about which voters or candidates would participate in
the election (even if all preferences are known upfront) [25], or distributional uncertainty about each voter’s
preferences [14].

2 Preliminaries

For k ∈ N, let [k] = {1, . . . , k}. We consider a set A = {a1, . . . , am} of m alternatives and a set N = {1, . . . , n}
of n voters. We denote by L(A) the set of all rankings over A. We use a �σ b to denote that alternative a is
preferred to alternative b under ranking σ. Each voter i has a preference ranking (vote), denoted σi ∈ L(A).
The (preference) profile ~σn = (σ1, . . . , σn) is the collection of all n votes.

A voting rule (technically, a social welfare function) is a function f : L(A)n → 2L(A), which takes as input
a profile and outputs a set of tied rankings. In this work, we focus on the family of positional scoring rules,
denoted F . A positional scoring rule f~s is characterized by a scoring vector ~s = (s1, . . . , sm) ∈ Rm, where
st ≥ st+1 for each t ∈ [m − 1] and s1 > sm. Given a profile ~σn, f~s assigns st points to the tth alternative
in voter i’s vote, for each i ∈ N and t ∈ [m]. Let sc~s(a, ~σn) =

∑n
i=1 sσi(a) denote the total score of a ∈ A,

where σi(a) is the rank of a in voter i’s vote. Then, f~s returns the set of rankings where the alternatives are
sorted in a non-ascending order of their scores.

We partition F into three subfamilies, F1, F2 and F3. Family F1 consists of all rules f~s for which
s2 > sm−1. This includes the well known Borda rule (~s = (m,m − 1, . . . , 1)) and harmonic rule (~s =
(1, 1/2, . . . , 1/m)). The remaining rules f~s satisfy s2 = s3 = . . . = sm−1. Among these, family F2 consists
of rules for which s1 > s2 = . . . = sm−1 > sm, while family F3 contains the two remaining rules: s1 > s2 =
. . . = sm is equivalent to plurality, and s1 = . . . = sm−1 > sm is equivalent to veto.

The Mallows model is a distribution over L(A), parametrized by a central ranking σ∗ ∈ L(A) and a
noise parameter ϕ ∈ [0, 1]. To obtain a sample ranking from this distribution, one generates an independent
comparison between each pair of alternatives which matches with σ∗ with probability p (where p ≥ 1/2 and
ϕ = (1−p)/p), and restarts if the comparisons violate transitivity. When ϕ = 0 (i.e. p = 1), the distribution
puts all the probability mass on σ∗. When ϕ = 1 (i.e. p = 1/2), we obtain the uniform distribution, also
known as impartial culture.

3 Worst-Case Predictability

Given a positional scoring rule f1 ∈ F , our goal in this paper is to study how accurately one can predict
its outcome on a profile ~σn given a sample of k votes from the profile, where k ≤ n. Specifically, let
Sk(~σn) denote the set of all subsets of ~σn of size k, and let Uk(~σn) be the uniform distribution over Sk(~σn).
Define the accuracy of predicting f1 using a positional scoring rule f2 ∈ F on profile ~σn as acc(f1, f2, ~σn) =
Pr~πk∼Uk(~σn)[f2(~πk) ⊆ f1(~σn)].

Note that f2(~πk) ⊆ f1(~σn) allows f2 to break some of the ties produced by f1 on ~σn. This makes our
negative results stronger than if we had required f2(~πk) = f1(~σn). Similarly, although we defined accuracy
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for ~πk sampled from the uniform distribution Uk(~σn), our main negative results (Theorems 1 and 2) hold
for all distributions since they establish zero accuracy.

We then define the worst-case accuracy of predicting f1 using f2 as acc(f1, f2) = min~σn
acc(f1, f2, ~σn).

Taking this one step further, we define the worst-case predictability of f1 as acc(f1) = supf2∈F acc(f1, f2),
which is the worst-case accuracy of predicting f1 using the best positional scoring rule f2. Note that these
quantities depend on n, m, and k, which are fixed in our framework. Motivated by political applications, we
are interested in cases where n is large but k and m are relatively smaller.

3.1 Predicting a Rule from F1 or F2

We begin by establishing a strong negative result: every positional scoring rule in F1 and F2 has zero worst-
case predictability. That is, such a rule cannot be predicted by any positional scoring rule with positive
worst-case accuracy. The strength of the result lies in two observations. First, as we argued above, zero
predictability implies that the outcome of the rule cannot be predicted given any subset of k votes; thus,
the negative result holds for any distribution from which the k observed votes are drawn. Second, while the
impossibility of prediction may be intuitive for small values of k, the result holds even when k = n− 1, i.e.,
when all but one of the votes are observed.

Theorem 1. Let n ≥ 2, m ≥ 7, and k ∈ [n − 1] such that n and k have different parity. Then, for any
positional scoring rules f1 ∈ F1 and f2 ∈ F , we have acc(f1, f2) = 0.

Proof. Fix positional scoring rules f1 ∈ F1 and f2 ∈ F . Let ~r and ~s denote their scoring vectors, respectively.
Because f1 ∈ F1, we have r2 > rm−1. We consider cases of even and odd k, and for each case, construct a
profile on which f2 predicts f1 with zero accuracy.

Odd n, even k: We start with the case where n is odd and k is even. Consider the following profile ~σn.
Each row represents a ranking where alternatives are listed from left to right in the most preferred to least
preferred order. The first two rankings appear (n − 1)/2 times each, and the third ranking appears once.
Alternatives not shown appear in an arbitrary order in the middle.

n−1
2 votes a1 � a2 � a3 � . . . � am−2 � am−1 � am

n−1
2 votes am � am−1 � am−2 � . . . � a3 � a2 � a1

1 vote a1 � am−1 � a3 � . . . � am−2 � a2 � am

We denote with σ1, σ2 and σ3 the ranking of the first, second and third rows, respectively. Because
f1 ∈ F1, it holds that for every σ∗ ∈ f1(~σn), a1 �σ∗ am and am−1 �σ∗ a2. We show that for every sample
~πk ∈ Sk(~σn), f2(~πk) 6⊆ f1(~σn), i.e., for some σ̂ ∈ f2(~πk) at least one of a1 �σ̂ am and am−1 �σ̂ a2 fails to
hold. Suppose for contradiction that there exists ~πk for which this does not happen.

Let x1, x2, and x3 denote the number of times σ1, σ2, and σ3 appear in ~πk, respectively. Note that
x3 ∈ {0, 1}. To have a1 �σ̂ am for every σ̂ ∈ f2(~πk), we need

x1 · s1 + x2 · sm + x3 · s1 > x1 · sm + x2 · s1 + x3 · sm
⇒ (x1 + x3) · (s1 − sm) > x2 · (s1 − sm).

Given that s1 > sm, this implies x1 + x3 > x2.
On the other hand, to have am−1 �σ̂ a2 for every σ̂ ∈ f2(~πk), we need

x1 · sm−1 + x2 · s2 + x3 · s2 > x1 · s2 + x2 · sm−1 + x3 · sm−1

⇒ (x2 + x3) · (s2 − sm−1) > x1 · (s2 − sm−1).

Given s2 ≥ sm−1, this implies x2 + x3 > x1.
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Given x1 + x3 > x2 and x2 + x3 > x1, we can derive x3 > 0, i.e., x3 = 1. But then, we have x1 + 1 > x2

and x2 + 1 > x1, which implies x1 = x2. In this case, |~πk| = x1 + x2 + 1 is odd, which contradicts the fact
that k is even.

Even n, odd k: We now consider the case of even n and odd k. We begin by establishing the following
property of f1. Recall that for the scoring vector ~r of f1 ∈ F1, we have r2 > rm−1.

Lemma 1. There exists a t ∈ {3, . . . ,m− 3} such that r2 − rm−1 > rt − rt+1.

Proof. First, suppose there exists a p ∈ {2, . . . ,m− 2} such that r2 = rp > rp+1 = rm−1 (i.e., in going from r2

to rm−1, the score drops only once). If p ≥ 4, then we set t = 3. In this case, we have rt−rt+1 = 0 < r2−rm−1,
as desired. If p ≤ 3, then we set t = 4. Because m ≥ 7, we have t ≤ m − 3. Also, we again have
rt − rt+1 = 0 < r2 − rm−1.

Next, suppose there exist distinct p, q ∈ {2, . . . ,m− 2} such that rp > rp+1 and rq > rq+1 (i.e., in
going from r2 to rm−1, the score drops at least twice). Then, we can simply set t = 3. This ensures that
rt− rt+1 < r2− rm−1 (if it were equal, then the score would drop only once in going from r2 to rm−1). This
completes the proof.

Let us fix t ∈ {3, . . . ,m− 3} for which Lemma 1 holds. Consider the following profile ~σn.

n−2
2

votes a1 � a2 � a3 � a4 � . . . � am−2 � am−1 � am
n−2
2

votes am � am−1 � am−2 � . . . � a4 � a3 � a2 � a1
1 vote a1 � a3 � . . . � a2 � am−1 � . . . � am−2 � am
1 vote a3 � am−1 � . . . � am � a1 � . . . � a2 � am−2

We again denote with σ1, σ2, σ3 and σ4 the rankings in rows 1, 2, 3 and 4, respectively. In ranking σ3,
a2 is at position t and am−1 is at position t+ 1. In the ranking σ4, am is at position t and a1 is at position
t+ 1. In each ranking, alternatives not shown appear in the unfilled positions arbitrarily.

First, we argue about the outcome of f1 on this profile. From the Lemma 1, it is obvious that r1− rm ≥
r2 − rm−1 > rt − rt+1. Using this, it is easy to see that for every σ∗ ∈ f1(~σn), a1 �σ∗ am and am−1 �σ∗ a2.
We now argue that for every sample ~πk ∈ Sk(~σn), there exists σ̂ ∈ f2(~πk) which violates at least one of
a1 �σ̂ am and am−1 �σ̂ a2. Suppose for contradiction that there exists a sample ~πk for which this does not
happen.

Again, let x1, x2, x3, and x4 denote the number of times σ1, σ2, σ3, and σ4 appear in ~πk, respectively.
Note that x3, x4 ∈ {0, 1}. To have a1 �σ̂ am for every σ̂ ∈ f2(~πk), we need

x1 · s1 + x2 · sm + x3 · s1 + x4 · st+1 > x1 · sm + x2 · s1 + x3 · sm + x4 · st
⇒ (x1 + x3) · (s1 − sm) > x2 · (s1 − sm) + x4 · (st − st+1). (1)

On the other hand, to have am−1 �σ̂ a2 for every σ̂ ∈ f2(~πk), we need

x1 · sm−1 + x2 · s2 + x3 · st+1 + x4 · s2 > x1 · s2 + x2 · sm−1 + x3 · st + x4 · sm−1

⇒ (x2 + x4) · (s2 − sm−1) > x1 · (s2 − sm−1) + x3 · (st − st+1). (2)

We now distinguish between four cases.

Case 1: x3 = x4 = 0. Since s1 > sm, from Equation (1), we obtain x1 > x2. Moreover, as s2 ≥ sm−1, from
Equation (2), we obtain x2 > x1, which is a contradiction.

Case 2: x3 = 1 and x4 = 0. Since s1 > sm, from Equation (1), we obtain x1 + 1 > x2. Moreover, as
s2 ≥ sm−1 and st ≥ st+1, from Equation (2), we obtain x2 > x1, which is a contradiction.
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Case 3: x3 = 0 and x4 = 1. This case leads to a contradiction in a manner similar to Case 2, so we omit
the details.

Case 4: x3 = 1 and x4 = 1. Since s1 > sm and st ≥ st+1, from Equation (1) we obtain that x1 + 1 > x2.
Similarly, since s2 ≥ sm−1 and st ≥ st+1, from Equation (2) we obtain x2 + 1 > x1. This implies x1 = x2,
which implies |~πk| = x1 + x2 + 2 is even, which in turn contradicts the fact that k is odd.

Unfortunately, the proof of Theorem 1 does not directly work when f1 ∈ F2. However, a similar proof
with somewhat more intricate profiles works, yielding the following result.

Theorem 2. Let n ≥ 4, m ≥ 5, and k ∈ [n − 1] such that n and k have different parity. Then, for any
positional scoring rules f1 ∈ F2 and f2 ∈ F , we have acc(f1, f2) = 0.

Proof. Fix positional scoring rules f1 ∈ F2 and f2 ∈ F . Let ~r and ~s denote their scoring vectors, respectively.
We consider cases of even and odd k, and for each case, construct a profile on which f2 predicts f1 with zero
accuracy.

Odd n, even k: We start with the case where n is odd and k is even. Consider the following profile ~σn.
Alternatives not shown appear in an arbitrary order in the middle.

n−1
2 votes a1 � am � a3 � . . . � am−2 � a2 � am−1

n−1
2 votes am � a1 � a3 � . . . � am−2 � am−1 � a2

1 vote a1 � am � a3 � . . . � am−2 � am−1 � a2

We denote with σ1, σ2 and σ3 the ranking of the first, second and third rows, respectively. Because
f1 ∈ F2, we have r1 > r2 = rm−1 > rm, and hence for every σ∗ ∈ f1(~σn), it holds a1 �σ∗ am and
am−1 �σ∗ a2. We show that for every sample ~πk ∈ Sk(~σn), f2(~πk) 6⊆ f1(~σn), i.e., for some σ̂ ∈ f2(~πk) at
least one of a1 �σ̂ am and am−1 �σ̂ a2 fails to hold. Suppose for contradiction that there exists ~πk for which
this does not happen.

Let x1, x2, and x3 denote the number of times σ1, σ2, and σ3 appear in ~πk, respectively. Note that
x3 ∈ {0, 1}. To have a1 �σ̂ am for every σ̂ ∈ f2(~πk), we need

x1 · s1 + x2 · s2 + x3 · s1 > x1 · s2 + x2 · s1 + x3 · s2.

⇒ (x1 + x3) · (s1 − s2) > x2 · (s1 − s2).

Given that s1 ≥ s2, this implies x1 + x3 > x2.
On the other hand, to have am−1 �σ̂ a2 for every σ̂ ∈ f2(~πk), we need

x1 · sm + x2 · sm−1 + x3 · sm−1 > x1 · sm−1 + x2 · sm + x3 · sm
⇒ (x2 + x3) · (sm−1 − sm) > x1 · (sm−1 − sm).

Given sm−1 ≥ sm, this implies x2 + x3 > x1.
Given x1 + x3 > x2 and x2 + x3 > x1, we can derive x3 > 0, i.e., x3 = 1. But then, we have x1 + 1 > x2

and x2 + 1 > x1, which implies x1 = x2. In this case, |~πk| = x1 + x2 + 1 is odd, which contradicts the fact
that k is even.

Even n, odd k: We now consider the case of even n and odd k. Consider the following profile ~σn.
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n−2
2

votes a1 � am � a3 � . . . � am−2 � a2 � am−1

n−2
2

votes am � a1 � a3 � . . . � am−2 � am−1 � a2
1 vote a1 � am � . . . � a2 � am−1 � . . . � am−2 � a3
1 vote a3 � a4 � . . . � am � a1 � . . . � am−1 � a2

We again denote with σ1, σ2, σ3 and σ4, the rankings in rows 1, 2, 3 and 4, respectively. Fix an arbitrary
t such that 2 < t < m − 2. In ranking σ3, alternative a2 is at some position t and alternative am−1 is at
position t+ 1. In ranking σ4, alternative am is at position t and alternative a1 is at position t+ 1. In each
ranking, alternatives not shown appear in the unfilled positions arbitrarily.

First, we argue about the outcome of f1 on this profile. Recall that for the scoring vector ~r of f1 ∈ F2,
we have r1 > r2 and rm−1 > rm, while rt = rt+1,∀t ∈ [2,m− 2]. Using this, it is easy to see that for every
σ∗ ∈ f1(~σn), a1 �σ∗ am and am−1 �σ∗ a2. We now argue that for every sample ~πk ∈ Sk(~σn), there exists
σ̂ ∈ f2(~πk) which violates at least one of a1 �σ̂ am and am−1 �σ̂ a2. Suppose for contradiction that there
exists a sample ~πk for which this does not happen. Here, we have to take four cases depending on whether
each of σ3 and σ4 appears in ~πk.

Again, let x1, x2, x3, and x4 denote the number of times σ1, σ2, σ3, and σ4 appear in ~πk, respectively.
Note that x3, x4 ∈ {0, 1}. To have a1 �σ̂ am for every σ̂ ∈ f2(~πk), we need

x1 · s1 + x2 · s2 + x3 · s1 + x4 · st+1 > x1 · s2 + x2 · s1 + x3 · s2 + x4 · st
⇒ (x1 + x3) · (s1 − s2) > x2 · (s1 − s2) + x4 · (st − st+1). (3)

On the other hand, to have am−1 �σ̂ a2 for every σ̂ ∈ f2(~πk), we need

x1 · sm + x2 · sm−1 + x3 · st+1 + x4 · sm−1

> x1 · sm−1 + x2 · sm + x3 · st + x4 · sm
⇒ (x2 + x4) · (sm−1 − sm) > x1 · (sm−1 − sm) + x3 · (st − st+1). (4)

We now distinguish between four cases.

Case 1: x3 = x4 = 0. Since s1 > s2, from Equation (3), we obtain x1 > x2. Moreover, as sm−1 ≥ sm, from
Equation (4), we obtain x2 > x1, which is a contradiction.

Case 2: x3 = 1 and x4 = 0. Since s1 > s2, from Equation (3), we obtain x1 + 1 > x2. Moreover, as
sm−1 ≥ sm and st ≥ st+1, from Equation (4), we obtain x2 > x1, which is a contradiction.

Case 3: x3 = 0 and x4 = 1. This case leads to a contradiction in a manner similar to Case 2, so we omit
the details.

Case 4: x3 = 1 and x4 = 1. Since s1 > s2 and st ≥ st+1, from Equation (3) we obtain that x1 + 1 > x2.
Similarly, since sm−1 ≥ sm and st ≥ st+1, from Equation (4) we obtain x2 + 1 > x1. This implies x1 = x2,
which implies |~πk| = x1 + x2 + 2 is even, which in turn contradicts the fact that k is odd.

3.2 Predicting a Rule from F3

The remaining family F3 contains exactly two voting rules: plurality (denoted fplu) and veto (denoted fveto).
These two rules are special within the family of positional scoring rules. While Theorems 1 and 2 establish
that every other positional scoring rule has zero worst-case predictability, we will show that this is not the
case with plurality or veto.

Proposition 1. Let k ≥ m(m− 1)/2. Then, we have acc(fplu, fplu) > 0 and acc(fveto, fveto) > 0.
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Proof. We provide a proof for plurality. The proof for veto is similar. Consider any profile ~σn. Let xi
denote the number of times alternative ai is ranked first. Without loss of generality, assume xi ≥ xi+1 for
all i ∈ [m− 1]. Now, we construct a sample ~πk ∈ Sk(~σn) such that fplu(~πk) ⊆ fplu(~σn).

Let yi = |{j ∈ [i,m− 1] : xj > xj+1}| for each i ∈ [m − 1], and ym = 0. We begin by choosing yi
arbitrary rankings from ~σn which rank ai first, for each i, and adding them to the sample. It is easy to see
that yi = yi+1 if and only if xi = xi+1 and yi > yi+1 if and only if xi > xi+1, for all i ∈ [m − 1]. Further,∑m
i=1 yi ≤ m(m − 1)/2 ≤ k. If we ran plurality on the sample constructed so far, the set of rankings it

returns would be precisely fplu(~σn). However, this sample may contain fewer than k votes.
We complete the sample ~πk by adding any remaining votes which rank a1 first, then adding any remaining

votes which rank a2 first, etc, until the sample size becomes k. Let zi denote the final number of votes in
the sample which rank ai first. Then, for all i, j ∈ [m], xi > xj implies yi > yj , which implies zi > zj . Thus,
fplu(~πk) ⊆ fplu(~σn).

Proposition 1 raises two important questions: a) How well can plurality or veto predict itself? ; and b)
Can some positional scoring rule predict plurality (resp. veto) better than plurality (resp. veto) itself?

We begin by answering the latter question negatively. We show that among all positional scoring rules,
the best predictor of plurality (resp. veto) is plurality (resp. veto) itself.

Theorem 3. For every positional scoring rule f2 ∈ F , we have that acc(fplu, f2) ≤ acc(fplu, fplu) and
acc(fveto, f2) ≤ acc(fveto, fveto).

Proof. Fix f2 ∈ F . We show acc(fplu, f2) ≤ acc(fplu, fplu). The proof for acc(fveto, f2) ≤ acc(fveto, fveto) is
similar.

Specifically, we show that for every profile ~σn, there exists a profile ~τn such that acc(fplu, fplu, ~σn) ≥
acc(fplu, f2, ~τn). This implies the desired result.

Consider any profile ~σn. Fix σ∗ ∈ fplu(~σn). We construct the profile ~τn as follows. In each ranking
τi, the alternative ranked first in σi is also ranked first, and the remaining alternatives are in the opposite
order of how they appear in σ∗. Because we do not change the alternatives in the first position, we have
that acc(fplu, fplu, ~σn) = acc(fplu, fplu, ~τn). We now show that acc(fplu, fplu, ~τn) ≥ acc(fplu, f2, ~τn). More
specifically, we show that for every sample ~πk ∈ Sk(~τn), fplu(~πk) 6⊆ fplu(~τn) implies f2(~πk) 6⊆ fplu(~τn).

Consider any sample ~πk ∈ Sk(~τn). Let xi and yi denote the number of times ai is ranked first in ~τn and
~πk, respectively. Suppose fplu(~πk) 6⊆ fplu(~τn). Then, there exist alternatives ai, aj ∈ A such that xi > xj
but yi ≤ yj . Note that xi > xj implies that ai �σ∗ aj . Hence, in every ranking in ~τn (and therefore in ~πk)
where ai or aj is not ranked first, aj must appear before ai (since we order them in the opposite order of σ∗).
This, together with yj ≥ yi, implies that under ~πk, f2 assigns at least as much score to aj as to ai. Hence,
there exists σ̂ ∈ f2(~πk) for which aj �σ̂ ai, and thus σ̂ /∈ fplu(~τn). Hence, we conclude f2(~πk) 6⊆ fplu(~τn).

From Theorem 3, an upper bound on the worst-case accuracy of predicting plurality using plurality gives
us an upper bound on the worst-case predictability of plurality. The same holds for veto. While Proposition 1
shows that this quantity is non-zero for k ≥ m(m − 1)/2, we show that it is still exponentially small in m
when k is small compared to n.

Theorem 4. For n ≥ (m − 1)(m − 2)/2 and k ≤ cn, where c < 1 is a constant, we have acc(fplu) =

acc(fplu, fplu) ≤ cΩ(m2) and acc(fveto) = acc(fveto, fveto) ≤ cΩ(m2).

Proof. We provide a proof for plurality. The proof for veto is similar. Note that acc(fplu) = acc(fplu, fplu) fol-
lows from Theorem 3. We now show that there exists a profile ~σn for which acc(fplu, fplu) ≤ acc(fplu, fplu, ~σn) ≤
cm.

Consider the profile ~σn in which alternative ai appears first in exactly i−1 rankings, for each i ∈ [m−1].
In every other ranking, alternative am appears first. This is feasible because n ≥ (m − 1)(m − 2)/2. Note
that for fplu(~πk) ⊆ fplu(~σn), sample ~πk must at least contain all of t = (m−1)(m−2)/2 rankings in which an
alternative from {a1, . . . , am−1} is ranked first. For k < (m−1)(m−2)/2, this happens with zero probability.
For k ≥ (m− 1)(m− 2)/2, this happens with probability at most

(
n−t
k−t
)
/
(
n
k

)
≤ (k/n)t ≤ ct.
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We conjecture that even when k = n − o(n), acc(fplu, fplu) and acc(fveto, fveto) are still O(1/m). For
k = n− 1, it is easy to see that they are in fact Θ(1/m).

Theorem 5. For k = n − 1, acc(fplu) = acc(fplu, fplu) = Θ(1/m) and acc(fveto) = acc(fveto, fveto) =
Θ(1/m).

Proof. Once again, we provide a proof for plurality. The proof for veto is similar. Assume n � m. Given
Theorem 3, we simply need to show that acc(fplu, fplu) = Θ(1/m).

First, we show the upper bound. For all i ∈ [m], define

xi =


dn/me+ 1 if i = 1

dn/me if 2 ≤ i ≤ n mod m

bn/mc if n mod m ≤ i ≤ m− 1

bn/mc − 1 if i = m

Note that this satisfies xm < xi for all i ∈ [m − 1] and
∑m
i=1 xi = n. Now, consider a profile ~σn in which

alternative ai is in the top position in xi rankings, for each i ∈ [m]. For every σ∗ ∈ fplu(~σn), we have
ai �σ∗ am for all i ∈ [m − 1]. Consider a sample ~πn−1 ∈ Sn−1(~σn). To have ai �σ̂ am for all i ∈ [m − 1]
and σ̂ ∈ fplu(~πn−1), ~πn−1 must contain all rankings of ~σn except a ranking in which am appears first. This
happens with probability (bn/mc − 1)/n = O(1/m). Hence, acc(fplu, fplu) ≤ acc(fplu, fplu, ~σn) = O(1/m).

Next, we show the lower bound. Consider any profile ~σn. For i ∈ [m], let xi denote the number of times
alternative ai appears first. Without loss of generality, assume xi ≥ xi+1 for i ∈ [m − 1]. Let i∗ be the
smallest index such that xi∗ ≥ xi∗+1 + 2 (if xi ≤ xi+1 + 1 for all i ∈ [m− 1], then let i∗ = m). It is easy to
see that xi∗ = Ω(n/m), and for any ~πn−1 ∈ Sn−1(~σn) which is obtained by removing one of the rankings in
which ai∗ appears first, fplu(~πn−1) ⊆ fplu(~σn). Hence, acc(fplu, fplu) = Ω(n/m)/n = Ω(1/m).

4 Average-Case Predictability

In the previous section, we considered the accuracy of predicting the outcome of a voting rule f1 using a
voting rule f2 in the worst case over the underlying profile ~σn, and defined acc(f1, f2) = min~σn

acc(f1, f2, σn).
In this section, we take a less pessimistic viewpoint, assume that the profile ~σn consists of n rankings

drawn iid from a known prior D, and define accD(f1, f2) = E~σn∼Dn [acc(f1, f2, ~σn)], where ~σn ∼ Dn denotes
that ~σn is drawn from the product distribution Dn.

We show that this leads to interesting phenomena even in the simplest setting with two alternatives.
Let A = {a, b}. Without loss of generality, suppose D generates a � b with probability p ≥ 1/2 and b � a
with probability 1 − p. This coincides with the Mallows model with central ranking σ∗ = a � b and noise
parameter ϕ = (1− p)/p ∈ [0, 1].

For two alternatives, all reasonable voting rules (including all positional scoring rules) coincide with
plurality, which is simply the majority rule. Hence, we fix the target voting rule as plurality (f1 = fplu). Our
goal is to predict which of a � b and b � a appears more frequently in the underlying profile ~σn. Without any
distributional information, we cannot outperform running plurality on the sample ~πk, i.e., using f2 = fplu

(Theorem 3). However, with the knowledge of the prior, the optimal rule f2 which maximizes accD(f1, f2)
computes the posterior distribution of ~σn given both sample ~πk and prior D, and returns the more likely
outcome of plurality on ~σn drawn from the posterior.

When the sample contains at least as many a � b as b � a, the optimal rule would also return a � b.
However, when the sample contains more b � a than a � b, there is tension between the sample and the
prior, and the output of the optimal rule is less clear.

Consider the extreme case in which the sample ~πk consists of k copies of b � a. If k ≥ n/2, the optimal
rule safely returns b � a. When k < n/2, the optimal rule returns b � a if Pr[fplu(~σn) = b � a|~πk] >
Pr[fplu(~σn) = a � b|~πk], but returns a � b otherwise. It is easy to show that Pr[fplu(~σn) = a � b|~πk] is
monotonically decreasing in k and in ϕ. Hence, there exists a unique ϕ∗k such that the optimal rule returns
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a � b when ϕ < ϕ∗k and returns b � a when ϕ > ϕ∗k. Further, ϕ∗k is monotonically decreasing in k. The next
result sheds more light on the relation between ϕ∗k and k. Its proof is provided in the full version.

Theorem 6. Let n ≥ 5 and n− 1 be divisible by 4. Given a sample ~πk which consists of k copies of b � a,
let ϕ∗k be such that the optimal predictor returns a � b if ϕ < ϕ∗k and b � a if ϕ > ϕ∗k. Then the following
hold.

1. For k = 1, ϕ∗k ≥ 1− 4 lnn
n+1 .

2. For k = (n− 1)/2, ϕ∗k ≤ 2
n+1 .

3. For k = (n− 1)/4, ϕ∗k ∈ [1/4, 2/3].

Proof. We begin by examining the probability of each possible underlying plurality outcome given the sam-
ples. Recall that under the prior, the probability of generating a � b is p ∈ [1/2, 1], and we have ϕ = (1−p)/p.
Given a sample ~πk which consists of k copies of b � a, we get

Pr[fplu(~σn) = a � b|~πk]

=
Pr[fplu(~σn) = a � b ∧ ~πk]

Pr[~πk]

=

∑
~σn

Pr[~σn] · Pr[fplu(~σn) = a � b ∧ ~πk|~σn]
Pr[~πk]

=

∑
~σn

Pr[~σn] · Pr[fplu(~σn)) = a � b|~σn] · Pr[~πk|~σn]
Pr[~πk]

=

∑
~σn:fplu(~σn)=a�b Pr[~σn] · Pr[~πk|~σn]

Pr[~πk]

=

∑n−1
2

i=k

(
n
i

)
pn−i(1− p)i (

i
k)
(nk)

Pr[~πk]

=

∑n−1
2

i=k

(
i
k

)(
n
i

)
ϕipn(

n
k

)
Pr[~πk]

. (5)

Similarly, we conclude that:

Pr[fplu(~σn) = b � a|~πk] = =

∑n

i=n+1
2

(
i
k

)(
n
i

)
ϕipn(

n
k

)
Pr[~πk]

. (6)

Recall that ϕ∗k is the unique value which satisfies Pr[fplu(~σn) = a � b|~πk] = Pr[fplu(~σn) = b � a|~πk], i.e.,

n−1
2∑
i=k

(
i

k

)(
n

i

)
(ϕ∗k)i =

n∑
i= n+1

2

(
i

k

)(
n

i

)
(ϕ∗k)i.

Case 1: k = 1. We want to show that ϕ∗k ≥ 1− 4 lnn
n+1 . Hence, it is sufficient to show that for all ϕ < 1− 4 lnn

n+1 ,

n−1
2∑
i=k

(
i

k

)(
n

i

)
ϕi >

n∑
i= n+1

2

(
i

k

)(
n

i

)
ϕi.
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For k = 1, this reduces to

n−1
2∑
i=1

(
n

i

)
· i · ϕi >

n∑
i= n+1

2

(
n

i

)
· i · ϕi

⇔

n−1
2∑
i=1

(
n

i

)
·
(
iϕi − (n− i)ϕn−i

)
> nϕn.

A sufficient condition for this to hold is that

iϕi − (n− i)ϕn−i > 0,∀i ∈ [(n− 1)/2]

and
n− 1

2
ϕ

n−1
2 − n+ 1

2
ϕ

n+1
2 ≥ nϕn.

For the former condition, it is sufficient to have

n− 1

2
ϕ

n−1
2 − n+ 1

2
ϕ

n+1
2 > 0

⇔ ϕ <
(n− 1)/2

(n+ 1)/2
= 1− 2

n+ 1
.

This is true because ϕ < 1− 4 lnn/(n+ 1). We can simplify the latter condition to

n− 1

2
≥ n+ 1

2
ϕ+ nϕ

n+1
2 .

For ϕ ≤ 1− 4 lnn
n+1 , we have

n+ 1

2
ϕ+ nϕ

n+1
2 ≤ n+ 1− 4 lnn

2
+ ne−

4 lnn
n+1 ·

n+1
2

=
n+ 1− 4 lnn

2
+ 1 ≤ n− 1

2
,

where the first transition holds because 1 − x ≤ e−x for all x, and the last transition holds when lnn ≥ 1,
which is true for n ≥ 3.

Case 2: k = (n − 1)/2. In this case, we want to show ϕ∗k ≤ 2/(n + 1). It is sufficient to show that for all
ϕ > 2/(n+ 1),

n−1
2∑
i=k

(
i

k

)(
n

i

)
ϕi <

n∑
i= n+1

2

(
i

k

)(
n

i

)
ϕi.

For k = (n− 1)/2, this reduces to (
n
n−1

2

)
ϕ

n−1
2 <

n∑
i= n+1

2

(
i

n−1
2

)(
n

i

)
ϕi.

It suffices to show that (
n
n−1

2

)
ϕ

n−1
2 <

(n+1
2

n−1
2

)(
n
n+1

2

)
ϕ

n+1
2 .

Upon simplification, it is easy to see that this is true when ϕ > 2
n+1 .
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Case 3: k = (n− 1)/4. In this case, we want to show that ϕ∗k ∈ [1/4, 2/3]. It is sufficient to show that

n−1
2∑

i= n−1
4

(
i

n−1
4

)(
n

i

)
ϕi >

n∑
i= n+1

2

(
i

n−1
4

)(
n

i

)
ϕi, ∀ϕ < 1/4, (7)

and
n−1
2∑

i= n−1
4

(
i

n−1
4

)(
n

i

)
ϕi <

n∑
i= n+1

2

(
i

n−1
4

)(
n

i

)
ϕi, ∀ϕ > 2/3. (8)

We show each inequality separately.

Case 3a: ϕ < 1/4. For Equation (7), it suffices to show that for all ϕ < 1/4 and i ∈
{

0, 1, . . . , n−1
4

}
, we

have (
n−1
2
− i

n−1
4

)(
n

n−1
2
− i

)
ϕ

n−1
2

−i >(
n+1
2

+ 2i
n−1
4

)(
n

n+1
2

+ 2i

)
ϕ

n+1
2

+2i

+

(
n+1
2

+ 2i+ 1
n−1
4

)(
n

n+1
2

+ 2i+ 1

)
ϕ

n+1
2

+2i+1

⇐ 1 >
(n−1

2
+ i+ 1) · · · (n−1

2
− 2i+ 1)

(n−1
4

+ 2i+ 1) · · · (n−1
4
− i+ 1)

(
1

4

)3i+1

+
(n−1

2
+ i+ 1) · · · (n−1

2
− 2i)

(n−1
4

+ 2i+ 2) · · · (n−1
4
− i+ 1)

(
1

4

)3i+2

We show that both terms of the right hand side are less than 1/2 and the inequality follows. First, for
i ∈
{

0, . . . , n−1
4

}
, we have (

n− 1

4
+ 2i+ 1

)
· 1

2
>

(
n− 1

2
+ i+ 1

)
· 1

4
,

and for i ∈
{

0, . . . , n−1
4

}
and j ∈ [3i], we have

n− 1

4
+ 2i+ 1− j >

(
n− 1

2
+ i+ 1− j

)
· 1

4
.

This shows that the first term is less than 1/2. To show that the second term is less than 1/2, it is sufficient
to notice that for i ∈

{
0, . . . , n−1

4

}
,(
n− 1

4
+ 2i+ 2

)
· 1

2
>

(
n− 1

2
+ i+ 1

)
· 1

4
,

and for i ∈
{

0, . . . , n−1
4

}
and j ∈ [3i+ 1],

n− 1

4
+ 2i+ 2− j >

(
n− 1

2
+ i+ 1− j

)
· 1

4
.

Case 3b: ϕ > 2/3. We now show Equation (8) for ϕ = 2/3. Then, the equation clearly holds for ϕ > 2/3.

12



First, note that for i ∈
{

0, . . . , n−1
4 − 1

}
, it holds that

(n+1
2 + i
n−1

4

)(
n

n+1
2 + i

)(
2

3

)n+1
2 +i

≥

(n−1
2 − i
n−1

4

)(
n

n−1
2 − i

)(
2

3

)n−1
2 −i

⇔
(

2

3

)2i+1

≥
(
n−1

4 + i+ 1
)
. . .
(
n−1

4 − i+ 1
)(

n−1
2 + i+ 1

)
. . .
(
n−1

2 − i+ 1
) .

This is because for each j ∈ {0, . . . , 2i}, we have

2

3
·
(
n− 1

2
+ i+ 1− j

)
≥ n− 1

4
+ i+ 1− j.

Next, we argue that (
3n+1

4
n−1
4

)(
n

3n+1
4

)(
2

3

) 3n+1
4

+

(
3n+1

4
+ 1

n−1
4

)(
n

3n+1
4

+ 1

)(
2

3

) 3n+1
4

+1

>

(
n
n−1
4

)(
2

3

)n−1
4

⇔
(
3n+1

4

)
. . .
(
n+1
2

+ 1
)

(n−1
4

)!
(
2

3
)
n+1
2

+

(
3n+1

4

)
. . .
(
n+1
2

+ 2
)

(n−1
4
− 1)!

(
2

3
)
n+1
2

+1 > 1.

To prove this, we show that the first term on the LHS is greater than 7/8, and the second term on the LHS
is greater than 1/8. First, we notice that(

2

3

)3

· 3n+ 1

4
>

7

8
·
(
n− 1

4

)
.

Next, for each j ∈ [n−1
4 − 1], (

2

3

)2

·
(

3n+ 1

4
− j
)
>
n− 1

4
− j.

This is sufficient to show that the first term is greater than 7/8. For the second term, note that(
2

3

)6

· 3n+ 1

4
>

1

8
·
(
n− 1

4
− 1

)
,

and for each j ∈ [n−1
4 − 2], (

2

3

)2(
3n+ 1

4
− j
)
>
n− 1

4
− 1− j.

Thus, the second term is greater than 1/8. This concludes the proof.

Let us consider the implications of Theorem 6 as n→∞. The first part implies that if we observe only a
single b � a sample, we should predict a � b for any ϕ < 1. This makes sense because the n− 1 unobserved
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votes vastly overshadow the single observed vote, and the prior places at least somewhat more probability
on a � b than on b � a.

The second part implies that if we observe (n− 1)/2 votes (just a little less than a majority), we should
predict b � a for any ϕ > 0. This again makes sense because the probability that there is at least one b � a
in the remaining (n+ 1)/2 votes — sufficient to make b � a the plurality outcome on the original profile —
approaches 1.

The final part shows that the transition between ϕ∗k ≈ 0 and ϕ∗k ≈ 1 is not sudden; for k = (n − 1)/4,
the transition happens at ϕ∗k that is not arbitrarily close to either endpoint when n is large.
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Figure 1: Average-case predictability of different voting rules f1 (rows) using different voting rules f2

(columns) under the uniform distribution (top) and the Mallows model with ϕ = 1/3 (bottom) with k = 50
(left) and k = 500 (right).
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Figure 2: Average-case predictability of different voting rules as a function of the number of samples k,
under the Mallows model with ϕ = 1/3 (left) and under the uniform distribution (right).
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5 Experiments

In this section, we conduct experiments to measure the predictability of popular voting rules in the average
case.3 We consider profiles ~σn with n = 1, 000 voters and m = 5 alternatives. We use two distributions
to draw i.i.d. rankings in ~σn: the Mallows model with ϕ = 1/3 (in short, “Mallows distribution”) and the
uniform distribution. The former is more concentrated than the latter. We average our results across 106

draws of profile ~σn.
Figure 1 shows the average predictability of different voting rules f1 (rows) using different voting rules

f2 (columns), under the uniform distribution (tables on the top) and under the Mallows distribution (tables
on the bottom), with k = 50 (tables on the left) and with k = 500 (tables on the right).4 The entries in
the table indicate the percentage of instances on which prediction was successful. Generally, we observe
that prediction accuracy increases as the prior becomes more concentrated and as the number of samples k
increases, as expected. We also note a few peculiarities. Under the uniform distribution with k = 50, the
harmonic rule is the best predictor of every voting rule (except Bucklin), although the prediction accuracy
is small. As k increases to 500, however, each voting rule (except Copeland and maximin) becomes the
best predictor of itself. Under the Mallows distribution, it is evident that Borda, Bucklin, Copeland, and
the harmonic rule predict other voting rules well — often because they return fewer ties — while maximin,
plurality, STV, and veto perform worse.

Figure 2 shows the average-case predictability of different voting rules f1 (using the best voting rule
f2 from the same list) as a function of the number of samples, under the Mallows distribution (left) and
under the uniform distribution (right). Once again, more concentrated prior and more samples allow greater
predictability. The effect of the prior is significant: under the Mallows distribution, observing just 3% of
the votes allows predicting every voting rule with at least 98% accuracy, while the same number of samples
under the uniform distribution does not allow predicting any voting rule with more than 4% accuracy.

6 Discussion

Predicting election outcomes using limited information is a broad research agenda, and while our work makes
progress towards painting the full picture, there are a number of areas yet unexplored. The most immediate
direction is to fill the gaps in our results, e.g., analyzing the accuracy of plurality and veto predicting
themselves (Theorems 4 and 5) for all values of k, and extending the average-case analysis to heterogeneous
samples, all values of k, and more than two alternatives. The next step would be to study other voting
rules (e.g. Copeland’s or Kemeny’s method) and other models of sampling votes (e.g. when each voter i
independently participates in the poll with probability pi).

While Theorems 1 and 2 paint an extremely pessimistic picture of predictability of positional scoring
rules, this could be because we want to predict the entire ranking of alternatives returned by the rule. This
is indeed what is required in several real-world applications, e.g., Borda count is used to rank college football
teams in the Associated Press poll [16] and to rank students in MOOCs [8]. But sometimes we may be
interested in predicting only the top alternative. Could this lead to more optimistic results? The answer is
yes and no. In the appendix, we show that the worst-case accuracy of predicting the Borda count winner
using Borda count itself is still zero. But the case of the r-approval rule is more optimistic.

Finally, we can also consider the use of limited information to make good collective decisions in other
frameworks of voting. For example, in the implicit utilitarian voting framework [21, 5], where the goal is to
find an alternative with small distortion, how small can we make the expected distortion given only sampled
votes?

3Refer to the book by Brandt et al. [6] for definitions.
4For the Bucklin rule, we define the Bucklin score of an alternative as the smallest t such that a majority of voters rank

the alternative in the first t positions. Alternatives are first compared by their Bucklin score (lower is better), and alternatives
with the same Bucklin score t are compared by the number of voters who rank them in the first t positions (higher is better).
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Appendix

A Winner Prediction

Theorem 7. Let n ≥ 2, m ≥ 4, and k ∈ [n − 1] such that n and k have different parity. Then,
acc(fBorda, fBorda) = 0, where fBorda denotes Borda count.

Proof. We consider cases of even and odd k and for each case we construct a profile on which Borda count
cannot predict its own winner.
Odd n, even k: We start with the case where n is odd and k is even. Consider the following profile ~σn.
Each row represents a ranking where alternatives are listed from left to right in the most preferred to least
preferred order. The first two rankings appear (n − 1)/2 times each, and the third ranking appears once.
Alternatives not shown appear in an arbitrary order in the bottom.

n−1
2 votes a1 � a3 � a2 � a4 � . . .

n−1
2 votes a4 � a2 � a3 � a1 � . . .

1 vote a3 � a1 � a4 � a2 � . . .

We denote with σ1, σ2 and σ3 the ranking of the first, second and third rows, respectively. Under Borda
rule, clearly winner is a3.

We show that for every sample ~πk ⊂ ~σn of size k, fBorda(~πk) 6= {a3}. Let x1, x2, and x3 denote the
number of times σ1, σ2, and σ3 appear in ~πk, respectively. Note that x3 ∈ {0, 1}.
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In order for a3 to be the unique winner under fBorda on ~πk, it must defeat a1. Hence, we need

x1 · (m− 2) + x2 · (m− 3) + x3 · (m− 1)

> x1 · (m− 1) + x2 · (m− 4) + x3 · (m− 2)

⇒ x2 + x3 > x1.

Similarly, a3 must also defeat a4. Hence, we also need

x1 · (m− 2) + x2 · (m− 3) + x3 · (m− 1)

> x1 · (m− 4) + x2 · (m− 1) + x3 · (m− 3)

⇒ x1 + x3 > x2.

Given x1 + x3 > x2 and x2 + x3 > x1, we can derive x3 > 0, i.e., x3 = 1. But then, we have x1 + 1 > x2

and x2 + 1 > x1, which implies x1 = x2. In this case, |~πk| = x1 + x2 + 1 is odd, which contradicts the fact
that k is even.

Even n, odd k: We now consider the case of even n and odd k. Consider the following profile ~σn.

n−1
2 votes a1 � a3 � a2 � a4 � . . .

n−1
2 votes a4 � a2 � a3 � a1 � . . .

1 vote a3 � a2 � a1 � a4 � . . .

1 vote a4 � a2 � a1 � a3 � . . .

We again denote with σ1, σ2, σ3 and σ4 the rankings in rows 1, 2, 3 and 4, respectively. When Borda count
is applied on ~σn, clearly a2 is the unique winner.

We now argue that for every sample ~πk ⊂ ~σn of size k, fBorda(~πk) 6= {a2}. Again, let x1, x2, x3, and x4

denote the number of times σ1, σ2, σ3, and σ4 appear in ~πk, respectively. Note that x3, x4 ∈ {0, 1}. In order
for a2 to be the unique winner under fBorda on ~πk, it must defeat a3. Hence, we need

x1 · (m− 3) + x2 · (m− 2) + x3 · (m− 2) + x4 · (m− 2)

> x1 · (m− 2) + x2 · (m− 3) + x3 · (m− 1) + x4 · (m− 4)

⇒ x2 + 2 · x4 > x1 + x3. (9)

Similarly, a2 must also defeat a4. Hence, we also need

x1 · (m− 3) + x2 · (m− 2) + x3 · (m− 2) + x4 · (m− 2)

> x1 · (m− 4) + x2 · (m− 1) + x3 · (m− 4) + x4 · (m− 1)

⇒ x1 + 2 · x3 > x2 + x4. (10)

Case 1: x3 = x4 = 0. From Equation (9), we obtain x2 > x1, while from Equation (10), we obtain x1 > x2,

which is clearly a contradiction.

Case 2: x3 = 1 and x4 = 0. From Equation (9), we obtain x2 > x1 + 1, while from Equation (10), we
obtain x1 + 2 > x2, which is a contradiction.

Case 3: x3 = 0 and x4 = 1. This case leads to a contradiction in a manner similar to Case 2, so we omit
the details.

Case 4: x3 = 1 and x4 = 1. From Equation (9) we obtain that x2 + 2 > x1 + 1, while from Equation (10)
we obtain x1 + 2 > x2 + 1. This means that x1 = x2, which implies |~πk| = x1 + x2 + 2 is even, which in turn
contradicts the fact that k is odd.
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Theorem 8. For r ∈ [m−1] and k ≥ r, we have acc(fr-app, fr-app) > 0, where fr-app denotes the r-approval
voting rule.

Proof. Fix r ∈ [m − 1] and k ≥ r. Consider any profile ~σn. Let W = fr-app(~σn) denote the set of winners
under fr-app on ~σn, and let W̄ = A \W . Let xi denote the r-approval score of ai in ~σn for each i ∈ [m].

We now show that there exists a sample ~πk ∈ Sk(~σn) such that fr-app(~πk) ⊆ fr-app(~σn). Without loss of
generality, assume that a1 ∈W . Hence, we have x1 > xj for all aj ∈ W̄ .

Let ~ρ ⊆ ~σn denote the subset of votes in which a1 is approved (i.e. it appears in the top r positions). If
k ≥ |~ρ|, then we can simply choose an arbitrary ~πk ∈ Sk(~σn) such that ~ρ ⊆ ~πk. In this case, the score of a1

would be exactly equal to x1 = |~ρ|, while the score of any aj ∈ W̄ will be at most xj < x1. This implies
fr-app(~πk) ⊆W , as desired.

Now, suppose r ≤ k ≤ |~ρ|. Note that the previous argument establishes that for k = |~ρ|, we can use
~πk = ~ρ, and have fr-app(~πk) ⊆ W . For k < |~ρ|, we show that one can start from ~ρ, and iteratively remove
one vote at a time — until k votes remain — such that the set of winners is always a subset of W .

More specifically, we show that given k ≥ r, and any ~πk+1 ⊆ ~ρ with |~πk+1| = k+1 and fr-app(~πk+1) ⊆W ,
there exists ~πk ⊂ ~πk+1 with |~πk| = k and fr-app(~πk) ⊆W .

Suppose this is false for some ~πk+1. That is, removing any single ranking from ~πk+1 results in at least
one alternative from W̄ becoming a winner. For each σ ∈ ~πk+1, let us denote ~πσk = ~πk+1 \ {σ} and
S(σ) = fr-app(~πσk ) ∩ W̄ . Then, our assumption implies that S(σ) 6= ∅ for each σ ∈ ~πk+1.

We further show that S(σ) ∩ S(σ′) = ∅ for distinct σ, σ′ ∈ ~πk+1.5 Note that for each aj ∈ S(σ), aj is a
winner under ~πσk but not under ~πk+1. Also, note that the r-approval score of a1 under ~πσk and ~πk+1 is k and
k + 1, respectively, since ~πk+1 ⊆ ~ρ. Hence, it must be the case that aj is approved in every ranking in ~πσk
but not in σ. Hence, aj /∈ S(σ′) for every other ranking σ′ in ~πk+1.

Finally, let us partition W̄ into two sets Swin and Slose such that Swin = ∪σ∈~πk+1
S(σ) and Slose = W̄ \Swin.

Let t = minσ∈~πk+1
|S(σ)|. Then, |Swin| ≥ t · (k + 1). Further, consider a ranking σ ∈ ~πk+1 under which

exactly t of the unapproved alternatives are in Swin. In this ranking, the remaining m − r − t unapproved
alternatives must be in Slose. Hence, |Slose| ≥ m− r− t. Thus, we have W̄ ≥ t · (k+ 1) +m− r− t. However,
since a1 ∈W , we also have W̄ ≤ m− 1. Combining the two inequalities, we get

t · (k + 1) +m− r − t ≤ m− 1⇒ t · k ≤ r − 1

⇒ k ≤ r − 1,

where the last inequality holds because t ≥ 1 (since S(σ) 6= ∅ for each σ ∈ ~πk+1). However, this is a
contradiction since we assumed k ≥ r.

It is easy to notice that the lower bound of r is tight. For example, consider the following preference
profile with m alternatives and r votes.

Approved Not Approved

a1 � a2 � a3 � . . . � ar ar+1 � ar+2 � . . . � am
a1 � ar+1 � a2 � . . . � ar−1 ar � ar+2 � . . . � am
...

...

a1 � a3 � a4 � . . . � ar+1 a2 � ar+2 � . . . � am

Basically, alternative a1 is approved in each vote, and in each of the r votes, a distinct subset of r − 1
alternatives from the set {a2, . . . , ar+1} of r alternatives is approved. It is easy to check that a1 is the unique
r-approval winner on this profile. However, there is no subset of r− 1 (or fewer) votes under which a1 is the
unique r-approval winner.

5Here, even two copies of the same ranking are referred to as distinct.
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