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Abstract

We revisit the classic problem of estimating
the population mean of an unknown single-
dimensional distribution from samples, taking a
game-theoretic viewpoint. In our setting, sam-
ples are supplied by strategic agents, who wish
to pull the estimate as close as possible to their
own value. In this setting, the sample mean gives
rise to manipulation opportunities, whereas the
sample median does not. Our key question is
whether the sample median is the best (in terms
of mean squared error) truthful estimator of the
population mean. We show that when the under-
lying distribution is symmetric, there are truthful
estimators that dominate the median. Our main
result is a characterization of worst-case opti-
mal truthful estimators, which provably outper-
form the median, for possibly asymmetric distri-
butions with bounded support.

1. Introduction
A central problem in statistics deals with estimating the
population mean of an unknown distribution D given
n samples x1, . . . , xn drawn i.i.d. from the distribu-
tion (Fisher, 1925; Lehmann & Casella, 1998). Clas-
sic results show that, not surprisingly, the sample mean
(1/n)

∑
i xi is a good estimator for the population mean. It

is unbiased and often minimizes a popular risk function—
the mean squared error (MSE)—that measures the error of
an estimator by the expected square of the distance between
the estimate and the population mean (Lehmann & Casella,
1998).
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However, from the game-theoretic viewpoint, the sample
mean suffers from serious incentive issues when the in-
put samples are provided by (and are the private informa-
tion of) self-interested individuals. To illustrate this, imag-
ine a setting where we want to set a common temperature
throughout a building with many occupants. Each occupant
has an ideal temperature in mind, and our goal is to set the
temperature to be the mean of the distribution representing
the occupants’ ideal temperatures.1 We ask the occupants
to fill out a survey, which is completed by n (arguably ran-
dom) respondents, and use the sample mean to set the com-
mon temperature. The difficulty is that, for example, an oc-
cupant who prefers a relatively high temperature can easily
manipulate the outcome by lying about her ideal tempera-
ture and reporting a much higher value, thereby pulling the
sample mean closer to her desired ideal temperature.

This simple example is representative of a much broader
phenomenon. Indeed, machine learning based algorithms
now govern many aspects of our daily lives. Their power
stems from data, but when it comes from strategic sources
and incentives are not correctly aligned, the data will in-
evitably be contaminated, and any statistical properties
the algorithms possess in the non-strategic setting will be
worthless. This has led a number of researchers in machine
learning, algorithmic game theory, and economics to ex-
plore the role of incentives in machine learning and statis-
tics; see Section 1.2 for a brief survey. The current paper
contributes to this line of research by addressing the issue
of strategic behavior in the ubiquitous statistical problem of
estimating the mean of a single-dimensional distribution.

Going back to our illustrative example, one approach that is
known to prevent any incentives for manipulation is to take
the median (rather than the mean) of the elicited samples.
Why? If an occupant’s ideal temperature is higher than

1This is in the spirit of the Predicted Mean Vote (PMV) model
of thermal comfort (Fanger, 1970).
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the median, submitting a value higher than her ideal tem-
perature will have no effect, and submitting a value lower
than the ideal temperature can only reduce the median, thus
pushing it farther away from the occupant’s ideal tempera-
ture. A symmetric argument works if the occupant’s ideal
temperature is lower than the median. It is clear that no
occupant can report false inputs to bring the sample me-
dian closer to her ideal temperature—regardless of what the
other occupants report. We refer to estimators that exhibit
such immunity to manipulation as truthful estimators.

Remarkably, the truthfulness of the sample median some-
times comes at a small cost in terms of loss of statistical
efficiency. For instance, if the underlying distribution is a
Gaussian with variance σ2, the MSE of the sample mean
is σ2/n (which is known to be optimal among all estima-
tors), and the MSE of the sample median is larger by only a
small constant factor—approximately (π/2)·σ2/n (Fisher,
1925). This observation motivates our main research ques-
tion, which is simple yet previously unasked:

Is the sample median the most statistically efficient (in
terms of mean squared error) truthful estimator of the
population mean?

1.1. Our Results

The starting point of our analysis is a powerful, clas-
sic result at the intersection of game theory and social
choice (Moulin, 1980): the only way to elicit and aggre-
gate n private inputs truthfully (subject to additional mild
requirements) is to take the median of 2n−1 values—the n
elicited values and n− 1 predetermined “phantom” values.
Originally proved in a non-statistical domain completely
different from ours, this result applies to our domain and
yields a characterization of truthful estimators. However,
at first glance the role of phantom values is unclear in our
domain of statistical estimation.

Our first result (Proposition 3.4) surprisingly shows that
there is a way to set the values of the phantoms, in the
absence of any information about the underlying distribu-
tion, that is guaranteed to be at least as good as the sam-
ple median on any symmetric distribution in terms of mean
squared error, and strictly better under mild conditions.

Our main result (Theorem 4.5) extends the analysis to pos-
sibly asymmetric distributions but with a known bounded
support, which we assume to be [0, 1] without loss of gen-
erality. In this case, there do not exist truthful estimators
that are always better than the sample median (and vice
versa). We thus use the well-established principle of mini-
max mean squared error (Perron & Marchand, 2002). The-
orem 4.5 fully characterizes truthful estimators achieving
the minimax mean squared error of 1/16 in the limit as the
number of samples grows. Interestingly, the sample median
achieves a far worse mean squared error of 1/4.

1.2. Related Work

As mentioned above, there are several papers that study
fundamental learning tasks in settings that involve strate-
gic agents, either as providers of sampled data or as experts
responding to the data (Dalvi et al., 2004; Perote & Perote-
Peña, 2004; Dekel et al., 2010; Meir et al., 2012; Horel
et al., 2014; Cai et al., 2015; Cummings et al., 2015; Hardt
et al., 2016). Here we discuss the most closely related ones.

Dekel et al. (2010) study truthful algorithms for regression
learning, where the labels for examples (which are sam-
pled from an underlying distribution) come from strategic
agents, who want the output to be as close as possible to
their own beliefs. Dekel et al. are interested in minimiz-
ing a given loss function with respect to examples drawn
from the underlying distribution (rather than with respect
to a summary statistic, like in our case). They give spe-
cial attention to the case where each agent controls a single
point, and focus on deriving conditions that guarantee that
empirical risk minimization is truthful. Mapping these re-
sults to our setting (by setting the function class to be con-
stant functions, and the loss function to be absolute loss or
squared loss) would simply imply that the median is truth-
ful, while the mean is not.

Similarly to Dekel et al. (2010), Perote and Perote-
Peña (2004) design truthful estimators for linear regression
when samples are controlled by strategic agents, but in a
non-statistical setting. In contrast, in our setting the family
of all truthful estimators is well understood (Moulin, 1980).

Another recent example is the paper of Cai et al. (2015),
who study a truthful estimation setting, focusing also on
problems like linear regression. Their setting is fundamen-
tally different from ours on both the conceptual and tech-
nical levels. Indeed, they imagine a statistician who wants
to incentivize workers to exert an effort, and the workers
want to maximize payment minus effort. In contrast, in our
setting the individuals are interested in the outcome of the
estimation process itself—this allows us to obtain positive
results without the use of monetary incentives.

2. Model and Truthful Estimators
In our model there exists an unknown distribution D over
the reals. There are n individuals, and each individual i
holds a sample xi drawn from D. Our goal is to design a
univariate estimator g : Rn → R that takes these samples
as input, and returns an estimate for a parameter θ (e.g.,
the population mean) of the underlying distribution. Here-
inafter, the estimators are univariate.

In the absence of additional structure, this is a classic prob-
lem that has been studied extensively in the statistics and
machine learning literature. We study a setting where each
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individual i is strategic and her goal is to bring the fi-
nal estimate close to her sample xi (which is her private
value). In order to facilitate this, she may manipulate and
report a number x̂i different from xi. The behavior of
each individual i can be explained through a utility func-
tion ui : R→ R (unknown to the estimator) that describes
the utility derived as a function of the value of the final es-
timate. A typical assumption in the game theory literature
is that these single-dimensional utilities are single-peaked
around the private value xi (Nisan et al., 2007). Informally,
this means that the farther the estimate from xi (in either
direction) the lower the utility derived. Formally, for all
a ≤ b ≤ xi and for all a ≥ b ≥ xi, we must have
ui(a) ≤ ui(b) ≤ ui(xi).

In this case, our goal is to find a truthful estimator of
θ that incentivizes the individuals to report their samples
truthfully, assuming they have single-peaked utilities. The
attention to truthful estimators can be justified via the
well-known revelation principle (Gibbard, 1973): for ev-
ery non-truthful estimator, there exists an estimator that
takes the inputs, performs the optimal manipulation on be-
half of the individuals, and then passes the manipulated
input to the non-truthful estimator. This new estimator
is clearly truthful, and gives the same output as the non-
truthful estimator does with manipulated inputs. This gen-
eral principle allows us to restrict our search space to that
of truthful estimators. Formally, we say that an estima-
tor g : Rn → R is truthful (a.k.a. strategyproof ) if
for all x = (x1, . . . , xn) ∈ Rn, i ∈ {1, . . . , n}, and
x′i ∈ R, we have ui(g(x)) ≥ ui(g(x−i, x

′
i)) for all util-

ity functions ui that are single-peaked around xi. Here,
x−i = (x1, . . . , xi−1, xi+1, . . . , xn).

Moulin (1980) provides a full characterization of truthful
aggregation functions in single-dimensional social choice
settings. Specifically, he is interested in settings where the
single-peaked preferences of the individuals are private but
fixed (i.e., there is no underlying distribution). For exam-
ple, one can imagine the peaks xi to be positions of the
employees of a startup on the question of how high their
common wage should be; in this case, the function g would
return a joint decision regarding the wage. Below we refor-
mulate the results of Moulin in the language of estimators.

The main result of Moulin’s paper is actually a characteri-
zation of truthful estimators that satisfy two additional in-
tuitive conditions. We say that an estimator g is range-
respecting if for all x ∈ Rn, we have min(x) ≤ g(x) ≤
max(x).2 We say that an estimator is anonymous if per-
muting the samples does not change the output. In other
words, the estimator is a function of the set of samples, and
does not depend on their indices. Moulin (1980) identified

2This leads to Pareto efficiency in the social choice setting of
Moulin (1980), but is an equally intuitive axiom for estimators.

(actually, characterized) the class of truthful, anonymous,
and range-respecting estimators as generalized medians.
Definition 2.1. A generalized median of n sam-
ples is parametrized by α1, . . . , αn−1 ∈ R ∪
{+∞,−∞} (called phantoms), and is given by
med(x1, . . . , xn, α1, . . . , αn−1), where med is the standard
median. That is, every generalized median is the median
of 2n − 1 values: n samples and n − 1 predetermined
phantoms.
Lemma 2.2 (Moulin (1980), reformulated). An estimator
is truthful, anonymous, and range-respecting if and only if
it is a generalized median.

Moulin’s characterization is extremely powerful due to its
generality: it does not depend on the parameter to be esti-
mated, the loss function used to measure the error, or the
underlying distribution (in fact, as mentioned above, it is
formulated in a setting where the private values are not
drawn from a distribution). We discuss its other potential
applications in Section 5.

In order to develop intuition for Moulin’s characterization,
we give an example of a family of truthful estimators.
Example 2.3 (Order Statistics as Generalized Medians).
Given x = (x1, . . . , xn) ∈ Rn, let x(1), . . . , x(n) be a per-
mutation such that x(i) ≤ x(i+1) for i ∈ {1, . . . , n − 1}.
Then, x(i) is known as the ith order statistic. Estimator
g(x) = x(i) is a generalized median in which n − i phan-
toms are placed at −∞ and i − 1 phantoms are placed at
∞. For odd n, the sample median med(x) = x(n+1)/2 is
recovered by placing an equal number of phantoms at −∞
and ∞. For even n, the standard definition (see Cabrera
et al., 1994) of the median (x(n)+x(n+1))/2 is not truthful.
We need to use either the left-median med`(x) = x(n/2) or
the right-median medr (x) = x(n/2+1), obtained by placing
n/2 phantoms at −∞ and n/2− 1 at∞, or vice versa.

While generalized medians can estimate certain parameters
very well (e.g., sample median is often a good estimator of
the population median), it is unclear how well they can es-
timate the population mean of the underlying distribution.
In this paper we focus on studying and designing truthful
estimators for estimating the population mean. We measure
the loss by the mean squared error.

More formally, let us denote the mean of a distribution D
by µ(D). Given n i.i.d. samples drawn from D, the mean
squared error (MSE) of estimator g for estimating µ(D) is
given by

MSE(g,D) = Ex1,...,xn∼D[(g(x1, . . . , xn)− µ(D))2].

For many distributions, the best estimator for the popula-
tion mean in terms of MSE is the sample mean, but it is
not truthful. Our goal is to pinpoint the optimal truthful
estimators.
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3. Symmetric Distributions
In this section, we study the case of symmetric distribu-
tions. This is an interesting case because for symmet-
ric distributions, the population mean coincides with the
population median, making the sample median an attrac-
tive choice. Surprisingly (to us), our result in this section
(Proposition 3.4) shows that the median is, in fact, not an
optimal truthful estimator.

Definition 3.1. A distribution D with PDF f : R → R
is called symmetric if there exists a point µ ∈ R such that
f(µ− δ) = f(µ+ δ) for all δ ∈ R.

Note that the point of symmetry µ is also the population
mean and the population median of D. This enforces a
simple structure on the performance of order statistics: or-
der statistics that are closer to the median dominate those
that are farther.

Definition 3.2. Estimator g1 is said to be dominated by
estimator g2 for a family of distributionsD if MSE(g1, D) ≥
MSE(g2, D) for all D ∈ D.

Domination is an extremely strong comparison between
two estimators. Note that not every pair of estimators are
comparable in terms of domination (see the discussion af-
ter Proposition 3.4)—but order statistics are comparable, as
the following lemma shows. Its proof is in the appendix.

Lemma 3.3. For the familyDsym of symmetric distributions
and for t ≤ (n − 1)/2, the tth order statistic is dominated
by the (t+ 1)th order statistic, and the (n− t+ 1)th order
statistic is dominated by the (n− t)th order statistic. Con-
sequently, for odd n the median and for even n the left and
the right medians dominate all order statistics for Dsym.

In the proof of the lemma, note that the median achieves a
strictly lower MSE than all other order statistics if the PDF
of the underlying symmetric distribution is positive every-
where. Lemma 3.3 establishes that the optimal placement
of phantoms in {−∞,∞} is given by the median. Can we,
however, outperform the median by placing phantoms on
(finite) real values? At first glance, this seems impossible.
Recall that we need to fix our estimator—and thus the loca-
tions of the phantoms—before we see the samples. In con-
trast to the original social choice setting (Moulin, 1980),
where the phantoms have an intrinsic meaning (the n inputs
represent individual preferences and the n − 1 phantoms
represent societal preferences), in our setting the phantoms
are purely a tool for better estimating the population mean.3

So the key question is: where should we place the phan-

3In situations such as the thermal comfort voting example
from the introduction, the phantoms can represent societal pref-
erences about energy consumption, etc. However, the goal of this
paper is to study whether they can be used purely to achieve better
statistical guarantees.

toms in the absence of any information about the distribu-
tion? We show that for an even n, placing a single phantom
anywhere in R and n/2 − 1 phantoms at −∞ and∞ each
dominates the (left/right) median, and thus, by Lemma 3.3,
every order statistic; the proof is given in the appendix.

Proposition 3.4. Let Dsym denote the family of symmetric
distributions and n ∈ N be even. For x = (x1, . . . , xn)
and α ∈ R, define gα(x) = med(x1, . . . , xn, α). Then, for
every α ∈ R, gα dominates all the order statistics forDsym.

Once again, in the proof of the proposition, we have a strict
inequality in the form MSE(gα, D) < MSE(med`, D) =
MSE(medr , D) if the PDF of D is positive everywhere.

Lemma 3.3 and Proposition 3.4 paint a rather clear picture
for the case of symmetric distributions: The median dom-
inates all the order statistics (generalized medians with no
real-valued phantoms), and for the case of even n, every
generalized median with a single real-valued phantom (and
an equal number of phantoms on −∞ and ∞) dominates
the median. As an example, Figure 3(a) (in the appendix)
shows the improvement of gα over the median as a function
of α, when the underlying distribution is a standard Gaus-
sian. Figure 3(b) (in the appendix) shows the maximum
improvement as a function of n.

Ideally we would like to extend the analysis to generalized
medians with multiple real-valued phantoms. But it turns
out that these rules are incomparable to the median in the
strong sense of domination. For example, consider the gen-
eralized median of n samples in which all the n − 1 phan-
toms are placed at 0. It has a strictly lower MSE than the
median when the true mean happens to be at 0, but a strictly
higher MSE if the true mean happens to be sufficiently far
from 0.

Therefore, we adopt a weaker yet well-established notion
of comparison between estimators, which relies on their
worst-case error (Perron & Marchand, 2002).

Definition 3.5. The maximum mean squared error of an
estimator g for a family of distributions D is defined as
MMSE(g,D) = supD∈D MSE(g,D). An estimator is called
a minimax estimator for D if it minimizes the MMSE on D
among all estimators. We say that an estimator is a min-
imax truthful estimator for D if it is truthful, and it mini-
mizes the MMSE on D among all truthful estimators.

One caveat is that taking the worst-case over the family
of all symmetric distributions results in an infinite error
for every estimator. Hence, we take the worst-case over
subfamilies created by fixing a symmetric distribution and
translating it along the real line. Formally, for a symmetric
distribution D ∈ Dsym, define the family of distributions

TD = {H ∈ Dsym | ∃θ ∈ R s.t. ∀x ∈ R,
FH(x− θ) = FD(x− µ(D))},
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where FD and FH denote the CDFs of D and H , respec-
tively. Note that θ is the mean of H , and is sufficient to
identify H within TD.

Fix an arbitrary D ∈ Dsym. While every order statistic has
a constant MSE for all distributions H ∈ TD, the MSE of a
generalized median that has finite phantoms varies with the
mean µ(H). Let g be a generalized median of n samples.
Let n− and n+ denote the number of its phantoms in R ∪
{−∞} and in R∪{+∞}, respectively. Let a = n−n− and
b = n+ +1. Note that the MSE of g converges to the MSE
of the ath and bth order statistics when µ(H) → ∞ and
µ(H)→ −∞, respectively. Thus, its worst-case MSE is at
least as much as the MSE of the respective order statistic.
Comparing the order statistics using Lemma 3.3 yields the
next result.

Proposition 3.6. For every symmetric distribution D ∈
Dsym, the following estimators are minimax truthful esti-
mators for the family of distributions TD:

• the median (if n is odd), and

• the left median, the right median, and all generalized
medians with one phantom in R and n/2−1 phantoms
on∞ and −∞ each (if n is even).

As with Lemma 3.3 and Proposition 3.4, the domination of
the estimators in Proposition 3.6 becomes strict if the PDF
of the underlying distribution D is positive everywhere.

4. Distributions with Bounded Support
In the previous section we focused on the case of symmet-
ric distributions, which help the sample median achieve a
low MSE by making it unbiased. Yet, Theorem 3.4 showed
that generalized medians of the form g(x) = med(x, α)
dominate the median. At the same time, using a single
real-valued phantom α among n samples limits the advan-
tage when n is large. In this section, we study a setting
with possibly asymmetric distributions, and show that there
exist generalized medians that significantly outperform the
median, even for large n.

Specifically, we focus on distributions with a known
bounded support [m,M ] where m,M ∈ R (that is, distri-
butions D such that PrX∼D(X ∈ [m,M ]) = 1), and com-
pare estimators based on their worst-case mean squared er-
ror (MMSE) in the limit as the number of samples n goes to
infinity. We can immediately make a few simplifications to
our setting. First, as the mean squared error is proportional
to (M −m)2, we can assume the support is [0, 1] without
loss of generality. Second, for a generalized median rule
we can move all its phantoms in [−∞, 0) to 0 and all its
phantoms in (1,∞] to 1 without changing its output. Thus,
without loss of generality we assume that all the phantoms
lie in [0, 1].

A known support also introduces a subtle challenge. It
limits the flexibility of the individuals to lie as they can
no longer report a false value outside the support. This
might allow additional mechanisms to become truthful,
preventing us from directly using Moulin’s characteriza-
tion (Lemma 2.2). However, it can be easily shown that
the characterization also holds in this case. The proof is
essentially identical to the proof by Moulin, but requires a
few minor modifications.

Lemma 4.1. Suppose that the individuals have private val-
ues in a known interval [m,M ], and cannot report a false
value outside this interval. Then, an estimator is truthful,
anonymous, and range-respecting if and only if it is a gen-
eralized median.

We are now ready to formalize our setting. Note that a
generalized median is only defined for a fixed n. Hence,
technically, for analyzing the limiting case of n → ∞ we
need to use a sequence of generalized medians {gn}n≥1.
To prevent the rule in the sequence from changing dramati-
cally with each n, we restrict the sequence to be congruent.

Definition 4.2. Let g be a generalized median of n sam-
ples in [0, 1], and let P denote the set of its phantoms. The
empirical cumulative distribution function (ECDF) of g is
the (right-continuous) function G : [0, 1] → [0, 1] such
that G(x) = |{α ∈ P |α ≤ x}|/|P | for all x ∈ [0, 1].
We say that the sequence of generalized medians {gn}n≥1
with ECDFs {Gn}n≥1 is congruent if limn→∞Gn = G
(pointwise) for a function G, and in this case, we call G
the limiting ECDF of {gn}n≥1.

Hereinafter, we assume a sequence of generalized medians
to be congruent unless specified otherwise. The next defi-
nition describes an ECDF that will be of special interest.

Definition 4.3. We say that a sequence of generalized
medians has uniform phantoms in the limit if its limiting
ECDF G satisfies G(x) = x for all x ∈ [0, 1].

Given a family of distributions D and a sequence of gener-
alized medians {gn}n≥1, let us define the maximum limit-
ing mean squared error as

MLMSE({gn}n≥1,D) = sup
D∈D

lim
n→∞

MSE(gn, D).

The definition is subject to the existence of the limit; our
analysis ensures the existance under a mild assumption.

Our main result in this section identifies sequences of gen-
eralized medians that minimize MLMSE over distributions
with bounded support. First, let us develop some intuition
with an illustrative example.

Example 4.4. Suppose our goal is to minimize MLMSE
over the family of distributions D{0,1} with support {0, 1}
(instead of [0, 1]). Take a sequence of generalized medians
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{gn}n≥1 with limiting ECDF G. Let us analyze its lim-
iting mean squared error on the distribution Dp such that
PrX∼Dp [X = 0] = 1− p and PrX∼Dp [X = 1] = p.

Let us take n i.i.d. samples from Dp. As n → ∞, the
fractions of 0’s and 1’s will converge to 1 − p and p, re-
spectively, due to the law of large numbers. Thus, in the
limit the output of gn will belong to G−1(p) with probabil-
ity 1.4 Thus, achieving zero limiting MSE on Dp requires
p ∈ G−1(p), i.e., G(p) = p. Applying this argument to ev-
ery Dp ∈ D{0,1}, we get that MLMSE({gn}n≥1,D{0,1}) =
0 if and only if G(x) = x for all x ∈ [0, 1], that is, having
uniform phantoms in the limit is the only way to achieve
consistency5 for every distribution in D{0,1}.

In contrast, let us consider the median. More technically,
let gn to be the median if n is odd, and the left (or the
right) median if n is even. The limiting ECDF G satisfies
G(x) = 1/2 for x < 1, and G(1) = 1. Clearly, the median
does not have uniform phantoms in the limit, and it is easy
to check that the MLMSE of the median for D{0,1} is 1/4.
The worst-case distribution is D1/2, for which the median
always belongs to {0, 1}, whereas the mean is 1/2.

We now turn to our main result. Let Dinc
[0,1] denote the set

of distributions with support [0, 1] and a strictly increasing
CDF, or, equivalently, strictly positive density. We restrict
the CDF to be strictly increasing for technical reasons, but
note that any distribution can be approximated to an arbi-
trarily high precision by distributions with strictly increas-
ing CDF. It turns out that the median still is not optimal in
terms of MLMSE, while having uniform phantoms in the
limit is. However, there are two key differences from the
case of D{0,1}: (i) the optimal MLMSE is now positive,
that is, it is impossible to be consistent for every distribu-
tion inDinc

[0,1] subject to truthfulness, and (ii) it is possible to
achieve the optimal MLMSE without having uniform phan-
toms in the limit. The theorem gives a full characterization
of the optimal limiting ECDFs.

Theorem 4.5. For a congruent sequence of general-
ized medians {gn}n≥1 with limiting ECDF G, we have
MLMSE

(
{gn}n≥1,Dinc

[0,1]

)
= (R(G))2, where

R(G) = sup
x∈[0,1]

max
(
x · (1−G(x)), (1− x) ·G(x)

)
.

Further, we have that R(G) ≥ 1/4, implying that the opti-
mal MLMSE is 1/16.

Let us first visualize this result. The gray region highlighted
in Figure 1 shows the region in which a limiting ECDF G
must lie for R(G) = 1/4. Theorem 4.5 shows that this is

4Note that, in general, G−1(·) could be a (non-singleton) set.
5Consistency refers to the property of achieving zero error as

n→∞ (Vapnik, 1998).

the necessary and sufficient condition to achieve the opti-
mal MLMSE of 1/16 on Dinc

[0,1]. While the limiting ECDF
of the uniform phantoms rule (the solid blue line) lies in
this region, the limiting ECDF of the median (the dashed
red line) lies in the region R(G) = 1/2, thus resulting in a
worse MLMSE of 1/4.
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Figure 1. Region of optimal ECDF (R = 1/4), the ECDF of the
uniform phantoms rule (which falls in R = 1/4, and the ECDF
of the median (which falls under R ≤ 1/2, but does not entirely
fall under R = 1/4).

Proof of Theorem 4.5. The proof proceeds as follows.
First, we show that the limit of n → ∞ in the definition
of MLMSE always exists in our case, and compute it an-
alytically. We then use this to identify the worst-case dis-
tributions (in the MLMSE definition) for a given sequence
of generalized medians with limiting ECDF G, and show
that the worst-case limiting mean squared error (MLMSE)
is exactly R2(G).

Fix a congruent sequence of generalized medians {gn}n≥1
with limiting ECDF G, and a distribution D ∈ Dinc

[0,1].
Let Gn denote the ECDF of the n − 1 phantoms in gn,
and let Fn denote the empirical CDF of n samples drawn
i.i.d. from D. The empirical CDF of the 2n − 1 points—
consisting of n samples from D and n − 1 phantoms—is
given by (n ·Fn+(n−1) ·Gn)/(2n−1), which converges
to H = (1/2) · (F + G) (pointwise) as n → ∞ due to
the law of large numbers. Hence, the median of the 2n− 1
points, which is the output of the rule gn, converges to the
point x∗(D) = H−1(1/2) as n → ∞.6 We drop D from
the notation when it is clear from the context. We have
shown that as n → ∞, the output of the rule converges to
x∗. Thus, the limit of the mean squared error exists, and is

6The convergence to the unique point x∗(D) is due to the fact
that the strictly increasing F (and a weakly increasing G) result
in a strictly increasing H . By H−1, we mean the left-continuous
inverse given by H−1(p) = infx∈[0,1]H(x) ≥ p for p ∈ [0, 1].
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equal to (x∗ − µ)2, where µ is the mean of distribution D.

We are now ready to identify the worst-case distributions
in the MLMSE definition. First, let us introduce the left-
continuous versions of the functions F and G. Define
FL(x) = limy→x− F (y) and GL(x) = limy→x− G(y) for
all x ∈ [0, 1].

Next, we show the upper bound: (x∗ − µ)2 ≤ R2(G), i.e.,
|x∗ − µ| ≤ R(G). To achieve this, we find an upper and
a lower bound on µ in terms of x∗. Let X be a random
variable with distribution D.

1. As PrX∼D[X ≥ x∗] = 1−FL(x∗), we have E[X] =
µ ≥ (1− FL(x∗)) · x∗.

2. As PrX∼D[X ≤ x∗] = F (x∗), we have E[X] = µ ≤
x∗ · F (x∗) + 1 · (1− F (x∗)).

Together, these bounds imply

|x∗ − µ|

≤ max
(
x∗ − (1− FL(x∗)) x∗, x∗ · F (x∗) + 1− F (x∗)− x∗

)
= max

(
x∗ · FL(x∗), (1− x∗) · (1− F (x∗))

)
. (1)

Recall that x∗ = inf{x ∈ [0, 1] : ((F +G)/2)(x) ≥ 1/2}.
Due to the right-continuity of F and G, we can replace the
inf by min. Hence, we get

F (x∗) +G(x∗)

2
≥ 1

2
⇒ 1− F (x∗) ≤ G(x∗).

On the other hand, we have that for all x < x∗, (F (x) +
G(x))/2 < 1/2. Hence, taking the limit x → (x∗)− from
below, we get

FL(x∗) +GL(x∗)

2
≤ 1

2
⇒ FL(x∗) ≤ 1−GL(x∗).

Substituting these bounds into Equation (1), we get

|x∗ − µ| ≤ max
(
x∗ · (1−GL(x∗)), (1− x∗) ·G(x∗)

)
.

Now, clearly (1−x∗) ·G(x∗) ≤ supx∈[0,1](1−x) ·G(x) ≤
R(G). To show that x∗ · (1−GL(x∗)) ≤ R(G), recall that
GL(x∗) = limy→(x∗)− G(y). Thus,

x∗ · (1−GL(x∗)) = lim
y→(x∗)−

y · (1−G(y))

≤ sup
y∈[0,1]

y · (1−G(y)) ≤ R(G).

Thus, in both cases we have |x∗−µ| ≤ R(G), as required.
This concludes the proof of the upper bound.

For the lower bound, we want to prove that
MLMSE({gn}n≥1,Dinc

[0,1]) ≥ supx∈[0,1] max(x · (1 −

G(x)), (1 − x) · G(x)). We prove this inequality for each
x ∈ [0, 1]. Fix an x ∈ [0, 1].

Bound 1: MLMSE({gn}n≥1,Dinc
[0,1]) ≥ x · (1 − G(x)). We

in fact prove the stronger lower bound of x · (1−GL(x)).
If GL(x) = 1 or x = 0, the bound holds trivially. Thus,
assume GL(x) < 1 and x > 0. If GL(x) = 0, then the
lower bound we want to prove is x. In this case, without
loss of generality we can assume x = sup{y ∈ [0, 1] :
G(y) = 0}. Note that it retainsGL(x) = 0, and the desired
lower bound x does not decrease.

Now, in both cases we can assume that GL(x) < 1 and
G(x+ d) > 0 for all d > 0. For k ∈ N, choose

δk = min
(
G (x+ 1/k) , 1/k, (1−GL(x))/2

)
.

Note that δk > 0. Consider the distribution Dk with CDF
Fk obtained as follows. (i) Place a probability mass of
t0 = 1 −GL(x) − δk on the point 0. Note that our choice
of δk ensures t0 > 0. (ii) Distribute probability δk/2 uni-
formly in the interval (0, x). (iii) Place a probability mass
of tx = GL(x) on point x. (iv) Distribute probability δk/2
uniformly in the interval (x, 1).

Let us analyze x∗(Dk). For any y < x, we have

Fk(y) +G(y)

2
≤ t0 + δk/2 +GL(x)

2
<

1

2
.

Hence, x∗(Dk) ≥ x. Further,

Fk(x+ 1/k) +G(x+ 1/k)

2
≥ 1− δk/2 +G(x+ 1/k)

2
≥ 1

2
,

where the last inequality follows because we chose δk ≤
G(x+ 1/k). Hence, x∗(Dk) ≤ x+ 1/k.

Since x∗(Dk) ∈ [x, x+1/k], we have limk→∞ x∗(Dk) =
x. Further, limk→∞ µ(Dk) = x ·GL(x). Hence,

MLMSE({gn}n≥1,Dinc
[0,1]) ≥ lim

k→∞
(x∗(Dk)− µ(Dk))

2

= x2 · (1−GL(x))2.

Bound 2: MLMSE({gn}n≥1,Dinc
[0,1]) ≥ (1 − x) · G(x). If

G(x) = 0, the bound holds trivially. Assume G(x) > 0. If
G(x) = 1, then the lower bound we want to prove is 1−x.
In this case, we can replace x with x = min{y ∈ [0, 1] :
G(y) = 1}. As the min exists (G is right-continuous), this
retains G(x) = 1 and makes the lower bound stronger.

Thus, in either case we can assume G(x − d) < 1 for all
d > 0. Now, choose

δk = min (1−G (x− 1/k) , 1/k,G(x)/2) .

Note that δk > 0 because G(x− 1/k) < 1 and G(x) > 0.
Consider the distribution Dk with CDF Fk obtained as fol-
lows. i) Distribute probability δk/2 uniformly in the inter-
val (0, x). ii) Place a probability mass of tx = 1 − G(x)
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on the point x. iii) Distribute probability δk/2 uniformly
in the interval (x, 1). iv) Place a probability mass of
t1 = G(x) − δk on point 1. Once again, t1 > 0 due to
our choice of δk.

Let us now analyze x∗(Dk). Note that

Fk(x− 1/k) +G(x− 1/k)

2
<
δk/2 +G(x− 1/k)

2
≤ 1

2
,

where the last inequality holds because we chose δk ≤ 1−
G(x− 1/k). This implies x∗(Dk) ≥ x− 1/k. Further,

Fk(x) +G(x)

2
≥ δk/2 + tx +G(x)

2
≥ 1

2
,

implying that x∗(Dk) ≤ x. Hence, once again x∗(Dk) ∈
[x − 1/k, x] implies limk→∞ x∗(Dk) = x. We also have
limk→∞ µ(Dk) = x · (1−G(x)) + 1 ·G(x). Hence,

MLMSE({gn}n≥1,Dinc
[0,1]) ≥ lim

k→∞
(x∗(Dk)− µ(Dk))

2

= (1− x)2 · (G(x))2.

This concludes the proof of MLMSE({gn}n≥1,Dinc
[0,1]) =

R2(G). Finally, using x = 1/2 in the definition of R(G),
we get R(G) ≥ (1/2) ·max(1−G(1/2), G(1/2)) ≥ 1/4,
which concludes the proof of the theorem. �

We remark that, while the possible discontinuity of G (and
thus of (F +G)/2) complicates the proof of Theorem 4.5,
it is necessary in order for the analysis to be broad enough
to incorporate the limiting ECDF of the median, which is
indeed discontinuous.

The uniform phantoms rule suggests an intuitive way of
placing the phantoms in the support, and although Theo-
rem 4.5 establishes its superiority over the sample median
in the worst-case over distributions, we expect it to outper-
form the sample median on many distributions of practical
interest. For example, Figure 2 shows that for the trun-
cated normal distribution with support [0, 1], the uniform
phantoms rule performs better for most combinations of
values of the mean µ and the standard deviation σ. Inter-
estingly, the relative performance is largely determined by
σ, large values being preferable for the uniform phantoms
rule. Thus, in practice knowledge about the standard devi-
ation can help guide the placement of the phantoms.

5. Discussion
This paper studies a basic univariate estimation framework
with mean squared error risk function, finds domination
relationships among truthful estimators, and identifies the
truthful estimators that are minimax optimal. While some
of the simplifying assumptions made in the analysis are
crucial, a few others can easily be dropped. For example,

Figure 2. The ratio of the MSE of the sample median to the MSE
of the uniform phantoms rule under the truncated normal dis-
tribution with mean µ, standard deviation σ, and support [0, 1]
as n → ∞. The gray plane indicates a ratio of 1. We plot
µ ∈ (0, 0.5) because the case of µ > 0.5 is symmetric.

we assume estimators to be range-respecting, but it is easy
to drop this assumption, as this only changes the charac-
terization of truthful estimators (Theorem 2.2) from gener-
alized medians with n − 1 phantoms to those with n + 1
phantoms. On the other hand, dropping anonymity can be
tricky as it now allows exponentially many phantoms—one
for each subset of indices (Moulin, 1980).

It would be natural to extend our work to more general esti-
mation settings, such as estimation with multi-dimensional
distributions, estimation of parameters other than the pop-
ulation mean, use of risk functions other than the mean
squared error, etc. It would also be interesting to study
whether a truthful estimator can make use of additional
available information, e.g., the variance of the underlying
distribution (which does not help place phantoms in our un-
bounded support case), or a prior distribution over the esti-
mated parameter (which can guide the placement of phan-
toms even in our unbounded support case).

Finally, we point out a subtle relation between the truth-
ful and non-truthful cases, in the context of minimax es-
timation and distributions with bounded range. Hodges
and Lehmann (1950) showed that the minimax estimator
(without the truthfulness requirement) for the population
mean of a distribution with a known range [0, 1], on sam-
ples x1, . . . , xn, returns∑

i xi
n
·
√
n√

n+ 1
+

1

2
· 1√

n+ 1
.

Interestingly, observe that this is equivalent to a “general-
ized mean” estimator that takes the mean of the given n
samples along with

√
n phantoms, all placed at 1/2. This

stands in contrast to the characterization of minimax truth-
ful estimators given in Theorem 4.5, which requires the
phantoms to be uniformly spaced throughout the support
(in the limit). Nonetheless, the remarkable fact that phan-
toms, which arise in generalized medians purely from the
truthfulness requirement, play a larger role in minimax es-
timation calls for a deeper investigation.
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Appendix
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(a) The MSEs of the sample mean, the sample median, and
gα as a function of |α| (the distance of the phantom from the
true mean) for the standard Gaussian and n = 8.
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(b) The difference between the MSEs of the sample median
and gα as a percentage of the difference between the MSEs of
the sample median and the sample mean, when the underlying
distribution is the standard Gaussian. To measure the best-case
improvement, we set α = 0 (i.e., at the true mean).

Figure 3. Adding a single real-valued phantom when the number
of samples n is even.

A. Proof of Lemma 3.3
Fix a symmetric distribution D ∈ Dsym with mean µ, PDF
f , and CDF F . Let gt(x1, . . . , xn) = x(t) denote the tth or-
der statistic. We want to prove MSE(gt, D) ≥ MSE(gt+1, D)
for t ≤ (n − 1)/2. The comparison between gn−t and
gn−t+1 follows from symmetry of D.

We prove this by considering each “negative” example
where the squared error of gt is less than the squared error
of gt+1 by an amount d, and map it to a unique “positive”
example where the squared error of gt+1 is less than the
squared error of gt by d. The result follows by ensuring

that the negative example has at most as much probability
density as its corresponding positive example. There are
two cases of negative examples.

Case 1: x(t) = µ+a and x(t+1) = µ+b, where 0 ≤ a < b.
The squared error of gt is d = b2−a2 less than that of gt+1.
Let us map it to the positive example where x(t) = µ − b
and x(t+1) = µ − a. In this (unique) positive example,
the squared error of gt+1 is exactly b2 − a2 less than that
of gt. Let fN and fP denote the probability densities of
the negative and the positive examples. We need to show
fN ≤ fP . Now, fP /fN is

f(µ− a)f(µ− b) [F (µ− b)]t−1 [1− F (µ− a)]n−t−1

f(µ+ a)f(µ+ b) [F (µ+ a)]
t−1

[1− F (µ+ b)]
n−t−1

=

(
F (µ+ a)

F (µ− b)

)n−2t
≥ 1,

where the first transition holds due to symmetry of D
around µ, and the final transition holds because F (µ−b) ≤
1/2 ≤ F (µ+ a) and n− 2t > 0.

Case 2: x(t) = µ−a and x(t+1) = µ+b, where 0 ≤ a < b.
Here, x(t) and x(t+1) are on different sides of µ. We map
it to the (unique) positive example where x(t) = µ − b
and x(t+1) = µ + a, thus maintaining them on different
sides. Both examples admit an identical difference of b2 −
a2 between the squared errors, and the ratio fP /fN is

f(µ+ a)f(µ− b) [F (µ− b)]t−1 [1− F (µ+ a)]
n−t−1

f(µ− a)f(µ+ b) [F (µ− a)]t−1 [1− F (µ+ b)]
n−t−1

=

(
F (µ− a)
F (µ− b)

)n−2t
≥ 1.

For the final inequality, note that we still have F (µ− b) ≤
F (µ− a) because b > a ≥ 0. �

B. Proof of Proposition 3.4
Fix α ∈ R. First, observe that gα is the generalized median
obtained by placing one phantom on α, and an equal num-
ber of phantoms on −∞ and∞. The following alternative
formulation of gα provides further intuition.

gα(x) =


x(n/2) if α ≤ x(n/2),
α if x(n/2) ≤ α ≤ x(n/2+1),

x(n/2+1) if x(n/2+1) ≤ α.

Thus, gα always chooses among the left median, the right
median, and α. Fix a distribution D ∈ Dsym with mean µ.

Let med`(x) = x(n/2) and medr (x) = x(n/2+1) denote the
left and the right medians. We show that MSE(gα, D) ≤
MSE(med`, D) = MSE(medr , D). Comparison with other
order statistics then follows immediately from Lemma 3.3.
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Note that MSE(med`, D) = MSE(medr , D) holds due to the
symmetry of D.

Suppose µ ≥ α. Observe that gα(x) 6= med`(x) implies
med`(x) ≤ gα(x) < α ≤ µ, and in that case gα(x)
is closer to µ than med`(x). This yields MSE(gα, D) ≤
MSE(med`, D). For µ ≤ α, a similar argument establishes
MSE(gα, D) ≤ MSE(medr , D). The proof now follows from
the fact that MSE(med`, D) = MSE(medr , D) for any sym-
metric distribution D. �


