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In this letter, we outline some of the results from our recent work, which is part of an emerging

line of research at the intersection of machine learning and mechanism design aiming to avoid
noise in training data by correctly aligning the incentives of data sources. Specifically, we focus

on the ubiquitous problem of linear regression, where strategyproof mechanisms have previously

been identified in two dimensions. In our setting, agents have single-peaked preferences and can
manipulate only their response variables. Our main contribution is the discovery of a family of

group strategyproof linear regression mechanisms in any number of dimensions, which we call

generalized resistant hyperplane mechanisms. The game-theoretic properties of these mechanisms
— and, in fact, their very existence — are established through a connection to a discrete version

of the Ham Sandwich Theorem.

Categories and Subject Descriptors: I.2.11 [Distributed Artificial Intelligence]: Multiagent

Systems; J.4 [Computer Applications]: Social and Behavioral Sciences—Economics

General Terms: Algorithms, Economics, Theory

1. INTRODUCTION

Even for the most powerful machine learning algorithms, the quality of their learned
models is dependent upon the quality of the training data. This dependency has
given rise to the study of machine learning algorithms that are robust to noise in
the training data. A large body of work addresses stochastic noise, while on the
other extreme, another branch of the literature focuses on adversarial noise, where
errors are introduced by an adversary with the explicit purpose of sabotaging the
algorithm. The latter approach is often too pessimistic, and generally leads to
negative results.

More recently, some researchers have taken a game-theoretic viewpoint suggesting
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a model of strategic noise that can be seen as occupying the middle ground of noise
models. Specifically, training data is provided by strategic sources — hereinafter
agents — that may intentionally introduce errors to maximize their own benefit.
Compared to adversarial noise, the advantage of this model (when its underlying
assumptions hold true) is that, if we aligned the agents’ incentives correctly, it
would be possible to obtain uncontaminated data. From this viewpoint, the ideal
is the design of learning algorithms that, in addition to being statistically efficient,
are strategyproof, i.e., where supplying pristine data is a dominant strategy for each
agent. Subscribing to this agenda, in our recent work [Chen et al. 2018] we analyzed
strategyproof mechanisms for high dimensional linear regression.

But when does this type of strategic regression problem arise? Dekel et al. [2010]
give the real-world example of the global fashion chain Zara, whose distribution
process relies on regression [Caro and Gallien 2010]. Specifically, the demand for
each product at each store is predicted based on historical data, as well as infor-
mation provided by store managers. Since the supply of popular items is limited,
store managers may strategically manipulate requested quantities so that the out-
put of the regression process would better fit their needs, and, indeed, there is
ample evidence that many of them have done so [Caro et al. 2010]. More generally,
as discussed in detail by Perote and Perote-Pena [2004], this type of setting is rel-
evant whenever “data could come from surveys composed by agents interested in
not being perceived as real outliers if the estimation results could be used in the
future to change the economic situation of the agents that generate the sample.”

Before we move on to presenting our results, we remark that the research agenda
of machine learning algorithms that are robust to strategic noise can be described
using three key axes: (i) manipulable information (i.e., whether the dependent
variables are private information [Dekel et al. 2010; Meir et al. 2012] or the inde-
pendent variables are [Hardt et al. 2016; Dong et al. 2017]), (ii) goal of the agents
(i.e., whether they are motivated by privacy concerns [Cummings et al. 2015; Cai
et al. 2015] or by accurate assessments of the algorithm on their own sample [Dekel
et al. 2010]) and (iii) potential use of payments [Cai et al. 2015] and other incen-
tive guarantees. In our work, dependent variables are private information, agents
wish to make the regression accurate on their true datapoint, and our goal is to
incentivize agents to report truthfully without the use of monetary payments.

2. MODEL

Given a natural number k ∈ N, let [k] = {1, . . . , k}. Given a set of numbers
{ai : i ∈ T} and k ∈ [|T |], let mink

i∈T xi be the kth smallest number in the set.
Let N be the set of agents. Each agent i ∈ N controls one datapoint (xi, yi),

where xi ∈ Rd is publicly verifiable while yi ∈ R is private to the agent. Agent
i reports (xi, ỹi) to the mechanism, where potentially ỹi 6= yi. The mechanism
outputs a hyperplane Mx(ỹ) = (β1, β0) ∈ Rd+1, where ỹ = (ỹi)i∈N and by slightly
abusing notation x = (xi)i∈N . The outcome for agent i is ŷi = 〈β1,xi〉 + β0, and
the residual of agent i is ri = ŷi− yi. Agent i has single-peaked preferences over ŷi,
with a peak at yi. Formally, this means that given any a ≥ b > yi or a ≤ b < yi,
agent i strongly prefers yi to b and weakly prefers b to a. We wish to design
mechanisms that are strategyproof (in which no individual agent can benefit from
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Fig. 1: The CRM mechanism when S and S′ are separable.
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Fig. 2: The CRM mechanism when S = S′.

misreporting regardless of the reports of other agents) or group-strategyproof (in
which no coalition of agents can benefit from simultaneously misreporting regardless
of the reports of other agents).

Two notes are in order here. First, we make no assumptions on the data gen-
eration process (e.g., whether the data comes from a distribution). Second, strat-
egyproofness or group-strategyproofness are not the sole desiderata; a constant
function (e.g., the flat hyperplane y = 0) is group-strategyproof, but not necessar-
ily desirable. We would like our mechanisms to also have good statistical efficiency.

3. STRATEGYPROOF MECHANISMS

CRM mechanisms. Perote and Perote-Pena [2004] were the first to study strate-
gyproof mechanisms for simple linear regression (i.e., where d = 1) in the foregoing
setting. They proposed a novel family of (allegedly) strategyproof mechanisms,
which they termed Clockwise Repeated Median (CRM) estimators. This family is
parametrized by two subsets of agents S, S′ ⊆ N . These subsets are chosen based
on the public information x, and therefore can be treated as fixed. Informally, given
S, S′ ⊆ N , the (S, S′)-CRM mechanism first computes the median clockwise angle
(CWA), with respect to the y axis, from each point i ∈ S to points in S′ (Fig. 1a
and 2a). Then, it chooses the point i∗ ∈ S whose median CWA is the median of
the median CWAs from all points in S (Fig. 1b and 2b). If the median CWA from
point i∗ is towards point j∗ ∈ S′, the mechanism returns the straight line passing
through points i∗ and j∗ (Fig. 1c and 2c).
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Fig. 3: Examples of (S, S′, k, k′)-GRL mechanisms.

Perote and Perote-Pena [2004] claimed that the (S, S′)-CRM mechanism is strat-
egyproof when S ⊆ S′ or S ∩ S′ = ∅. However, after identifying a mistake in
their proof, we are able to recover strategyproofness (and in fact, establish group-
strategyproofness) of a more restricted family of CRM mechanisms, namely, when
a) S = S′, b) S and S′ are separable (i.e., when the two sets can be separated by
a vertical line), or c) S ∩ S′ = ∅ and min (|S|, |S′|) = 1. Given this correction,
one might wonder: Can we generalize the corrected CRM family to high dimen-
sions? What would be a generalization of the clockwise angle? We provide such a
generalization by first generalizing the geometric CRM family to a more algebraic
family of Generalized Resistant Line (GRL) mechanisms in two dimensions, and
then generalizing GRL mechanisms to high dimensions.

Generalizing in two dimensions. While sets S and S′ in our corrected CRM
family are not separable in two of three cases, our generalization below uses only
separable sets S and S′, and yet incorporates all three cases of our CRM family.

Definition 3.1 (Generalized Resistant Line (GRL) Mechanisms). Given separable
sets S, S′ ⊆ N , k ∈ [|S|], and k′ ∈ [|S′|], the (S, S′, k, k′)-generalized resistant line
(GRL) mechanism returns the line β = (β1, β0) given by

mink
i∈S yi − β1xi − β0 = mink′

j∈S′ yj − β1xj − β0 = 0. (1)

In words, the GRL mechanism returns the line which makes both the kth mini-
mum residual from S and the (k′)th minimum residual from S′ zero (see Fig. 3 for
some examples). This family owes its name to the fact that it is a direct general-
ization of the resistant line mechanisms [Johnstone and Velleman 1985] that were
proposed in the statistics literature as robust-to-outliers methods. These methods
make the median residuals from S and S′ zero (i.e., use k = d|S|/2e, k′ = d|S′|/2e).

We show that GRL mechanisms are well-defined as Equation (1) is guaranteed
to have a unique solution; they include our corrected family of CRM mechanisms;
and every GRL mechanism is group-strategyproof.

Existence of a unique solution to Equation (1) in two dimensions uses the sepa-
rability of S and S′. While this equation naturally generalizes to high dimensions,
it is not immediately clear what conditions would be required to ensure a unique
outcome. This is where the literature on the Ham Sandwich Theorem comes to the
rescue.
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Generalizing to higher dimensions. Given a hyperplane H, let H+ and H− be
its positive and negative closed half-spaces, respectively. A basic version of the Ham
Sandwich theorem due to Stone and Tukey [1942] states that given k continuous
measures µ1, . . . , µk on Rk, there exists a hyperplane H such that µi(H

+) = 1/2 for
each i ∈ [k]. A discrete version of this result due to Elton and Hill [2011] states that
given k finite sets S1, . . . , Sk ⊆ Rk, there exists a hyperplane H such that for each
i ∈ [k], H ∩ Si 6= ∅ and H “bisects” Si (i.e., min(|H+ ∩ Si|, |H− ∩ Si|) ≥ d|S|/2e).

For linear regression, this implies that given S1, . . . , Sd+1 ⊆ N , there exists a
“resistant hyperplane” which makes the median residual from St zero, for each
t ∈ [d+ 1]. While this seems like a natural generalization of GRL mechanisms, it is
easy to check that a) such a hyperplane is not always unique, and b) the existence
is not guaranteed if median is replaced by other percentiles.1

Steiger and Zhao [2010], building upon previous work [Bárány et al. 2008; Breuer
2010], provide a generalization that almost perfectly fits our needs. They show that
under a certain separability condition on S1, . . . , Sd+1 and a mild assumption, there
exists a unique hyperplane H which contains a prescribed number of points from
each set in its negative closed half-space. However, their condition uses the private
information y, whereas we would like sets S1, . . . , Sd+1 to be defined based only
on the public information x for our game-theoretic desiderata. We provide such a
condition which still yields a unique hyperplane as well as group-strategyproofness.
We also eliminate the mild assumption imposed by Steiger and Zhao [2010]. Our
results closely mirror but do not make use of the results of Steiger and Zhao [2010].

Definition 3.2 (Generalized Resistant Hyperplane (GRH) Mechanisms). We say
that a family S = (S1, . . . , Sd+1) of nonempty pairwise disjoint subsets of N is
publicly separable if for any I, J ⊆ [d+1], there exists a hyperplane in Rd separating⋃

t∈I{xi : i ∈ St} from
⋃

t∈J{xi : i ∈ St}. Given a publicly separable family
S = (S1, . . . , Sd+1) of subsets of agents, and k = (k1, . . . , kd+1) with kt ∈ [|St|] for
t ∈ [d + 1], the (S,k)-generalized resistant hyperplane (GRH) mechanism returns
a hyperplane β = (β1, β0) such that for each t ∈ [d+ 1],

minkt

i∈St
yi − 〈β1,xi〉 − β0 = 0. (2)

That is, it makes the ktht smallest residual from each set St ∈ S zero.

Fig. 4 provides a pictorial intuition of public separability in two dimensions. As
mentioned above, we show that GRH mechanisms are not only well defined (i.e.,
Equation (2) has a unique solution), they are also group-strategyproof. It is easy to
check that in two dimensions, they coincide with GRL mechanisms.

Another family of mechanisms in high dimensions. Prior to our work,
the only known (non-trivial) strategyproof mechanism for linear regression in high
dimensions was due to Dekel et al. [2010], who proved that the empirical risk mini-
mizer (ERM) of the L1 loss2 — hereinafter, the L1-ERM — is group-strategyproof.
We generalize this family in two ways: we allow a weighted L1 loss, in which the loss

1Recall that even in two dimensions, we needed an additional condition, namely separability of S

and S′ by a vertical line.
2Formally, this mechanism finds a hyperplane β minimizing the L1 loss

∑
i∈N |yi−〈β1,xi〉−β0|,

and breaks any ties by minimizing the norm of β.
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Fig. 4: Pictorial intuition for publicly separable family of sets of agents. The figures depict the

case where d = 2. Public information xi of each agent i is plotted. Fig. 4a shows a case where

sets A,B and C are not publicly separable because no line can separate sets B and C from set A.
Fig. 4b shows a case where the three sets are publicly separable.

to each agent i is multiplied by a weight wx
i , and we allow adding a convex func-

tion of β to the loss function, often known as regularization in the machine learning
literature. Our mechanism still breaks any ties by minimizing the norm of β. We
show that every mechanism in this generalized family is still group-strategyproof.

Strategyproofness versus group-strategyproofness. All mechanisms for lin-
ear regression we outlined so far are group-strategyproof. One might wonder if there
exist strategyproof mechanisms that are not group-strategyproof. For d = 0, Moulin
[1980] proved that every strategyproof mechanism is also group-strategyproof. In-
terestingly, this does not hold for linear regression in two or more dimensions. A
simple counterexample is the mechanism for two agents in two dimensions which
returns the line passing through (x1, y2) and (x2, y1). The mechanism is trivially
strategyproof because the residual of each agent is independent of the agent’s re-
port; this condition is known as impartiality in the literature. With more agents, it
is not clear if impartial mechanisms exist. We show that there exists a large family
of impartial mechanisms for any number of agents and in any dimension, and that
all non-trivial impartial mechanisms violate group-strategyproofness.

Efficiency versus strategyproofness. The most popular mechanism for linear
regression is the Ordinary Least Squares (OLS), which returns the hyperplane β
minimizing the squared L2 loss

∑
i∈N (yi−〈β1,xi〉−β0)2. The Gauss-Markov the-

orem establishes the OLS as the most efficient mechanism under mild assumptions,
but it is known that the OLS is not strategyproof [Dekel et al. 2010]. This raises an
important question: Can we design strategyproof mechanisms that are arbitrarily
close to the OLS? We answer this negatively by showing that every strategyproof
mechanism can cause a squared L2 loss at least twice that of the OLS, in the worst
case over inputs.

4. CONCLUSION AND OPEN QUESTIONS

Our work leaves several directions for future research. Perhaps the most ambitious
direction is to fully characterize strategyproof (or group-strategyproof) mechanisms
for linear regression, which might help us analytically find the most efficient strat-
egyproof mechanism. In one dimension, such an analysis was done by Caragiannis
et al. [2016] using the characterization result of Moulin [1980].
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It is also interesting to consider generalizations of our model where each agent
controls multiple data points [Dekel et al. 2010], or where only a small subset
of data points are manipulated by strategic agents but the mechanism does not
know which data points are manipulated [Charikar et al. 2017]. We hope that our
work, which takes a step forward in developing a theory of incentives in machine
learning [Procaccia 2008], can serve as a stepping stone to studying incentives
in more realistic environments. With machine learning algorithms increasingly
being used to make real-world decisions, we should be especially careful about the
possibility of strategic manipulation leading the algorithm astray.
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