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Abstract

We study letter grading schemes, which are routinely employed for evaluating student per-
formance. Typically, a numerical score obtained via one or more evaluations is converted into
a letter grade (e.g., A+, B-, etc.) by associating a disjoint interval of numerical scores to each
letter grade.

We propose the first model for studying the (de)motivational effects of such grading on the
students and, consequently, on their performance in future evaluations. We use the model to
compare uniform letter grading schemes, in which the range of scores is divided into equal-
length parts that are mapped to the letter grades, to numerical scoring, in which the score is
not converted to any letter grade (equivalently, every score is its own letter grade).

Theoretically, we identify realistic conditions under which numerical scoring is better than
any uniform letter grading scheme. Our experiments confirm that this holds under even weaker
conditions, but also find cases where the converse occurs.

1 Introduction

Student evaluations and grading play an integral and influential role in every individual’s academic
experience. Naturally, there has been widespread debate among researchers and policy-makers
about the efficacy of various grading systems such as letter v.s. number grades. For instance,
coarse-grained grading schemes (i.e., letter grades) are considered to be less noisy indicators of
performance, and stronger signals of status, and consequently, are the norm in North American
universities. At the same time, there is also growing awareness that the grade itself affects perfor-
mance independent of student ability, i.e., the grades are “not just an output of the educational
process, they may also be an input” [11]. For example, empirical evidence suggests the disclosure
of midterm grades may motivate or demotivate students to perform better in a future exam, con-
trolling for other effects. In light of this evidence, it is clear that the design of a grading system
must be a deliberate choice that takes into account student welfare in addition to other extraneous
factors [12]. In this work, we take an analytical approach and study the design of an optimal
grading system with a particular focus on numeric v.s. uniform letter grades.1 As far as we are
aware, this work is among the first to look at the problem of designing a grading scheme with the

1We use the term uniform letter grades to refer to letter grading schemes where each letter grade corresponds to
an equal sized score range, e.g., [90, 100]→A+, [80, 90]→A-, and so on.
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explicit objective of improving student performance in future tests. Our model captures the impact
of grades on future performance via two well-motivated effects:

1. Anchoring: In any given test, students anchor themselves to (i.e., in expectation perform
as well as) a specific score or performance level based on their intrinsic ability. We refer to
this anchor as the intrinsic quality.

2. (De)Motivation: When the students’ actual score falls above (below) their intrinsic quality,
they get (de)motivated and subsequently, their expectation increases (decreases) for future
tests. This is a phenomenon that has been widely noticed in practice [4, 8, 9].

In this regard, our work departs from other papers in this area, where students are often
modelled as status-maximizers [10], i.e., their intrinsic motivation for a better grade stems from a
desire to rank above their fellow students. Our model does not induce any artificial scarcity (status)
and instead the fundamental friction is a result of noisy performance and how the same grading
rule affects different students differently.

To better illustrate how different grading schemes impact student performance under our model,
consider a student with an intrinsic quality of q1 = 85. Suppose that the student scores s1 = 81 in
the midterm exam. Disclosing this numeric score may demotivate the student, which may reduce
her effective intrinsic quality for the final exam. This adverse effect may be prevented if a (coarser)
letter grading scheme is used, in which (say) all students (including the student under consideration)
whose scores lie in [80, 90] are assigned a letter grade of A−. However, consider another student
whose intrinsic quality is q2 = 91 and whose midterm score is s2 = 89. Receiving the same letter
grade A− as everyone who scored in [80, 90] may be more demotivating to her than receiving her
numerical score of s2 = 89. Hence, the overall effect of using a letter grading scheme remains
unclear.

There is another subtle issue to be considered. While the comparison made by a student between
her numerical score and intrinsic true quality is straightforward,2 it is not obvious how a student
should compare her intrinsic true quality to a letter grade received (such as A−). This depends
on how the student perceives the letter grade. To that end, we use a scheme for mapping letter
grades back to representative numerical scores: each letter grade is mapped to the midpoint of
the interval containing all the scores that were mapped to that letter grade. For example, if all
scores in the range [80, 90] are mapped to the letter grade A−, then A− is mapped back to (i.e.,
considered worth) a score of 85, which is what any student receiving A− would compare to her
intrinsic quality.

This midpoint scheme has three in-built advantages. First, it reflects how the letter grades may
truly be perceived in the outside world (and thus by the students) as it is actually used in the real
world [24, 25]. Second, the association of a letter grade to the midpoint of its score range accurately
conveys the (average) performance of a student receiving that letter grade. Third, in the absence
of any structure on how the grades are perceived, the question we ask in this work — which letter
grading schemes would lead to the maximum average student performance? — would have a trivial
and rather unsatisfactory answer: assign all students a grade worth 100 to maximally motivate
them. The midpoint scheme makes this impossible: if the same grade (say A+) was assigned to all
the students with scores anywhere in [0, 100], it would only be worth 50.

2This assumes that students is aware of their own intrinsic true qualities, but it may suffice for them to have noisy
estimates.
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Building on the ideas presented in this example, we develop a framework to compare various
grading systems in an environment with sequential testing. This includes evaluations within a
course, e.g., a midterm followed by a final exam, but also grading across related courses, e.g., a
student taking Calculus 101 followed by Calculus 102. Since a student’s intrinsic quality increases
after a test if the grade received is higher than her intrinsic quality and decreases otherwise, our
aim is

to compare different grading schemes and choose the one that provides a higher quality
improvement (or a lower quality degradation).

Our results. In this work, we compare the numerical scoring scheme, where the student learns
her exact score in an evaluation, to uniform letter grading schemes, where the interval of scores
is partitioned into T equal-length intervals mapping to different letter grades (and each interval
is represented by its midpoint). While uniform letter grading is not completely realistic, we view
our work as a starting point for the curiously unaddressed problem of quantitatively optimizing
letter grading schemes and a stepping stone for future work to build on. That said, we note that
real-world letter grading schemes (at least those used in North American universities) are close
to uniform, once a very large interval mapped to the failing grade and a somewhat large interval
mapped to very top grade are omitted. Since very few students fall in these two intervals, this
omission does not significantly affect the overall analysis.

First, we theoretically study the case where two sequential evaluations take place, such as
midterm and final exam. We show that under natural conditions, numerical scoring and all uniform
letter grading schemes have equal performance when the motivational and demotivational effects
are equally strong, and otherwise, either numerical scoring outperforms all uniform letter grading
schemes or the opposite happens. Analytically identifying when each scheme outperforms the
other turns out to be far from obvious and subtly dependent on properties of the distributions
of intrinsic true qualities and scores, even for this limited setting. Using carefully constructed
bijections between students, we are able to identify additional conditions under which numerical
scoring outperforms all uniform letter grading schemes when the demotivational effect is stronger
than the motivational effect, and the opposite happens when the demotivational effect is weaker
than the motivational effect. Since there is significant evidence that negative events have a greater
impact than positive events [1, 6], we expect the demotivational effect to be stronger than the
motivational effect; thus, our results are in favour of numerical scoring.

Next, we empirically compare numerical scoring to uniform letter grading schemes. Under two
sequential evaluations, we observe that numerical scoring continues to outperform uniform letter
grading when the demotivational effect is stronger (and the opposite continues to hold when the
motivational effect is stronger), even under more realistic conditions than in our theoretical analysis,
such as when the true qualities of the students follow a (truncated) normal distribution. However,
surprisingly, when more than two evaluations take place, the effect is reversed. Even after just
six sequential evaluations, uniform letter grading begins to outperform numerical scoring when the
demotivational effect is stronger (and the opposite holds when the motivational effect is stronger).
In the intermediate stage between these two regimes, there is another surprising effect: with four
sequential evaluations, numerical scoring outperforms uniform letter grading regardless of which
effect is stronger!

Our results indicate that the choice of the grading scheme depends on the application at hand:
with fewer evaluations (e.g., courses with just a few tests or shorter education programs with just
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a few semesters), numerical scoring may be better, while with many evaluations (e.g., courses with
weekly tests or longer education programs), uniform letter grading may be better. At a high level,
although our work draws on literature from fields such as economics and psychology, it provides a
fundamental perspective on the question of student grading within the framework of multi-agent
systems, i.e., where each student is modeled as an agent whose behavior depends on the decisions
made by the system. Our results open up the possibility of designing grading systems that are easy
to implement, approximately-optimal, and take into account students’ incentives.
Related work. There is a rich literature on comparing grading schemes using various objectives.
However, to the best of our knowledge, none of these papers study the objective of improving
student quality that we focus on.

Several works have studied, both theoretically and empirically, how the effort exerted by stu-
dents for an evaluation depends on the grading scheme to be used [3, 7, 17, 20]. For example, when
using pass/fail grading, a student may try hard enough to pass (with high probability), but not
any harder. Our work is orthogonal to this: we focus on effect of the outcome of one evaluation on
the student motivation in subsequent evaluations.

Another related work is that of Sikora [22], who also compares grading schemes, but his goal is
to study the tradeoff between conveying the most information about the student’s true quality and
minimizing noise due to factors unrelated to the true quality, not the (de)motivational effects of the
grading scheme in subsequent evaluations. In our work, the task of keeping the grades “consistent”
with the actual performance is indirectly performed by the midpoint scheme.

Rohe et al. [21] and Bloodgood et al. [2] also study how the grading scheme used may impact
students’ psychological well-being and stress levels, but do not focus on the impact of this in
subsequent evaluations.

2 Model

Define [k] = {1, . . . , k} for k ∈ N. We introduce a model in which the grading scheme used in one
evaluation can motivate or demotivate students, affecting their performance in future evaluations.
True qualities. A student begins with an intrinsic (true) quality q drawn from a (nonatomic)
prior Q with probability density function (PDF) fQ(·). For simplicity, let the support of Q be [0, 1].
Scores. There is a score model S such that the numerical performance (score) of a student with
true quality q in the first evaluation, denoted s ∈ [0, 1], is drawn from the (nonatomic) distribution
S(q) with PDF fS(·; q). We focus on score models in which the expected score of a student is equal
to their true quality, i.e., Es∼S(q)[s] = q for all q ∈ [0, 1].
Grades. A grading scheme is a function B : [0, 1]→ [0, 1] that maps the score to a grade.

Letter grading. A letter grading scheme B~c is specified by a vector ~c = (c0 = 0, c1, . . . , cT−1, cT =
1), for some T ∈ N (referred to as the number of grades) and ci > ci−1 for all i ∈ [T ], and is given
by B~c(s) = ci−1+ci

2 for all i ∈ [T ] and s ∈ [ci−1, ci). That is, it partitions [0, 1) into finitely many
disjoint intervals (one for each grade) and maps a score to the midpoint of the interval containing
it.

Uniform letter grading. We are particularly interested in the uniform letter grading (ULG)
scheme. For a given number of grades T ∈ N, uniform letter grading with T grades, denoted
ULGT , is specified by ci = i/T for each i ∈ [T ]. In other words, it partitions [0, 1) into T equal-
length intervals. We will use ∆(T ) = 1/T to denote the length of the interval, dropping T from
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the argument when it is clear from the context. Formally, we have that for all s ∈ [0, 1),3

ULGT (s) = (bs/∆c+ 1/2) ·∆.

For instance, ULG10 maps all scores in [0, 0.1) to 0.05, all scores in [0.1, 0.2) to 0.15, and so on.
We restrict our focus to uniform grading schemes for two reasons: a) it is straightforward and easy
to implement in practice; b) given that different institutions following different grading schemes,
this allows us to broadly compare letter and number grading without getting lost in the minutiae.
Further our assumption that each letter grade maps to the midpoint of an interval is common
practice across universities [24, 25] as well as the literature [18, 19]. More generally, it is consistent
with the practice of assigning a score or grade-point to each letter grade.

Numerical scoring. We will compare (uniform) letter grading to numerical scoring (NS), given
by NS(s) = s for all s ∈ [0, 1]. Under numerical scoring, scores are not rounded to any grades. This
can also be viewed as the limit of uniform letter grading with T →∞ grades.
(De)motivation. The grades affect students’ level of motivation in subsequent evaluations. Under
grading scheme B, a student compares their true quality q to the obtained grade B(s). If the grade
is higher than the true quality, the student experiences a motivational boost, but in the converse
case, gets demotivated. We model this by assuming that the effective true quality of the student
for the next evaluation changes to q′ = q + h(q,B(s)), where

h(q,B(s)) =
{
αm · (B(s)− q), if B(s) > q,

−αd · (q −B(s)), if B(s) < q.

We refer to αm, αd ∈ R>0 as motivation and demotivation coefficients, respectively. Note that the
amount of (de)motivation is proportional to the difference between the obtained grade and the true
quality. In the next evaluation, the student obtains a score s′ drawn from S(q′). We remark that
when αm, αd ∈ [0, 1], we automatically have q′ ∈ [0, 1]; thus, we focus on this range of parameters.4
Our choice of a linear model for demotivation follows from studies showing that student performance
is linearly dependent on both external [5] and internal stimuli [15]. Additionally, even when the
actual behaviour is more complex, our model serves as a first-order approximation when (B(s)− q)
is small.
Goal. Intuitively, we are interested in choosing grading schemes that achieve a higher increase
(or a lower decrease) in the average student quality. Thus, we define the performance of a grading
scheme B as:

perf(B) , Eq∼Q,s∼S(q)[q′ − q]

where q′ = q + h(q,B(s)). Due to linearity of expectation,

perf(B) = Eq∼Q,s∼S(q)[q′ − q] = Eq∼Q,s∼S(q)[h(q,B(s))].

Thus, we compare Eq∼Q,s∼S(q)[h(q,B(s))] under numerical scoring and uniform letter grading.
Hereinafter, we omit q ∼ Q and s ∼ S(q) from an expression of expectation, whenever it is clear
from the context.

Note that for our theoretical analysis, we focus on the case of two evaluations. Later, we
empirically study the case of more than two evaluations.

3Because we assume nonatomic distributions, it does not matter what ULGT (1) is. We will use the convention
that ULGT (1) = 1.

4In principle, one can also use larger coefficients and truncate q′ to lie in [0, 1].
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3 Theoretical Results

In this section, we derive theoretical results for the performance of uniform letter grading schemes
and numerical scoring, when students participate in two sequential evaluations and identify condi-
tions under which numerical scoring outperforms every uniform letter grading scheme, and condi-
tions under which the converse holds. Let us begin by introducing two useful definitions.

Definition 1 (Jointly Symmetric Distributions). We say that the true quality prior Q and the
score model S are jointly symmetric if fQ(q) ·fS(s; q) = fQ(1−q) ·fS(1−s; 1−q) for all s, q ∈ [0, 1].

Joint symmetry requires that true qualities and scores are symmetric across [0, 1]. That is, the
probability of having true quality q and receiving score s should be the same as the probability of
having true quality 1 − q and receiving score 1 − s. If the true quality prior is uniform, then this
means the score distribution S(q) should be the mirror image of the score distribution S(1 − q).
Note that joint symmetry does not necessarily require symmetry of the “noise” contained in the
score compared to the true quality. For example, we do not need fS(s = 0.4; q = 0.5) = fS(s =
0.6; q = 0.5).

Definition 2 (Symmetric Grading Scheme). We say that a grading scheme B is symmetric if
B(1− s) = 1−B(s) for all s ∈ [0, 1].

The reader can check that numerical scoring (NS) and uniform letter grading schemes (ULGT

for any T ∈ N) are symmetric. Our first result shows that under such symmetry, the performance of
the grading scheme is linear in the difference between the motivation and demotivation coefficients.
As we later show in Corollary 1, this allows us to compare numerical scoring to uniform letter
grading.

Theorem 1. When the true quality prior Q and the score model S are jointly symmetric, and the
grading scheme B is symmetric, then we have

perf(B) = αm − αd
2 · Eq∼Q,s∼S(q)

[
|q −B(s)|

]
. (1)

Proof. Note that due to Q and S being jointly symmetric, the pairs (q, s) and (1 − q, 1 − s) are
sampled with equal density. Hence, we have that

E
[
h(q,B(s))

]
= 1

2 · E
[
h(q,B(s)) + h(1− q,B(1− s))

]
. (2)

Due to the symmetry of the grading scheme, we have B(1−s) = 1−B(s), which implies that the
two terms h(q,B(s)) and h(1− q,B(1− s)) are motivation and demotivation by the same amount.
Hence,

E
[
h(q,B(s)) + h(1− q,B(1− s))

]
= (αm − αd) · E

[
|q −B(s)|

]
.

Plugging this into Equation (2), we get the result.

Corollary 1. Assume that the true quality prior Q and the score model S are jointly symmetric.
Then, all symmetric grading schemes have equal performance if αm = αd. Further, if αm 6= αd, for
every T ∈ N one of the following conditions holds.
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1. Uniform letter grading with T grades is at least as good as numerical scoring if αm > αd, and
the converse holds if αm < αd.

2. Uniform letter grading with T grades is at least as good as numerical scoring if αm < αd, and
the converse holds if αm > αd.

Proof. The first claim regarding αm = αd follows immediately from Equation (1). For the second
claim regarding αm 6= αd, note that the comparison between numerical scoring and uniform letter
grading with T buckets reduces to the sign of E[|q − NS(s)| − |q − ULGT (s)|], and depending on
this sign, one of the two statements in the corollary holds.

Corollary 1 tells us that having equal motivation and demotivation coefficients (αm = αd) is
the turning point: between uniform letter grading with a fixed number of grades and numerical
scoring, one is better when αm < αd but the other becomes better when αm > αd. But it does not
tell us which one is better in each case.

Our next result identifies a sufficient condition under which this dilemma is settled: uniform
letter grading is better when αm > αd and numerical scoring is better when αm < αd. To introduce
this sufficient condition, we need to define the following natural property of the score model.

Definition 3 (Ex-Ante Single-Peaked Score Model). We say that the score model S is ex-ante
single-peaked if, for every q ∈ [0, 1], fS(·; q) is single-peaked with the peak at q, i.e., fS(s; q) 6
fS(s′; q) for all s 6 s′ 6 q and s > s′ > q.

Intuitively, in an ex-ante single-peaked score model, scores closer to the true quality are more
likely than scores farther from the true quality.

For a fixed T , we also denote with D the set of all pairs of true qualities and scores that belong
to the same letter grade interval, i.e., D = {(q, s) : ULGT (q) = ULGT (s)}. For example, if T = 10,
(q = 0.51, s = 0.59) ∈ D but (q = 0.51, s′ = 0.49) /∈ D.

Theorem 2. Fix any T ∈ N. Assume that the true quality prior Q and the score model S satisfy
the following.

1. Q and S are jointly symmetric;

2. S is ex-ante single-peaked; and

3. E
[
|q − s|

∣∣∣ (q, s) ∈ D
]
6 E

[
|q −ULGT (s)|

∣∣∣ (q, s) ∈ D
]
.

Then, the first implication of Corollary 1 holds. That is, uniform letter grading with T grades is
at least as good as numerical scoring if αm > αd, the converse holds if αm < αd, and the two have
equal performance if αm = αd.

Before diving into the proof, let us make a remark regarding the third technical condition in
Theorem 2. The technical condition states that, averaged over all such pairs, the true quality is
closer to the score than to the midpoint of the interval that they both belong to. Later, we show
that this condition is satisfied in two natural cases. Intuitively, if the score distribution is sufficiently
concentrated near the true quality, the expected distance between the score and the true quality
will be sufficiently small, satisfying the condition. Let us now turn to the proof of Theorem 2.
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Proof. Given Theorem 1, we simply need to show that E
[
|q− s|

]
6 E

[
|q−ULGT (s)|

]
. We already

assume that this holds conditioned on (q, s) ∈ D. Hence, we only need to show that it also holds
conditioned on (q, s) /∈ D. We show this given the additional single-peakedness property. In fact,
we show that conditioned on (q, s) /∈ D, the desired equation actually holds for every q ∈ [0, 1],
and, thus, in expectation over q ∼ Q too. Fix any q ∈ [0, 1]. Note that

E
[
|q − s|

∣∣∣ (q, s) /∈ D
]

= Pr
[
ULGT (s) < ULGT (q)

∣∣∣ (q, s) /∈ D
]
· E
[
q − s

∣∣∣ ULGT (s) < ULGT (q)
]

+ Pr
[
ULGT (s) > ULGT (q)

∣∣∣ (q, s) /∈ D
]
· E
[
s− q

∣∣∣ ULGT (s) > ULGT (q)
]

6 Pr
[
ULGT (s) < ULGT (q)

∣∣∣ (q, s) /∈ D
]
· E
[
q −ULGT (s)

∣∣∣ ULGT (s) < ULGT (q)
]

+ Pr
[
ULGT (s) > ULGT (q)

∣∣∣ (q, s) /∈ D
]
· E
[
ULGT (s)− q

∣∣∣ ULGT (s) > ULGT (q)
]

= E
[
|q −ULGT (s)|

∣∣∣ (q, s) /∈ D
]
,

where the first transition holds because

[0, 1]2 \ D = {(q, s) : ULGT (s) < ULGT (q)} ∪ {(q, s) : ULGT (s) > ULGT (q)} ,

and the second transition holds due to linearity of expectation and because the single-peakedness
assumption implies

E
[
s
∣∣∣ ULGT (s) < ULGT (q)

]
> E

[
ULGT (s)

∣∣∣ ULGT (s) < ULGT (q)
]
,

(and) E
[
s
∣∣∣ ULGT (s) > ULGT (q)

]
6 E

[
ULGT (s)

∣∣∣ ULGT (s) > ULGT (q)
]
.

This completes the proof.

In Theorem 2, we argued that single-peakedness of S establishes the desired inequality of E
[
|q−

s|
]
6 E

[
|q−ULGT (s)|

]
at least conditioned on (q, s) /∈ D, leaving only the case of (q, s) ∈ D, which

was stated as an assumption in. Next, we show that if the true quality prior Q is uniform over
[0, 1], and it satisfies two natural assumptions then the desired inequality also holds conditioned on
(q, s) ∈ D.

Definition 4 (Ex-Post Single-Peaked Score Model). We say that the score model S is ex-post single-
peaked if, for every s ∈ [0, 1], fS(s; ·) is single-peaked with the peak at s, i.e., fS(s; q) 6 fS(s; q′)
for all s 6 q′ 6 q and q 6 q′ 6 s.

Definition 5 (Probabilistic Single-Dipped Score Model). We say that the score model S is prob-
abilistic single-dipped if, for every x ∈ [0, 1], Pr

[
s ∈ [q, x] ∪ [x, q]

∣∣∣ q] (let us call this p(x, q)) is
single-dipped in q with the dip at q = x, i.e., p(x, q) 6 p(x, q′) for all x 6 q′ 6 q and q 6 q′ 6 x.

Before we state the next theorem, we further partition D into two sub-spaces, Dsame and Dopp,
such that Dsame contains the set of all pairs of true qualities and scores such that either both are
at most or both are at least the midpoint of their common letter grade interval, i.e.

Dsame = {(q, s) : q, s 6 ULGT (q) = ULGT (s) ∨ q, s > ULGT (q) = ULGT (s)}
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and Dopp = D\Dsame. For example, when T = 10, (q = 0.54, s = 0.51) ∈ Dsame, but (q = 0.54, s′ =
0.56) ∈ Dopp. We are now ready to state the result.

Theorem 3. Fix arbitrary T ∈ N. Assume the following regarding the true quality prior Q and
the score model S.

1. Q is uniform over [0, 1];

2. Q and S are jointly symmetric;

3. S is ex-ante and ex-post single-peaked, and probabilistic single-dipped; and

4. Pr
[
(q, s) ∈ Dsame

]
> 2(γ + 1) · Pr

[
(q, s) ∈ Dopp

]
, where γ = maxa,b∈[0,1]

fS(a;b)
fS(b;a) .

Then, the first implication of Corollary 1 holds. That is, uniform letter grading with T grades is
at least as good as numerical scoring if αm > αd, the converse holds if αm < αd, and the two have
equal performance if αm = αd.

Let us first understand the assumptions in Theorem 3. A natural choice of S under which
Assumptions 3 and 4 in Theorem 3 are satisfied is when S(q) is a symmetric distribution around
q, i.e., the noise in the score follows a symmetric zero-mean distribution. Further, for such a score
model, we have γ = 1, so Assumption 4 becomes Pr[(q, s) ∈ Dsame] > 4 · Pr[(q, s) ∈ Dopp]. More
general, from the definitions of Dsame and Dopp, when the variance of the score distribution is
sufficiently small, we can expect Pr[(q, s) ∈ Dsame] to be much higher than Pr[(q, s) ∈ Dopp]. For
further intuition, see Figure 2 in Appendix A.

Proof of Theorem 3. Given Theorem 2, we only need to show that

E
[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ D
]

= Pr[(q, s) ∈ Dsame
∣∣∣ (q, s) ∈ D] · E

[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dsame
]

+ Pr[(q, s) ∈ Dopp
∣∣∣ (q, s) ∈ D] · E

[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dopp
]

6 0.

(3)

Let us analyze the expected value of |q− s| − |q−ULGT (s)| conditioned on both (q, s) ∈ Dsame

and (q, s) ∈ Dopp separately.

Analyzing Dsame. For k ∈ {0, 1, . . . , T − 1}, define `(k) = k∆, m(k) = (k + 1/2)∆, and h(k) =
(k+ 1)∆. These are respectively the lower end, midpoint, and upper end of the k-th grade interval
under ULGT . Note that

Dsame =
{

(q, s) :(`(k) 6 q 6 s 6 m(k)) ∨ (`(k) 6 s 6 q 6 m(k))∨

(m(k) 6 q 6 s < h(k)) ∨ (m(k) 6 s 6 q < h(k)), k ∈ {0, 1, . . . , T − 1}
}
.

Fix an arbitrary k ∈ {0, 1, . . . , T − 1}; write `, m, and h while omitting the fixed k in the
argument; and let us analyze the desired expression |q − s| − |q − ULGT (s)| conditioned on each
of the four cases for this fixed k separately. We will derive bounds that will hold regardless of the
value of k, and, therefore, also conditional on (q, s) ∈ Dsame (i.e., aggregated across all k). Note
that in each case, we have ULGT (q) = ULGT (s) = m.
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1. ` 6 q 6 s 6 m. In this case, |q − s| − |q −ULGT (s)| = s−m. Note that

E
[
s−m | ` 6 q 6 s 6 m

]
=
∫m
q=`

∫m
s=q fQ(q) · fS(s; q) · (s−m) ds dq

Pr[` 6 q 6 s 6 m]

=

∫m
q=` 1 · E

[
s−m

∣∣∣ q, s ∈ [q,m]
]
· Pr

[
s ∈ [q,m]

∣∣∣ q] dq∫m
q=` 1 · Pr

[
s ∈ [q,m]

∣∣∣ q] dq

6
−
∫m
q=`

(
m−q

2

)
· Pr

[
s ∈ [q,m]

∣∣∣ q]dq∫m
q=` 1 · Pr

[
s ∈ [q,m]

∣∣∣ q] dq

6
− 1
m−` ·

(∫m
q=`

m−q
2 dq

)
·
(∫m
q=` Pr

[
s ∈ [q,m]

∣∣∣ q]dq
)

∫m
q=` 1 · Pr

[
s ∈ [q,m]

∣∣∣ q]dq

= − 1
(∆/2)

∫ ∆
2

r=0

r

2 dr = −∆
8 .

Here, the third transition holds because conditioned on a given value of q and on s ∈ [q,m],
the distribution of s ∈ [q,m] is single-peaked with peak at q (Assumption 3). Hence, E[s|q, s ∈
[q,m]] 6 (q +m)/2. The fourth transition is the integral Chebyshev inequality (Lemma 1 in
Appendix B), which holds because both (m − q)/2 and Pr

[
s ∈ [q,m]

∣∣∣ q] are non-negative,
non-increasing functions of q in [`,m] (Assumption 3).

2. ` 6 s 6 q 6 m. In this case, |q − s| − |q −ULGT (s)| = 2q −m− s. Note that

E
[
2q −m− s | ` 6 s 6 q 6 m

]
=
∫m
q=`

∫ q
s=` fQ×S(q, s) · (2q −m− s) dsdq

Pr[` 6 s 6 q 6 m]

=

∫m
s=` fS(s)E

[
2q −m− s

∣∣∣ s, q ∈ [s,m]
]
· Pr

[
q ∈ [s,m]

∣∣∣ s] ds
Pr[` 6 s 6 q 6 m] .

Here, we use fQ×S(q, s) = fQ(q) · fS(s; q) to denote the joint probability density of q and s,
and fS(s) =

∫ 1
q=0 fQ(q)fS(s; q) dq to denote the marginal probability density of s.

We argue that E
[
2q − m − s

∣∣∣ s, q ∈ [s,m]
]
6 0. Intuitively, this is because the posterior

distribution of q ∈ [s,m] conditioned on a fixed value of s and on q ∈ [s,m] is single-peaked
with peak at s by Assumptions 1 and 3. Hence, E

[
q
∣∣∣ s, q ∈ [s,m]

]
6 (s + m)/2. Formally,

this can be viewed as

E
[
2q −m− s

∣∣∣ s, q ∈ [s,m]
]

=
∫m
q=s f(q; s)(2q −m− s) dq∫m

q=s f(q; s) dq

6
1

m−s ·
(∫m
q=s f(q; s) dq

)
·
(∫m
q=s(2q −m− s) dq

)
∫m
q=s f(q; s) dq = 0,

10



where f(q; s) = fQ(q)·fS(s;q)
fS(s) denotes the probability density of true quality being q conditioned

on the score being s; the second transition is the integral Chebyshev inequality (Lemma 1 in
Appendix B), which holds because f(q; s) is a non-increasing function of q whereas 2q−m−s
is a non-decreasing function of q;5,6 and the final transition holds because the second integral
in the numerator is 0.

3. m 6 q 6 s < h. In this case, |q− s|− |q−ULGT (s)| = m+ s−2q. Due to the same reasoning
as in Case 2, we have that E

[
m+ s− 2q

∣∣∣ m 6 q 6 s < h
]
6 0.

4. m 6 s 6 q < h. In this case, |q − s| − |q −ULGT (s)| = m− s. Due to the same reasoning as
in Case 1, we have that E

[
m− s

∣∣∣ m 6 s 6 q < h
]
6 −∆/8.

Let p1, p2, p3, p4 respectively denote the total probabilities of the above four cases across all
values of k ∈ {0, 1, . . . , T − 1}, conditioned on (q, s) ∈ Dsame. Then, p1 + p2 + p3 + p4 = 1.
Because fS(a; b)/fS(b; a) 6 γ for all a, b ∈ [0, 1], it follows that p1 > p2/γ and p4 > p3/γ. Hence,
p1 + p4 > (p2 + p3)/γ. Using p1 + p2 + p3 + p4 = 1, we get p1 + p4 > 1/(γ + 1).

Combining the analysis from the four cases above, we have

E
[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dsame
]
6 −(p1 + p4) · ∆

8 6 − ∆
8(γ + 1) . (4)

Analyzing Dopp. Note that

Dopp = ∪k∈{0,1,...,T−1} {(q, s) : (`(k) 6 q 6 m(k) 6 s 6 h(k)) ∨ (`(k) 6 s 6 m(k) 6 q 6 h(k))} .

Fix an arbitrary k ∈ {0, 1, . . . , T − 1}; as before, write `, m, and h while omitting the fixed k in
the argument. Once again, we analyze the desired expression |q − s| − |q − ULGT (s)| conditioned
on each of the two cases in the above expansion of Dopp for this fixed k separately. We will derive
bounds that will hold regardless of the value of k, and, therefore, also conditional on (q, s) ∈ Dopp

(i.e., aggregated across all k). Note that we still have ULGT (q) = ULGT (s) = m.

1. ` 6 q 6 m 6 s 6 h: In this case, we have |q − s| − |q −ULGT (s)| = s−m. Note that

E
[
s−m

∣∣∣ ` 6 q 6 m 6 s 6 h
]
6 ∆/4. (5)

This is because s ∈ [m,m+∆/2] and, due to single-peakedness of the score model and q 6 m,
it is at most m+ ∆/4 in expectation.

2. ` 6 s 6 m 6 q 6 h: In this case, we have |q − s| − |q − ULGT (s)| = m − s, and the same
reasoning as above shows that

E
[
m− s

∣∣∣ ` 6 s 6 m 6 q 6 h
]
6 ∆/4. (6)

5To see why f(q; s) = fQ(q)·fS(s;q)
fS(s) is non-increasing in q, note that the denominator does not depend on q whereas

the numerator is equal to fS(s; q) (Assumption 1), which is non-increasing in q (Assumption 3).
6Technically, integral Chebyshev inequality requires non-negative functions, and 2q − (m + s) can be negative

when q < (m + s)/2. However, one can equivalently separate out the −(m + s) term, apply the integral Chebyshev
inequality to 2q, and recombine with the −(m+ s) term to achieve the same conclusion.
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Combining Equations (5) and (6) and aggregating over all k ∈ {0, 1, . . . , T − 1}, we get that

E
[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dopp
]
6 ∆/4. (7)

Finally, combining Equations (4) and (7), we have that

E
[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ D
]

6 Pr
[
(q, s) ∈ Dsame

∣∣∣ (q, s) ∈ D
]
·
(
− ∆

8(γ + 1)

)
+ Pr

[
(q, s) ∈ Dopp

∣∣∣ (q, s) ∈ D
]
· ∆

4 6 0,

where the final transition holds because Pr
[
(q, s) ∈ Dsame

]
> 2(γ + 1) ·Pr

[
(q, s) ∈ Dopp

]
(Assump-

tion 4), which is equivalent to

Pr
[
(q, s) ∈ Dsame

∣∣∣ (q, s) ∈ D
]
> 2(γ + 1) · Pr

[
(q, s) ∈ Dsame

∣∣∣ (q, s) ∈ D
]
.

This completes the proof.

Ex-ante single-peakedness, ex-post single-peakedness, and probabilistic single-dippedness can
be subsumed into a single property that captures a stronger form of symmetry, in which the noise
in the score is symmetric and zero-mean.

Definition 6 (Strongly Symmetric Score Model). We say that the score model S is strongly
symmetric if fS(s; q) = `(|s− q|) for some non-increasing function ` : R>0 → R>0.

Under a strongly symmetric score model, we have γ = 1 in Assumption 4 of Theorem 3, which
means a constant of 2(γ + 1) = 4 would be needed. However, using different techniques, we can
show that even a constant of 3 suffices to obtain the same result under strong symmetry. This
broadens the scope to include less concentrated score models.

Theorem 4. Fix arbitrary T ∈ N. Let D, Dsame, and Dopp be defined as in Theorem 3. Assume
the following regarding the true quality prior Q and the score model S.

1. Q is uniform over [0, 1];

2. S is strongly symmetric; and

3. Pr
[
(q, s) ∈ Dsame

]
> 3 · Pr

[
(q, s) ∈ Dopp

]
.

Then, the first implication of Corollary 1 holds. That is, uniform letter grading with T grades is
at least as good as numerical scoring if αm > αd, the converse holds if αm < αd, and the two have
equal performance if αm = αd.

Proof. As in the proof of Theorem 3, note that given Theorem 2, we only need to prove

E
[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ D
]

= Pr[(q, s) ∈ Dsame
∣∣∣ (q, s) ∈ D] · E

[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dsame
]

+ Pr[(q, s) ∈ Dopp
∣∣∣ (q, s) ∈ D] · E

[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dopp
]

6 0.

(8)
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In the proof of Theorem 3, we analyzed the expected value of |q−s|−|q−ULGT (s)| conditioned
on both (q, s) ∈ Dsame and (q, s) ∈ Dopp separately: the former was shown to be at most − ∆

8(γ+1)
whereas the latter was shown to be at most ∆

4 , yielding the desired Equation (8) when Pr[(q, s) ∈
Dsame] > 2(γ + 1) · Pr[(q, s) ∈ Dopp].

With strong symmetry (Assumption 2), we improve the former upper bound to −∆
12 , which

improves the sufficient condition to Pr[(q, s) ∈ Dsame] > 3 ·Pr[(q, s) ∈ Dopp]. That is, our goal is to
prove

E
[
|q − s| − |q −ULGT (s)|

∣∣∣ (q, s) ∈ Dsame
]
6 −∆

12 .

Note that Dsame = ∪k∈{0,1,...,T−1}Dsame
k , where Dsame

k = Dsame ∩ [k∆, (k+ 1)∆)2. We show that
E
[
|q − s| − |q − ULGT (s)|

∣∣∣ (q, s) ∈ Dsame
k

]
6 −∆

12 for all k ∈ {0, 1, . . . , T − 1}, which implies the
desired result. Fix any k ∈ {0, 1, . . . , T − 1}, and write ` = k∆, m = (k+1/2)∆, and h = (k+1)∆.

Let us further partition Dsame
k as Dsame

k,low ∪ Dsame
k,high, where Dsame

k,low = {(q, s) : ` 6 q, s < m} (both
the true quality and the score are lower than the midpoint) and Dsame

k,high = {(q, s) : m 6 q, s < h}
(both the true quality and the score are at least as high as the midpoint). Crucially, we note that

E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low

]
= E

[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,high

]
.

This is because the transformation (q, s)→ (q′, s′), where q′ = m+ (m− q) and s′ = m+ (m− s),
is a bijection mapping each point (q, s) ∈ Dsame

k,low to a point (q′, s′) ∈ Dsame
k,high with |q− s| − |q−m| =

|q′ − s′| − |q′ − m| as well as fQ×S(q, s) = fQ×S(q′, s′); the last observation relies on Q being a
uniform distribution (Assumption 1) and S being strongly symmetric (Assumption 2).

Hence, it is sufficient to show that

E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low

]
6 −∆

12 .

Next, we further partitionDsame
k,low asDsame

k,low,inc∪Dsame
k,low,dec, whereDsame

k,low,inc = {(q, s) : ` 6 q 6 s < m}
(the score is at least as much as the true quality) and Dsame

k,low,dec = {(q, s) : ` 6 s 6 q < m} (the score
is at most as much as the true quality). Note that

E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low

]
= Pr

[
(q, s) ∈ Dsame

k,low,inc

∣∣∣ (q, s) ∈ Dsame
k,low

]
· E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low,inc

]
+ Pr

[
(q, s) ∈ Dsame

k,low,dec

∣∣∣ (q, s) ∈ Dsame
k,low

]
· E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low,dec

]
.

First, we argue that

Pr
[
(q, s) ∈ Dsame

k,low,inc

∣∣∣ (q, s) ∈ Dsame
k,low

]
= Pr

[
(q, s) ∈ Dsame

k,low,dec

∣∣∣ (q, s) ∈ Dsame
k,low

]
= 1

2 .

This follows by noting the bijection from Dsame
k,low,inc to Dsame

k,low,dec given by (q, s) → (q′, s′), where
q′ = m− (q − `) and s′ = m− (s− `); due to strong symmetry of S and |q − s| = |q′ − s′|, we have
fQ×S(q, s) = fQ×S(q′, s′).

Next, recall that in the proof of Theorem 3 (Case 2 in the analysis of Dsame), we had already
argued

E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low,dec

]
= E[2q − s−m|` 6 s 6 q < m] 6 0.
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Hence, we have

E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low

]
6

1
2 · E

[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low,inc

]
,

which means it is sufficient to argue

E
[
|q − s| − |q −m|

∣∣∣ (q, s) ∈ Dsame
k,low,inc

]
= E

[
s−m

∣∣∣ ` 6 q 6 s < m
]
6 −∆

6 .

Note that

E
[
s−m

∣∣∣ ` 6 q 6 s < m
]

= −
∫m
q=`

∫m
s=q(m− s)fS(s; q) dsdq
Pr[` 6 q 6 s < m] (Q is uniform)

6 −
∫m
q=`

1
m−q

(∫m
s=q(m− s) ds

)
·
(∫m
s=q fS(s; q) ds

)
dq

Pr[` 6 q 6 s < m] (Lemma 1 in Appendix B)

= −1
2

∫m
q=`(m− q) Pr[s ∈ [q,m]] dq

Pr[` 6 q 6 s < m]

6 −1
2

2(m−`)
3 ·

∫m
q=` Pr[s ∈ [q,m]] dq

Pr[` 6 q 6 s < m] (Lemma 4 in Appendix B)

= −1
2

2(m−`)
3 · Pr[` 6 q 6 s < m]
Pr[` 6 q 6 s < m] = −∆

6 ,

as needed. Here, in the application of Lemma 4 from Appendix B in the fourth transition, we
use the fact that g(q) = Pr[s ∈ [q,m]] =

∫m
s=q fS(s; q) ds is a concave function and g(m) = 0. To

see concavity, note that strong symmetry of S means that there is a distribution with probability
density z such that fS(s; q) = z(s − q). Then, g(q) =

∫m
s=q z(s − q) ds =

∫m−q
x=0 z(x) dx. Hence,

g′(q) = −z(m − q) and g′′(q) = z′(m − q). Due to the single-peakedness of S, we have that
z′(x) 6 0 for all x > 0, so g′′(q) 6 0, which proves concavity of g.

We remark that in the proof of Theorem 4, we only really need strong symmetry for pairs of
true qualities and scores that belong to the same letter grade interval.

4 Experiments

In the previous section, we proved that when Q is uniformly distributed and the variance of the
score model is small, we can conclude that the first implication of Corollary 1 holds. In this
section, we empirically compare numerical scoring and uniform letter grading while relaxing these
assumptions.

First, it is widely believed that students’ true qualities, at least in large classes, are normally
distributed based on the evidence that “exam scores tend to be normally distributed for well-
constructed, norm-referenced, multiple choice tests” [26]. Hence, we empirically study the case
where Q is normally distributed, truncated to [0, 1]. We also consider cases where the score is
not necessarily concentrated around the true quality. Finally, our analysis was limited to two
evaluations; in our experiments, we also consider more than two evaluations. When a student
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(c) αm = 0.2
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(d) αm = 0.8

Figure 1: Performance of numerical scoring and different uniform letter grading schemes, with µ = 65, σ = 12,
γ = 1.5 and αd = 0.5 over different motivation coefficients (top) and number of evaluations (bottom). 95%
confidence intervals are shown.

participates in r sequential evaluations, after each evaluation the student compares her “current”
true quality to the obtained grade, and experiences (de)motivation that affects her effective true
quality in the next evaluation. Formally, for j ∈ [r], let qj and sj denote her effective true quality
and score in evaluation j, respectively. Then, sj ∼ S(qj) for each j ∈ [r], and for j ∈ [r − 1], we
have:

qj+1 =
{
qj + αm · (B(sj)− qj), if B(sj) > qj ,

qj − αd · (qj −B(sj)), if B(sj) < qj .

We measure the performance of a grading scheme by comparing the final true quality, qr, to
the initial true quality q1, which extends the performance measure introduced in preliminaries for
two evaluations:

perfF (B) , Eq∼Q,s∼S(q)[qr − q1].

15



Data generation. For all the simulations, we compare numerical scoring (NS) to uniform letter
grading (ULGT ) with T ∈ {4, 8, 12, 16, 20} grades. We scale the interval of grades to [0, 100] to
resemble percentage grades. We simulate n = 5000 students (average results are plotted with 95%
confidence intervals), where the initial true quality q1 of each student is drawn i.i.d. from a truncated
normal distribution capped to [0, 100], with the underlying normal distribution characterized by
mean µ and standard deviation σ. Given a true quality q in an evaluation, the score s is drawn from
another truncated normal distribution capped to [0, 100], with the underlying normal distribution
characterized by mean q and standard deviation γ.
Results. Figure 1 shows how the final quality improves (or degrades) with respect to the motivation
coefficient (top) and the number of evaluations (bottom). In Figure 1a, the motivation coefficient
takes values in {0, 0.1 . . . , 0.9, 1}, the demotivation coefficient is set to 0.5 and the number of
evaluations is set to r = 2. We see that when αm < αd, numerical scoring is better than any
uniform letter grading (and uniform letter grading with more grades is better than uniform letter
grading with fewer grades), whereas when αm > αd, the opposite is true. Hence, it seems that
the first implication of Corollary 1 continues to hold, even when the true quality is drawn from
more realistic distributions. The comparison between uniform letter grading schemes with different
numbers of grades is intuitive: uniform letter grading essentially converges to numerical scoring
when T goes to infinity, so larger T should resemble numerical scoring more. The experiments show
that this holds even with small values of T .

Going beyond our theoretical analysis for r = 2 evaluations, we consider the case where stu-
dents participate in more than two evaluations. Surprisingly, as seen in Figures 1c and 1d, the
comparison between numerical scoring and uniform letter grading flips completely with large val-
ues of r: numerical scoring becomes worse than uniform letter grading (and ULGT becomes worse
than ULGT ′ for T > T ′) when αm < αd, but better when αd < αm. This shows that the choice
of the grading scheme depends not only on the comparison between the strengths of motivational
and demotivational effects (αm vs αd) but also, crucially, on the number of evaluations r. When
αm < αd, with fewer evaluations (e.g., courses with fewer tests or curricula with fewer semesters),
use of numerical scoring may be recommended, whereas with many evaluations (e.g., courses with
frequent tests or curricula with many semesters), use of uniform letter grading with fewer letters
may be more appropriate.

The transition between the regimes of few evaluations and many evaluations is even more sur-
prising. As seen in Figure 1b, with r = 4 evaluations, numerical scoring seems to outperform
uniform letter grading schemes regardless of the comparison between αm and αd. Hence, in gen-
eral, it is always best to simulate different grading schemes under the model and the number of
evaluations of interest in order to pick a suitable grading scheme.

Finally, we observe that under numerical scoring, as the number of evaluations increases, the
average student quality declines linearly when αm < αd (Figure 1c) and improves linearly when
αm > αd (Figure 1d). This is expected because it can be shown that under numerical scoring,
every evaluation changes the expected student quality by the same amount, which is proportional
to αm−αd, leading to a linear decline or growth. In contrast, under uniform letter grading schemes
with very few grades (small T ), the average student quality seems to converge and remain stable
as the number of evaluations increases, regardless of the comparison between αm and αd. This can
be explained due to the following stabilizing effect. Let [`, h] be a letter grade interval and m be
its midpoint. Consider a student who starts with a true quality q ∈ [`, h]. The student is likely
to receive a score s in the same interval [`, h] (so that (q, s) ∈ D), and thus, a grade of m. This
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causes the true quality to update in a manner so that it gets closer to m after which the student
experiences very little motivation or demotivation due to receiving a grade that is almost equal to
her true quality. Of course, the effect is more pronounced when T is small, so letter grade intervals
are large compared to the variance of the score model.

We have presented only the most striking observations here. For additional experiments, see
Appendix C, where we notice that the first implication of Corollary 1 continues to hold even when
the score is not well-concentrated around the true quality.

5 Discussion

Our work takes the first step towards proposing a statistical model of the impact of letter grading
schemes on student performance in sequential evaluations and using it to compare uniform letter
grading schemes to numerical scoring. We view our work as a stepping stone and outline appealing
extensions below.
Beyond midpoint grading. In our model, we assume that if all the scores from an interval [`, u]
are mapped to the same grade, they are effectively mapped to the midpoint grade (`+u)/2. While
this is a common method in practice of converting letter grades to percentages [24, 25], other
values within the range [`, u] are also sometimes used [23].
Non-uniform letter grading. It would be interesting to extend our analysis to non-uniform
letter grading schemes. More broadly, how can our model be extended to incorporate truly non-
numeric grades (e.g., A, B, etc.) without converting them to numeric grades somehow (e.g., 4, 3.7,
etc.)?
Non-linear (de)motivation. Evidence from prospect theory suggests that motivational effects
from positive outcomes are typically concave (diminishing rewards) while demotivational effects
from negative outcomes are typically convex (increasing losses) [14]. It would be interesting to
study such nonlinear effects.
Exploring implications to pedagogy and beyond. There is a growing literature on optimizing
design choices in AI-based learning systems, e.g., algorithmically deciding which explanations to
show to students [27]. Our insights may inform the design of personalized grading schemes in such
systems; they can adjust grade disclosure by learning over time whether students respond more
strongly to motivation or demotivation.

More broadly, insights from our work can be explored in other multi-agent systems, such as con-
test design [16] and crowdsourcing [13], where agents participate in rounds, and feedback from ear-
lier rounds can influence the effort in subsequent rounds. For example, under the right conditions,
Theorem 3 may suggest a leaderboard design where teams are grouped into buckets (analogously
to letter grading) and their exact performance is not revealed.
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A Intuition Regarding Dsame vs Dopp & Single-Peakedness

Dsame

Dopp
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(a) With a small value of γ, one can see that within the grade interval [70, 80] containing
the true quality q = 73, the probability of the score being on the same side of the midpoint
as the true quality (i.e., in [70, 75]) is significantly higher than the probability of it being on
the opposite side of the midpoint (i.e., in [75, 80]). The former region contributes to Dsame

while the latter contributes to Dopp. Their difference is the most pronounced when the true
quality is near the interval endpoints (e.g., q ≈ 70, 80) and gradually vanishes when it is
near the midpoint (e.g., q ≈ 75). In expectation over the true quality, one can still expect
Pr[(q, s) ∈ Dsame] to be sufficiently higher than Pr[(q, s) ∈ Dopp], satisfying the conditions in
Theorem 3 and Theorem 4.
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(b) Due to single-peakedness of the score distribution, the expected score in any interval lower
than the interval containing the true quality q = 73 is at least its midpoint (e.g., the expected
score subject to the score being in [60, 70] is at least 65). In contrast, the expected score in
any interval higher than the interval containing the true quality q = 73 is at most its midpoint
(e.g., the expected score subject to the score being in [80, 90] is at most 85). This observation
is used at the end of the proof of Theorem 2.

Figure 2: Both figures show the probability density function of the score distribution S(q) when the true
quality is q = 73. The distribution is a truncated normal distribution with mean q = 73, and standard
deviation γ = 1.7 (top figure) and γ = 6 (bottom figure). The top figure conveys the intuition behind the
conditions in Theorem 3 and Theorem 4, which assume Pr[(q, s) ∈ Dsame] to be sufficiently higher than
Pr[(q, s) ∈ Dopp]. The bottom figure conveys the intuition behind the observation used at the end of the
proof of Theorem 2.
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B Useful Lemmas

Before we dive into the missing proofs, we state the integral version of the well-known Chebyshev’s
inequality and its two useful implications.
Lemma 1 (Integral Chebyshev Inequality). If functions f, g : [a, b] → R>0 are either both non-
increasing or both non-decreasing, then

1
b− a

∫ b

a
f(x)g(x) dx >

(
1

b− a

∫ b

a
f(x) dx

)
·
(

1
b− a

∫ b

a
g(x) dx

)
.

If one of them is non-decreasing while the other is non-increasing, the inequality is reversed.
The following inequality is obtained by substituting f(x) = x (and thus, 1

b−a
∫ b
a f(x) dx = a+b

2 )
into Lemma 1 from Appendix B.
Lemma 2. If g : [a, b]→ R>0 is a non-increasing function, then we have∫ b

a
xg(x) dx 6

a+ b

2 ·
∫ b

a
g(x) dx,

and the inequality is reversed if g is a non-decreasing function.
If g is a probability density function over [a, b], then

∫ b
a g(x) dx = 1, yielding the following (quite

natural) implication.
Lemma 3. Let X be a random variable over [a, b] with a non-increasing probability density function
g : [a, b]→ R>0. Then, E[X] 6 (a+ b)/2, and the inequality is reversed if g is non-decreasing.

Finally, we use the following strengthening of the integral Chebyshev inequality when one of
the functions is linear and the other is concave non-increasing.
Lemma 4. Let g : [a, b]→ R>0 be a concave function with g(b) = 0. Then, we have∫ b

a
(b− x)g(x) dx 6

2(b− a)
3

∫ b

a
g(x) dx.

Proof. Due to concavity of g, we have∫ b

x
g(t) dt > 1

2(b− x)g(x).

Hence, we have∫ b

a

1
2(b− x)g(x) dx >

∫ b

x=a

∫ b

t=x
g(t) dt dx

=
∫ b

t=a

∫ t

x=a
g(t) dx dt (Fubini’s theorem)

=
∫ b

t=a
(t− a)g(t) dt

=
∫ b

x=a
(x− a)g(x) dx (Change of variable name)

=
∫ b

a
(b− a)g(x) dx−

∫ b

a
(b− x)g(x) dx.

Rearranging the terms yields the desired inequality.
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C Additional Experimental Results

In our experiments, we compared numerical scoring to uniform letter grading schemes with T ∈
{4, 8, 12, 16, 20} grades. In the main text, we presented results that show the impact of two param-
eters, the number of evaluations r and the motivation coefficient αm, when one of them is varied
while keeping the other fixed.

Here, we present additional experimental results, which show the impact of varying the mean µ
of the true quality distribution (Figure 3), the standard deviation σ of the true quality distribution
(Figure 4), and the standard deviation γ of the score distribution (Figure 5).7

Overall, the mean true quality µ has little impact on the performance of different grading
schemes. Similarly, the standard deviation σ of the true quality prior also does not significantly
affect the performance of the grading schemes, but somewhat strikingly, it has a dramatic impact
on the performance of ULG4 (uniform letter grading with 4 grades).

The impact of the standard deviation γ of the score distribution is more significant, since as
γ increases, the performance of the different grading schemes becomes more similar. However, we
see that even for quite large values of of γ, our theoretical results seem to hold. In particularly,
we see that when two evaluations are taken place, numerical scoring is better when αm < αd
whereas uniform letter grading is better when αm > αd. This observation is quite encouraging
since it probably indicates that our results can be extended for cases where the score is not very
well-concentrated around the true quality.

7Technically, these are the mean and the standard deviations of the respective underlying normal distributions
before truncation.
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(a) αm = 0.2, r = 2
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(b) αm = 0.2, r = 4
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(c) αm = 0.8, r = 2
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(d) αm = 0.8, r = 4

Figure 3: Performance of numerical scoring and different uniform letter grading schemes, with σ = 12,
γ = 1.5 and αd = 0.5, over different values of µ.
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(a) αm = 0.2, r = 2
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(b) αm = 0.2, r = 4
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(c) αm = 0.8, r = 2
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(d) αm = 0.8, r = 4

Figure 4: Performance of numerical scoring and different uniform letter grading schemes, with µ = 65,
γ = 1.5 and αd = 0.5, over different values of σ.
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(a) αm = 0.2, r = 2
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(b) αm = 0.2, r = 4
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(c) αm = 0.8, r = 2
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(d) αm = 0.8, r = 4

Figure 5: Performance of numerical scoring and different uniform letter grading schemes, with µ = 65,
σ = 12 and αd = 0.5, over different values of γ.
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