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In the classical version of online bipartite matching, there is a given set of offline vertices (aka agents) and
another set of vertices (aka items) that arrive online. When each item arrives, its incident edges—the agents
who like the item—are revealed and the algorithm must irrevocably match the item to such agents.

We initiate the study of class fairness in this setting, where agents are partitioned into a set of classes and
the matching is required to be fair with respect to the classes. We adopt popular fairness notions from the
fair division literature such as envy-freeness (up to one item), proportionality, and maximin share fairness to
our setting. Our class versions of these notions demand that all classes, regardless of their sizes, receive a
fair treatment. We study deterministic and randomized algorithms for matching indivisible items (leading to
integral matchings) and for matching divisible items (leading to fractional matchings).

We design and analyze three novel algorithms. For matching indivisible items, we propose an adaptive-
priority-based algorithm, Match-and-Shift, prove that it achieves 1/2-approximation of both class envy-
freeness up to one item and class maximin share fairness, and show that each guarantee is tight. For matching
divisible items, we design a water-filling-based algorithm, Eqal-Filling, that achieves (1−1/𝑒)-approximation
of class envy-freeness and class proportionality; we prove 1 − 1/𝑒 to be tight for class proportionality and
establish a 3/4 upper bound on class envy-freeness. Finally, we build upon Eqal-Filling to design a randomized
algorithm for matching indivisible items, Eqal-Filling-OCS, which achieves 0.593-approximation of class
proportionality. The algorithm and its analysis crucially leverage the recently introduced technique of online
correlated selection (OCS) [Fahrbach et al., 2020].
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1 INTRODUCTION

The one-sided matching problem is a fundamental subject within economics and computation that
deals with the matching of a set of items to a set of agents. Its primary objective is to ensure desirable
normative properties such as economic efficiency and fairness. The advent of Internet economics
along with the introduction of novel marketplaces has posed new challenges in designing desirable
solutions for which, as noted by Moulin [2019], “we need division rules that are both transparent

and agreeable, in other words, fair.” A wide array of these applications are inherently online, that is,
items (or goods) arrive in an online fashion, and need to be matched immediately and irrevocably
to the participating agents: consider the examples of allocating advertisement slots to Internet
advertisers [Mehta et al., 2007], assigning packets to output ports in switch routing [Azar and
Richter, 2005], distributing food donations among nonprofit charitable organizations [Lee et al.,
2019], and matching riders to drivers in ridesharing platforms [Banerjee and Johari, 2019].

Over the past few decades, a large body of literature—within the field of online algorithm design—
is devoted to the study of online bipartite matching problems. Their primary goal is to satisfy some
notion of economic efficiency—e.g. maximizing the size of the final matching—with no knowledge
of which items will arrive in the future and in what order. Algorithms designed for this problem
are judged by their competitive ratio, which is the worst-case approximation ratio of the size of
the matching produced to the maximum possible size in hindsight. It is well known that the best
deterministic algorithm can only achieve a 1/2-approximation of this efficiency goal, e.g., by using
a greedy algorithm to get a maximal matching. Notably, the seminal work of Karp et al. [1990]
provides a randomized algorithm called Ranking with the best possible (1 − 1/𝑒)-approximation.
While the literature offers online algorithms with optimal efficiency guarantees, little work

has been done in ensuring that these algorithms treat agents, or rather, classes of agents fairly.
Consider the example of a food bank that wishes to distribute the donated items among nonprofit
organizations and homeless shelters. The perishable food items donated to the food bank must be
assigned upon their arrival. How should an online matching algorithm distribute these donations to
the nonprofits and shelters in such a manner that the communities they serve are treated equitably?

Class fairness. We initiate the study of class fairness in online matching, where a set of items
arriving online must be assigned to agents, who are partitioned into known classes, with the goal
of achieving fairness among classes. Agents either like an item (value 1) or don’t like it (value
0). We adopt classical notions from the fair division literature that typically apply to individual
agents—such as envy-freeness (EF), proportionality (Prop), and maximin share guarantee (MMS)—to
classes of agents. Our extensions ensure that different classes are treated equally, regardless of their
sizes (e.g., in the food bank example above, different communities are treated equally, even if some
have many more organizations serving them).

Consider, for example, the appealing notion of envy-freeness, which, when applied to individual
agents, demands that no agent envy the resources given to another agent. When applied to classes,
our class envy-freeness (CEF) notion requires that no class of agents be able to increase their total
value by taking the items matched to another class, even if it assigns these items optimally among
its members. With indivisible items (which must be assigned entirely to a single agent), a class
envy-free matching may not always exist: consider a single item to be divided between two classes
with one agent each liking the item. In the standard fair division model, this impossibility has
motivated relaxations such as envy-freeness up to one item (EF1), which can be guaranteed [Lipton
et al., 2004]. When applied to classes, our class envy-freeness up to one item (CEF1) requires that
envy of any class towards another class to be eliminated after the removal of at most one item
that is matched to an agent within the envied class. In the offline setting wherein all items are
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Fig. 1. An adversarial instance where CEF1 cannot be achieved together with non-wastefulness.

available up front, it is known that CEF1 can be achieved without unnecessarily throwing away
items [Benabbou et al., 2020].1 Can it still be achieved in the online setting?

Impossibility of CEF1 in online matching. First, note that a classical algorithm that is blind to
the class information can easily violate CEF1. For example, if there are two classes containing
two agents each, and two items arrive that are liked by all four agents, the algorithm may end
up assigning both items to agents from the same class, rendering the other class envious even if
we remove one of the items. This simple example is easy to fix via a “class-aware” algorithm that
pays attention to the classes: simply assign the second item to an agent from the class that did not
receive the first item. Alas, a slightly larger example shows that even class-aware online algorithms
cannot always achieve CEF1.

Example 1. Consider the example shown in Figure 1, in which six agents are partitioned into
two classes 𝑁1 = {𝑎1, 𝑎2, 𝑎3} and 𝑁2 = {𝑏1, 𝑏2, 𝑏3}, and four items arrive sequentially in the order
(𝑜1, 𝑜2, 𝑜3, 𝑜4). An edge between an agent and an item indicates that the agent likes the item; thick
edges indicate the matching. Let us assume that we do not wish to throw away any item as long as
there is an unmatched agent who likes it; we later formalize this as non-wastefulness.
For 𝑖 ∈ {1, 2, 3}, item 𝑜𝑖 is liked by agents 𝑎𝑖 and 𝑏𝑖 . The first item 𝑜1 can be matched to either

𝑎1 and 𝑏1; without loss of generality, suppose it is matched to 𝑎1 ∈ 𝑁1. When the second item 𝑜2
arrives, note that it must be matched to 𝑏2 ∈ 𝑁2 in order to satisfy CEF1. The third item 𝑜3 can
again be matched to either of 𝑎3 and 𝑏3; without loss of generality, suppose it is matched to 𝑏3 ∈ 𝑁2.
Now, the fourth item 𝑜4 arrives, and the algorithm learns that it is liked only by 𝑎1 (who is already
matched) and 𝑏1 (who is unmatched). The algorithm must assign it to 𝑏1 due to non-wastefulness,
which leaves class 𝑁1 envious of class 𝑁2, even if we ignore any one of the items assigned to 𝑁2.

Given this impossibility, we seek online matching algorithms that achieve the fairness notions
approximately, often in conjunction with approximate efficiency guarantees. We aim to answer the
following theoretical questions:

Can we design deterministic algorithms for matching indivisible or divisible items that

achieve approximate class fairness while adhering to efficiency requirements? And, can

we surpass their guarantees by using randomization?

1.1 Our Results

We initiate the study of fairness among classes of agents in online bipartite matching. Our first
contribution (Section 2) is developing a detailed mathematical framework in which we adopt
classical fairness concepts to online matching. We consider two types of online matching models,

1We later formalize the latter restriction as non-wastefulness (NW). This is required because CEF1, on its own, can be
achieved vacuously via an empty matching by throwing away all the items.
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Indivisible Divisible
Fairness Algorithm Upper Bound Fairness Algorithm Upper Bound
𝛼-CEF1 + NW 1/2 1/2 𝛼-CEF + NW 1 − 1

𝑒
3/4

𝛼-CMMS 1/2 1/2 𝛼-CPROP 1 − 1
𝑒

1 − 1
𝑒

𝛼-USW 1/2 1/2 𝛼-USW 1/2 1 − 1
𝑒

Table 1. The summary of our results on deterministic algorithms for matching indivisible and divisible items.
Each algorithm achieves its three guarantees simultaneously, while the upper bound holds for any algorithm,
separately for each guarantee.

one with indivisible items, wherein an item must be matched in its entirety to a single agent, and
one with divisible items, wherein an item may be fractionally divided between multiple agents.

For both settings, we design online algorithms that achieve approximate fairness and efficiency
guarantees, and also provide upper bounds on the approximations that can be achieved by any
online algorithm. Our algorithms satisfy non-wastefulness, which implies 1/2-approximation of
the optimal utilitarian social welfare (USW); the utilitarian social welfare, i.e., the sum of agent
utilities, is effectively the size of the matching. Specifically, we make the following contributions
(summarized in Table 1):
• Indivisible matching: When items are indivisible, we develop a deterministic algorithm,
Match-and-Shift, that simultaneously achieves non-wastefulness, 1/2-CEF1, 1/2-CMMS, and
1/2-USW (Theorem 1). The algorithm uses an adaptive priority queue over classes, in which a
class is shifted to the end of the queue immediately upon receiving an item. Further, we prove
that no deterministic algorithm can achieve any of 𝛼-CEF1 (subject to non-wastefulness),
𝛼-CMMS, or 1/2-USW, for any 𝛼 > 1/2 (Theorem 2), establishing our algorithm to be simulta-
neously optimal for each guarantee.
• Divisible matching: When items are divisible, we improve the above bounds via a different
algorithm, Eqal-Filling. This algorithm divides items equally between the classes, but
uses water-filling to divide the portion of an item assigned to a class between the agents in
that class. This algorithm simultaneously achieves non-wastefulness, (1 − 1/𝑒)-CEF, (1 − 1/𝑒)-
CPROP, and 1/2-USW (Theorem 3). Furthermore, no deterministic algorithm can achieve
𝛼-CEF for any 𝛼 > 3/4, or 𝛼-USW for any 𝛼 > 1− 1/𝑒, and (1− 1/𝑒)-CPROP is tight (Theorem 4).
• Randomized algorithms: Finally, we propose a randomized algorithm, Eqal-Filling-OCS,
for matching indivisible algorithms that breaks the 1/2 barrier. We run a variant of Eqal-
Filling to obtain a guiding divisible matching, and round it into an indivisible matching
using a technique called online correlated selection (OCS). We prove that it is simultaneously
0.593-CPROP and 1/2-USW (Theorem 5).

1.2 Related Work

Online matching. We refer readers to Mehta [2013] for a survey of the vast literature on online
matching, and summarize some results that are the most related to this paper. The Ranking
algorithm of Karp et al. [1990] assigns each item in its entirety; in our model, this corresponds
to a randomized algorithm for matching indivisible items that achieves (1 − 1/𝑒)-USW. The case
of divisible items is often called fractional online matching in the matching literature.2 For this,
Kalyanasundaram and Pruhs [2000] gave a deterministic (1 − 1/𝑒)-competitive algorithm, which
achieves (1 − 1/𝑒)-USW in our framework; different papers refer to this algorithm as Balance,
2It is closely related to another model called online 𝑏-matching in which each offline agent may be matched up to 𝑏 times.
Since the algorithms and analyses are usually interchangeable in these two models, we phrase both models as the case of
divisible items.
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Water-filling, or Water-level. The Ranking algorithm and its analysis were generalized to the
vertex-weighted case by Aggarwal et al. [2011]. Feldman et al. [2009] introduced the free disposal
model of edge-weighted online matching and gave a (1 − 1/𝑒)-competitive algorithm for divisible
items. The series of works by Fahrbach et al. [2020], Shin and An [2021], Gao et al. [2021], and
Blanc and Charikar [2021] led to the state-of-the-art 0.536-competitive algorithm for edge-weighted
online matching with indivisible items. These works developed a new technique called online
correlated selection which we also use in this paper.

The literature also considers stochastic models of online matching problems to break the 1 − 1/𝑒
barrier. Mahdian and Yan [2011] and Karande et al. [2011] showed that the competitive ratio of
Ranking is between 0.696 and 0.727 if online vertices arrive by a random order. Huang et al.
[2019] introduced a variant of Ranking that breaks the 1 − 1/𝑒 barrier in vertex-weighted online
matching under random-order arrivals; the ratio was further improved to 0.668 [Jin andWilliamson,
2020]. If items are drawn from a distribution known to the algorithm, it is called online stochastic

matching [Feldman et al., 2009]. The best known competitive ratios for unweighted and vertex-
weighted online stochastic matching are 0.711 and 0.700, respectively [Huang and Shu, 2021].

Fair division. There is a rich body of literature on fair allocation of indivisible or divisible items.
A common assumption in most fair division studies is that there is no constraint on how many
items each agent can receive, and agents receive increasing value when receiving more items.

In this literature, envy-freeness and proportionality (and approximations thereof) have been used
as the primary criteria of fairness. For divisible items, an allocation satisfying both envy-freeness
and an economic efficiency notion called Pareto optimality is known to exist [Varian, 1974] and can
be computed via convex programming when agents have additive valuations [Eisenberg and Gale,
1959]. For indivisible items, two relaxations of envy-freeness are commonly studied: envy-freeness
up to one item (EF1) [Lipton et al., 2004] and maximin share fairness (MMS) [Budish, 2011]. An EF1
allocation is guaranteed to exist with monotone valuations [Lipton et al., 2004], and can be achieved
together with Pareto optimality when agents have additive valuations [Caragiannis et al., 2016]. On
the other hand, MMS allocations are not guaranteed to exist, even for additive valuations, though
constant factor approximation algorithms [Garg and Taki, 2020, Ghodsi et al., 2018, Kurokawa et al.,
2018] and ordinal approximations [Hosseini and Searns, 2021, Hosseini et al., 2021] exist and can
be computed in polynomial time.

Our problem can be seen as a fair division problem by considering each class to be a meta-agent;
the value of this meta-agent for a bundle of items is the maximum total value obtained by matching
the items to the agents in the class, which induces OXS valuations [Paes Leme, 2017] (these are not
additive). Benabbou et al. [2019] studied a model similar to ours in the offline setting, and observed
that the EF1 algorithm of Lipton et al. [2004] may result in a wasteful allocation; nevertheless,
they showed that an allocation satisfying EF1 and non-wastefulness exists and can be computed
in polynomial time. Subsequent papers [Babaioff et al., 2021, Barman and Verma, 2021, Benabbou
et al., 2020] considered a more general class of submodular valuations with dichotomous marginals
and proved that EF1 and optimal USW can be achieved together; Barman and Verma [2021] proved
a similar result for MMS and optimal USW.

Fairness in online matching. Our paper is also related to the growing line of work on online

fair division [Aleksandrov et al., 2015, Benade et al., 2018, Gorokh et al., 2022, Walsh, 2011, Zeng
and Psomas, 2020], but a majority of this work focuses on additive valuations, and hence, their
techniques do not apply to our matching setting. Several recent papers are concerned with group
fairness in online matching [Ma et al., 2020, Sankar et al., 2021]. Ma et al. [2020] studied a stochastic
setting wherein the agents arrive online (as opposed to the items in our model), following an
independent Poisson process with known homogeneous rate; the objective is to maximize the
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minimum ratio of the number of agents served to the number of agents in each group. Sankar
et al. [2021] studied an online matching problem where the items arrive online. Here, the items are
grouped into classes (as opposed to the agents in our model), and each agent specifies capacity
constraints, which they referred to as group fairness constraints, restricting the number of items
from each class that can be assigned to the agent. Due to these crucial differences between their
models and ours, their techniques and results do not overlap with ours.

2 MODEL

For 𝑡 ∈ N, define [𝑡] = {1, . . . , 𝑡}. First, let us introduce an offline version of our model and the
solution concepts we seek. Later, we will discuss the online model and algorithms in that model.

Consider a bipartite graph𝐺 = (𝑁,𝑀, 𝐸), where 𝑁 represents a set of vertices called agents,𝑀 a
set of vertices called items, and 𝐸 the set of edges. We say that agent 𝑎 likes item 𝑜 if 𝑎 is adjacent
to 𝑜 , i.e., (𝑎, 𝑜) ∈ 𝐸. The set of agents 𝑁 is partitioned into 𝑘 known classes 𝑁1, . . . , 𝑁𝑘 so that
𝑁𝑖 ∩ 𝑁 𝑗 = ∅ for all 𝑖 ≠ 𝑗 and ∪𝑘𝑖=1𝑁𝑖 = 𝑁 . For simplicity, we refer to class 𝑁𝑖 simply as class 𝑖 .

Matching. We consider the cases of divisible items (where each item can be matched to multiple
agents fractionally) and indivisible items (where each item must be matched to a single agent
integrally). A (divisible)matching is a matrix𝑋 = (𝑥𝑎,𝑜 )𝑎∈𝑁,𝑜∈𝑀 ∈ [0, 1]𝑁×𝑀 satisfying

∑
𝑎∈𝑁 𝑥𝑎,𝑜 ⩽

1 for each item 𝑜 ∈ 𝑀 , and
∑

𝑜∈𝑀 𝑥𝑎,𝑜 ⩽ 1 for each agent 𝑎 ∈ 𝑁 . We say that matching 𝑋 is
indivisible if 𝑥𝑎,𝑜 ∈ {0, 1} for each agent 𝑎 ∈ 𝑁 and item 𝑜 ∈ 𝑀 . Given a matching 𝑋 , we say that
agent 𝑎 is saturated if

∑
𝑜∈𝑀 𝑥𝑎,𝑜 = 1, and item 𝑜 is fully assigned if

∑
𝑎∈𝑁 𝑥𝑎,𝑜 = 1.

For a matching 𝑋 , we write 𝑌 (𝑋 ) = (∑𝑎∈𝑁𝑖
𝑥𝑎,𝑜 )𝑖∈[𝑘 ],𝑜∈𝑀 as the matrix containing the total frac-

tion of each item assigned to agents in each class. Let 𝑌𝑖 (𝑋 ) denote the row of 𝑌 (𝑋 ) corresponding
to class 𝑖 . For an indivisible matching 𝑋 , we may abuse the notation and use 𝑌𝑖 (𝑋 ) to refer to the
set of items matched to agents in class 𝑖 , i.e.,

{
𝑜 ∈ 𝑀 | 𝑥𝑎,𝑜 = 1 for some 𝑎 ∈ 𝑁𝑖

}
. We may omit the

argument 𝑋 from 𝑌 (𝑋 ) and 𝑌𝑖 (𝑋 ) if it is clear from the context.

Class valuations. The value derived by agent 𝑎 from matching 𝑋 is 𝑉𝑎 (𝑋 ) =
∑

𝑜∈𝑀 :(𝑎,𝑜) ∈𝐸 𝑥𝑎,𝑜 .
We define the value of class 𝑖 from matching 𝑋 as the utilitarian social welfare of the agents in class
𝑖 under matching 𝑋 , denoted 𝑉𝑖 (𝑋 ) =

∑
𝑎∈𝑁𝑖

𝑉𝑎 (𝑋 ).
In order to define fairness at the level of classes, we need to also define how much hypothetical

value agents in class 𝑖 could derive from the items matched to agents in another class 𝑗 . However,
it is not obvious how one should define this value because it depends on how the items matched to
agents in 𝑁 𝑗 would be matched to agents in 𝑁𝑖 in this hypothetical scenario. Following [Benabbou
et al., 2019], we use the following optimistic valuations.
Given a vector 𝒚 = (𝑦𝑜 )𝑜∈𝑀 ∈ [0, 1]𝑀 representing fractions of different items, the optimistic

valuation 𝑉 ∗𝑖 (𝒚) of class 𝑖 for 𝒚 is the size of the maximum fractional matching between the agents
of 𝑁𝑖 and 𝒚; namely, 𝑉 ∗𝑖 (𝒚) is given by the optimal value of the following LP:

max
∑

𝑎∈𝑁𝑖

∑
𝑜∈𝑀 :(𝑎,𝑜) ∈𝐸 𝑥𝑎,𝑜

s.t.
∑

𝑎∈𝑁𝑖
𝑥𝑎,𝑜 ⩽ 𝑦𝑜 ∀𝑜 ∈ 𝑀,∑

𝑜∈𝑀 𝑥𝑎,𝑜 ⩽ 1 ∀𝑎 ∈ 𝑁𝑖 ,

𝑥𝑎,𝑜 ⩾ 0 ∀𝑎 ∈ 𝑁𝑖 , 𝑜 ∈ 𝑀.

For a set of items 𝑆 ⊆ 𝑀 , let 𝒆𝑆 ∈ {0, 1}𝑀 denote the incidence vector such that 𝒆𝑆𝑜 = 1 if 𝑜 ∈ 𝑆
and 𝒆𝑆𝑜 = 0 otherwise; we may write 𝑉 ∗𝑖 (𝒆𝑆 ) as 𝑉 ∗𝑖 (𝑆) for ease of notation. For an integral vector 𝒚,
it is known that there is an integral optimal solution to the above LP (see, e.g., Section 5 of [Korte
and Vygen, 2006]); thus, 𝑉 ∗𝑖 (𝑆) coincides with the maximum size of an integral matching between
𝑆 and the agents in 𝑁𝑖 .
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2.1 Solution Concepts

Our goal is to ensure that items are matched to agents in a manner that is fair to agents belonging to
different classes. To that end, we consider classical fairness notions from the fair division literature,
such as envy-freeness [Foley, 1967, George and Marvin, 1958], proportionality [Steinhaus, 1948],
and maximin share guarantee [Budish, 2011], which are typically used to ensure fairness between
individual agents. We extend these notions to ensure fairness between classes of agents.

(Approximate) class envy-freeness. Envy-freeness between individual agents demands that every
agent values the resources allocated to her at least as much as she values the resources allocated
to another agent. When applied to classes, we compare the value 𝑉𝑖 (𝑋 ) derived by class 𝑖 for its
matched items with class 𝑖’s optimistic valuation for the items matched to another class 𝑗 , i.e.
𝑉 ∗𝑖 (𝑌𝑗 (𝑋 )). Note that this results in a strong class envy-freeness notion: even if, hypothetically,
class 𝑖 were to be matched to the items currently matched to class 𝑗 under 𝑋 in an optimal manner,
they would still not be any happier overall.
Definition 1 (Class envy-freeness). A matching 𝑋 is 𝛼-class envy-free (𝛼-CEF) if for all classes
𝑖, 𝑗 ∈ [𝑘], 𝑉𝑖 (𝑋 ) ⩾ 𝛼 ·𝑉 ∗𝑖 (𝑌𝑗 (𝑋 )). When 𝛼 = 1, we simply refer to it as class envy-freeness (CEF).

It is impossible to achieve exact CEF with an indivisible matching in general. For example, when
one desirable item has to be allocated among two classes, the class which does not receive the item
necessarily envies the other class which receives it. Hence, we consider the following relaxation of
CEF for integral matchings.
Definition 2 (Class envy-freeness up to one item). An integral matching 𝑋 is 𝛼-class envy-free
up to one item (𝛼-CEF1) if for every pair of classes 𝑖, 𝑗 ∈ [𝑘], either 𝑌𝑗 (𝑋 ) = ∅ or there exists an
item 𝑜 ∈ 𝑌𝑗 (𝑋 ) such that 𝑉𝑖 (𝑋 ) ⩾ 𝛼 ·𝑉 ∗𝑖 (𝑌𝑗 (𝑋 ) \ {𝑜}). When 𝛼 = 1, we simply refer to it as class
envy-freeness up to one item (CEF1).
We remark that CEF1 is called type-wise EF1 (TEF1) by [Benabbou et al., 2019]; we use the

terminology “class” instead of “type” because letting agents of the same “type” have different
incident edges may be confusing to some readers.

(Approximate) class proportionality and maximin share fairness. Another classical fairness concept
is proportionality. In the traditional fair division model where agent valuations are additive and
there is no limit to how many items can be assigned to an agent, proportionality is typically stated
as requiring that each agent receive value that is at least 1/𝑛-th of her value for the set of all items,
where 𝑛 is the number of agents. This can be equivalently viewed as demanding that each agent
receive at least the maximum value she can receive from the worst bundle among all fractional
partitions of the items into 𝑛 bundles. While these two versions are equivalent under additive
valuations, they are significantly different under non-additive valuations. For subadditive valuations
(like our optimistic valuations), the latter version is stronger. Further, the latter version continues
to imply its indivisible counterpart, called maximin share fairness, whereas the former version
no longer implies it in our model. For these reasons, we use the latter version as the appropriate
definition of proportionality in our model.

Since we are interested in fairness at the class level, we define the proportional share of class 𝑖 as
prop𝑖 = max

𝑋 ∈X
min
𝑗 ∈[𝑘 ]

𝑉 ∗𝑖 (𝑌𝑗 (𝑋 )) .

where X is the set of (divisible) matchings of the set of items𝑀 to the set of agents 𝑁 .
Definition 3 (Class proportionality). We say that matching 𝑋 is 𝛼-class proportional (𝛼-CPROP) if
for every class 𝑖 ∈ [𝑘],𝑉𝑖 (𝑋 ) ⩾ 𝛼 · prop𝑖 . When 𝛼 = 1, we simply refer to it as class proportionality
(CPROP).
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As in the case with class envy-freeness, class proportionality is impossible to guarantee via
indivisible matchings. Nevertheless, we can naturally relax the notion of proportionality by only
taking into account indivisible matchings in the definition of proportional share above. This
naturally adopts the well-studied notion of maximin share fairness to our setting. Formally, the
maximin share of class 𝑖 is defined as

mms𝑖 = max
𝑋 ∈I

min
𝑗 ∈[𝑘 ]

𝑉 ∗𝑖 (𝑌𝑗 (𝑋 )) .

where I is the set of indivisible matchings of the set of items𝑀 to the set of agents 𝑁 .

Definition 4 (Class maximin share fairness). We say that matching 𝑋 is 𝛼-class maximin share

fair (𝛼-CMMS) if for every class 𝑖 ∈ [𝑘], 𝑉𝑖 (𝑋 ) ⩾ 𝛼 ·mms𝑖 . When 𝛼 = 1, we simply refer to it as
class maximin share fairness (CMMS).

For fair division with additive valuations, Segal-Halevi and Suksompong [2019] proved that,
subject to allocating every item, EF1 is equivalent to MMS. In contrast, in our model neither implies
even an approximation of the other (see Appendix B.2).

Efficiency. We consider two notions of efficiency. Non-wastefulness demands that each item to be
fully assigned, unless all the agents who like it are saturated. Non-wasteful integral matchings are
also known as maximal matchings.

Definition 5 (Non-wastefulness). We say that matching 𝑋 is non-wasteful (NW) if there is no pair
of agent 𝑎 and item 𝑜 such that 𝑎 likes 𝑜 (i.e., (𝑎, 𝑜) ∈ 𝐸), 𝑎 is not saturated (i.e.,

∑
𝑜′∈𝑀 𝑥𝑎,𝑜′ < 1),

and 𝑜 is not fully assigned (i.e.,
∑

𝑎′∈𝑁 𝑥𝑎′,𝑜 < 1).

A more quantitative notion of efficiency is the utilitarian social welfare, which, in our context, is
the size of the (divisible) matching. Note that this is the classical objective that the literature on
online matching optimizes, in the absence of any fairness constraints.

Definition 6 (Utilitarian social welfare). The utilitarian social welfare (USW) of a matching 𝑋 is
given by usw(𝑋 ) = ∑

𝑎∈𝑁
∑

𝑜∈𝑀 :(𝑎,𝑜) ∈𝐸 𝑥𝑎,𝑜 . We say that a divisible (resp., indivisible) matching 𝑋 is
𝛼-USW if usw(𝑋 ) ⩾ 𝛼 · usw(𝑋 ∗) for all divisible (resp., indivisible) matchings 𝑋 ∗. When 𝛼 = 1, we
refer to 𝑋 as the USW-optimal matching. Note that the benchmarks for the divisible and indivisible
cases are identical as the indivisible matching with the highest USW also has the highest USW
among all divisible matchings.

The following is a known relation between maximal (non-wasteful) and maximum matchings in
both divisible and indivisible cases. We provide a proof in the appendix for completeness.

Proposition 1. Every non-wasteful (divisible or indivisible) matching is
1/2-USW.

Let us illustrate the above concepts of fairness and efficiency using examples.

Example 2. Consider the example given in Figure 2, where there are four items (𝑜1, 𝑜2, 𝑜3, and 𝑜4),
agents 𝑎1 and 𝑎2 belong to one class, and agents 𝑏1 and 𝑏2 belong to another class. An edge between
an agent and an item indicates that the agent likes the item; thick edges indicate matching. Figure 2a
shows an empty matching, which is class envy-free (CEF) but wasteful. Subject to non-wastefulness
(NW), CEF is impossible to achieve, but CEF1 can be achieved (Figure 2b). Finally, Figure 2c shows
a matching that achieves CEF1 along with optimal utilitarian social welfare.

2.2 Online Model

Let us now introduce our online model. In this model, the items in 𝑀 arrive one-by-one in an
arbitrary order. We refer to the step in which item 𝑜 ∈ 𝑀 arrives as step 𝑜 .



Hadi Hosseini, Zhiyi Huang, Ayumi Igarashi, and Nisarg Shah 8

𝑎1

𝑎2

𝑏1

𝑏2

𝑜1

𝑜2

𝑜3

𝑜4

(a) CEF but wasteful

𝑎1

𝑎2

𝑏1

𝑏2

𝑜1

𝑜2

𝑜3

𝑜4

(b) CEF1 and NW

𝑎1

𝑎2

𝑏1

𝑏2

𝑜1

𝑜2

𝑜3

𝑜4

(c) CEF1 and 1-USW

Fig. 2. Class envy-freeness (CEF), non-wastefulness (NW), and utilitarian social welfare approximation (USW).

When item 𝑜 arrives, all agents reveal whether or not they like the item. In other words, the
edges incident to item 𝑜 are revealed in graph 𝐺 . At this point, an online algorithm must make an
immediate and irrevocable decision to “match” the item to the agents in 𝑁 , i.e., set the values of
(𝑥𝑎,𝑜 )𝑎∈𝑁 . We consider both algorithms which set these values deterministically and ones which
set them in a randomized fashion (but must fix them before the next item arrives). For randomized
algorithms, we seek the desired guarantees in expectation.
For the algorithms we design in this paper, we prove that they achieve the desired guarantees

(approximate CEF, CEF1, CPROP, CMMS, USW, or non-wastefulness) at every step. However, a
key property of our algorithms is that they do not need to know in advance the number of items
that will arrive, which means that proving the desired guarantees at the end implies that that they
hold at every step. In contrast, our upper bounds (impossibility results) will hold even if the desired
guarantees are required to hold only at the end.

Definition 7. For 𝛼 ∈ (0, 1], a deterministic online algorithm for matching divisible or indivisible
items is 𝛼-CEF (resp., 𝛼-CEF1, 𝛼-CPROP, 𝛼-CMMS, 𝛼-USW, or NW) if it produces an 𝛼-CEF (resp.,
𝛼-CEF1, 𝛼-CPROP, 𝛼-CMMS, 𝛼-USW, or NW) matching when all items have arrived.

Definition 8. For 𝛼 ∈ (0, 1], a randomized online algorithm for matching indivisible items is
• 𝛼-CEF if, when all items have arrived, it produces a matching 𝑋 such that for every pair of
classes 𝑖, 𝑗 ∈ [𝑘], E[𝑉𝑖 (𝑋 )] ⩾ 𝛼 · E[𝑉 ∗𝑖 (𝑌𝑗 (𝑋 ))];
• 𝛼-CPROP if, when all items have arrived, it produces a matching 𝑋 such that for every class
𝑖 ∈ [𝑘], E[𝑉𝑖 (𝑋 )] ⩾ 𝛼 · prop𝑖 ; and
• 𝛼-USW if, when all items have arrived, it produces a matching 𝑋 such that E[usw(𝑋 )] ⩾
𝛼 · usw(𝑋 ∗), where E[usw(𝑋 )] = ∑

𝑎∈𝑁
∑

𝑜∈𝑀 :(𝑎,𝑜) ∈𝐸 E[𝑥𝑎,𝑜 ] and 𝑋 ∗ is a matching with the
highest utilitarian social welfare.

Because CMMS and CPROP place only a lower bound on the utility of every agent, there is no
tension between them and non-wastefulness. Any algorithm achieving an approximation of these
notions can be made non-wasteful without losing the said fairness approximation. We provide a
formal proof in the appendix.

Proposition 2. For 𝛼 ∈ (0, 1], if there is a deterministic online algorithm satisfying 𝛼-CMMS (resp.,
𝛼-CPROP), then there is a non-wasteful deterministic online algorithm satisfying 𝛼-CMMS (resp.,

𝛼-CPROP). This holds for matching both divisible and indivisible items.

3 DETERMINISTIC ALGORITHMS FOR INDIVISIBLE ITEMS

We start by focusing on deterministic algorithms for matching indivisible items. We study possible
approximations of two fairness concepts, CEF1 and CMMS, along with efficiency guarantees in
terms of non-wastefulness and the utilitarian social welfare.
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ALGORITHM 1: Match-and-Shift
1 Fix a priority ordering over classes, 𝜋 = (𝜋1, . . . , 𝜋𝑘 )
2 when item 𝑜 ∈ 𝑀 arrives do
3 for 𝑖 = 1 to 𝑘 do
4 Let 𝑁𝜋𝑖 ,𝑜 be the set of unmatched agents 𝑎 ∈ 𝑁𝜋𝑖 such that (𝑎, 𝑜) ∈ 𝐸
5 if 𝑁𝜋𝑖 ,𝑜 ≠ ∅ then
6 Arbitrarily match 𝑜 to an agent in 𝑁𝜋𝑖 ,𝑜

7 𝜋 ← (𝜋1, . . . , 𝜋𝑖−1, 𝜋𝑖+1, . . . , 𝜋𝑘 , 𝜋𝑖 )
8 break

When matching indivisible items, CEF1 may seem trivial to achieve: only match an item to some
agent in some class if this preserves CEF1, and discard the item otherwise. However, this algorithm
may ‘waste’ too many items and lose significant efficiency.3

Example 1 illustrated that CEF1 and non-wastefulness are incompatible in the online setting.4 In
this light, for arbitrary classes, it is natural to ask what approximation of CEF1 can be achieved
subject to non-wastefulness.

3.1 Algorithm Match-and-Shift

One way to achieve approximate CEF1 is to ensure a balanced treatment of all classes by providing
them approximately equal ‘opportunity’ for receiving an item. This approach is inspired by the
well-studied Round-Robin algorithm in fair division [Caragiannis et al., 2016] and its widely-adopted
cousin, Draft, that is used in sports for selecting players [Brams and Straffin, 1979, Brams and
Taylor, 2000] or assigning courses to college students [Budish and Cantillon, 2012].

However, running such algorithms naïvely in our online setting, where not all items are available
upfront, can be problematic: if we do a round-robin over classes, a class can be disadvantaged if the
item arriving in its turn is not liked by any unmatched agent in the class. Further, non-wastefulness
requires that any arriving item be matched as long as there is an unsaturated agent who likes it,
even if this agent does not belong to the class whose turn it is. Keeping these observations in mind,
we design Match-and-Shift (Algorithm 1), which provides equal treatment to the different classes
while achieving non-wastefulness.

Algorithm description. Fix an arbitrary priority ordering 𝜋 = (𝜋1, 𝜋2, . . . , 𝜋𝑘 ) over the 𝑘 classes,
where 𝜋1 is the class with the highest priority. Upon arrival of each item, pick the first class 𝑁𝜋𝑖

in the priority ordering that contains an unmatched agent who likes the item. Match the item to
any unmatched agent—there may be several such agents—in 𝑁𝜋𝑖 who likes the item. Update the
priority ordering 𝜋 by moving class 𝜋𝑖 to the end.
The following theorem establishes approximate fairness and efficiency guarantees of Match-

and-Shift; later, in Theorem 2, we prove that these guarantees are tight.

Theorem 1. For deterministic matching of indivisible items, Match-and-Shift (Algorithm 1) satisfies

non-wastefulness,
1/2-CEF1, 1/2-CMMS, and 1/2-USW.

Proof. Let 𝑋 be the matching returned by the algorithm at the end.

3In fact, discarding all items—an empty matching—is vacuously class envy-free.
4In Appendix B.1, we show that this incompatibility holds even after weakening the CEF1 requirement to account for
‘pessimistic’ valuations, i.e, when each class evaluates the items matched to another class through a minimum-cardinality

maximal matching.
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NW. Non-wastefulness of 𝑋 follows immediately from the description of the algorithm: at each
step, the arriving item is matched to an agent who likes it whenever such an agent exists.

USW. Because 𝑋 is non-wasteful, due to Proposition 1 it also satisfies 1/2-USW.

Now, we turn our attention to the fairness guarantees. Recall that for each 𝑖 ∈ [𝑘], 𝑌𝑖 denotes the
set of items matched to agents in class 𝑗 . Fix any class 𝑖 . Let 𝑡 = |𝑌𝑖 | denote the number of items
matched to the agents in class 𝑖 under 𝑋 . Due to non-wastefulness, we have 𝑉𝑖 (𝑋 ) = 𝑡 .

1/2-CEF1. Consider any class 𝑗 ∈ [𝑘] \ {𝑖}. Let 𝑌 ∗𝑗 ⊆ 𝑌𝑗 be the set of items matched to class 𝑗 that
are liked by at least one unmatched agent in class 𝑖 . The claim immediately holds when 𝑌 ∗𝑗 = ∅: in
this case, the optimistic value of class 𝑖 for 𝑌𝑗 is 𝑉 ∗𝑖 (𝑌𝑗 ) ⩽ 𝑡 = 𝑉𝑖 (𝑋 ), implying that 𝑋 satisfies CEF
for 𝑖 . Thus, we assume that at least one item in 𝑌𝑗 is liked by at least one unmatched agent of class 𝑖 .

By construction of the algorithm, we have |𝑌 ∗𝑗 | ⩽ 𝑡 + 1. This is because every time class 𝑗 receives
an item in 𝑌 ∗𝑗 (that is liked by an agent in class 𝑖 who remains unmatched till the end, and, therefore,
is unmatched at the time of the item’s arrival), class 𝑗 must have a higher priority than class 𝑖 .
Hence, the algorithm must match an item to class 𝑖 before it can match another item in 𝑌 ∗𝑗 to class
𝑗 . Thus, |𝑌 ∗𝑗 | ⩽ 1 + |𝑌𝑖 | = 𝑡 + 1.
Fix an arbitrary item 𝑜 ∈ 𝑌 ∗𝑗 ⊆ 𝑌𝑗 . We claim that𝑉 ∗𝑖 (𝑌𝑗 \ {𝑜}) ⩽ 2𝑡 , which establishes the 1/2-CEF1

claim. Note that the 𝑡 matched agents in class 𝑖 can derive a maximum total utility of 𝑡 from these
items. Further, the total utility that the unmatched agents in class 𝑖 can derive from these items is
upper bounded by |𝑌 ∗𝑗 \ {𝑜} | ⩽ 𝑡 . Hence, 𝑉 ∗𝑖 (𝑌𝑗 \ {𝑜}) ⩽ 2𝑡 .

1/2-CMMS.. Assume for contradiction that 𝑡 = 𝑉𝑖 (𝑋 ) < (1/2) ·mms𝑖 . Because mms𝑖 is an integer,
this implies 2𝑡 + 1 ⩽ mms𝑖 . Let (𝑆1, 𝑆2, . . . , 𝑆𝑘 ) be a maximin partition of the items for class 𝑖 such
that 𝑉 ∗𝑖 (𝑆 𝑗 ) ⩾ mms𝑖 for every 𝑗 ∈ [𝑘]. By our assumption, we have 𝑉 ∗𝑖 (𝑆 𝑗 ) ⩾ 2𝑡 + 1 for every
𝑗 ∈ [𝑘]. For each 𝑗 ∈ [𝑘], we let 𝑆∗𝑗 denote the set of items in 𝑆 𝑗 that are liked by at least one
unmatched agent in class 𝑖 . Note that 𝑉 ∗𝑖 (𝑆 𝑗 ) ⩽ 𝑡 + |𝑆∗𝑗 |: the 𝑡 matched agents in class 𝑖 can derive
total utility at most 𝑡 , and the unmatched agents can derive total utility at most |𝑆∗𝑗 |.
Recall that |𝑌𝑖 | = 𝑡 and we have already established |𝑌 ∗𝑗 | ⩽ 𝑡 + 1 for every class 𝑗 ∈ [𝑘] \ {𝑖}.

Further, by non-wastefulness, none of the unmatched agents of class 𝑖 likes any item in𝑂 \⋃ℎ∈[𝑘 ] 𝑌ℎ .
Thus, we have |⋃𝑗 ∈[𝑘 ] 𝑆

∗
𝑗 | ⩽ |𝑌𝑖 ∪ (

⋃
𝑗 ∈[𝑘 ]\{𝑖 } 𝑌

∗
𝑗 ) | ⩽ 𝑡 + (𝑘 − 1) (𝑡 + 1), meaning that there exists

some ℎ ∈ [𝑘] such that |𝑆∗
ℎ
| ⩽ 𝑡 . Thus, we have 𝑉 ∗𝑖 (𝑆ℎ) ⩽ 2𝑡 < 2𝑡 + 1, a contradiction. □

Before we turn to proving these guarantees to be the best possible in our online setting, we
remark that in the offline setting, it is known that (exact) CEF1 and NW can be achieved simultane-
ously [Benabbou et al., 2019]. However, whether they can be achieved together with 𝛼-CMMS, for
any 𝛼 > 0, is an interesting open question.

3.2 Impossibility Results

In this section, we show that the each of the fairness and efficiency guarantees achieved by Match-
and-Shift (Theorem 1) is tight; no deterministic online algorithm for matching indivisible items
can achieve a better approximation. Note that our CEF1 upper bound is subject to non-wastefulness
because an algorithm can trivially achieve CEF1 on its own by throwing away every item.
The constructions are based on creating instances in which a subset of agents in one class get

saturated early on, rendering the class envious of another class at the end since all the remaining
items can only be matched to the agents in that other class.

Theorem 2. No deterministic online algorithm for matching indivisible items can achieve any of the

following guarantees:
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• 𝛼-CEF1 for any 𝛼 > 1/2 and non-wastefulness,
• 𝛼-CMMS for any 𝛼 > 1/2,
• 𝛼-USW for any 𝛼 > 1/2.

Proof. We argue each impossibility result separately.

CEF1 and NW. Consider Example 1 in the introduction. In that example, we already argued that
any deterministic online algorithm satisfying non-wastefulness ends up matching (without loss of
generality) 𝑌2 = {𝑜2, 𝑜3, 𝑜4} to class 2 and 𝑌1 = {𝑜1} to class 1. One can check that 𝑉 ∗1 (𝑌2 \ {𝑜}) = 2
for any 𝑜 ∈ 𝑌2, whereas 𝑉1 (𝑋 ) = 1, implying that the algorithm cannot achieve 𝛼-CEF1 for any
𝛼 > 1/2.

CMMS. We will prove that no deterministic online algorithm satisfying non-wastefulness can
achieve 𝛼-CMMS for any 𝛼 > 1/2. Proposition 2 implies that no deterministic algorithm, regardless
of whether it satisfies non-wastefulness, can guarantee 𝛼-CMMS for any 𝛼 > 1/2.
Since we have assumed non-wastefulness, we can repeat the construction used above for the

CEF1 upper bound. Consider the same example again, and consider the partition the items into
(𝑌1 = {𝑜1, 𝑜2} , 𝑌2 = {𝑜3, 𝑜4}). Note that 𝑉 ∗1 (𝑌1) = 𝑉 ∗1 (𝑌2) = 2, implying that the maximin share of
class 1 is mms1 ⩾ 2. Since the value derived by class 1 is 𝑉1 (𝑋 ) = 1, we see that the algorithm
cannot achieve 𝛼-CMMS for any 𝛼 > 1/2.

USW. Note that the USW guarantee does not depend on the class structure; hence, the well-
known upper bound of 1/2 on the approximation of a maximum matching by any deterministic
algorithm carries over to our model, and implies the desired 1/2-USW upper bound. For completeness,
consider the following simple instance.

There are two items, 𝑜1 and 𝑜2, arriving in the increasing order of their indices. There is a single
class containing two agents. Item 𝑜1 is liked by both agents. The algorithm matches it to one of the
two agents. Item 𝑜2 then arrives, and is liked only by the agent who did not receive item 𝑜1. The
optimal utilitarian social welfare is 2, but that of the algorithm is only 1. □

Following Theorem 2, a natural question is whether there is any way to circumvent this im-
possibility result. We show that two such approaches do not work, demonstrating robustness of
Theorem 2.

Remark 1 (Reshuffling items within each class cannot help.). One idea is to only require the
online algorithm to match each item to a class, and allow every class to optimally distribute the
items matched to it among its members at the end. This effectively increases the utility of class 𝑖
from 𝑉𝑖 (𝑋 ) to 𝑉 ∗𝑖 (𝑌𝑖 ). However, in Example 1 used for the CEF1 and CMMS upper bounds in the
proof above, the matching produced already assigns items optimally within each class (i.e., satisfies
𝑉𝑖 (𝑋 ) = 𝑉 ∗𝑖 (𝑌𝑖 ) for each class 𝑖). Hence, reshuffling items at the end cannot improve the value any
further. This shows that we must use randomization when deciding which class should receive an
item in order to achieve a better approximation; this is precisely what we achieve in Section 5.

Remark 2. Another natural direction is to weaken the requirements in Theorem 2. In our online
setting, there is a weakening of our 𝛼-CMMS guarantee that also makes sense. Instead of computing
the MMS values by partitioning the set of all items, we can first observe the matching 𝑋 produced
by an algorithm and then compute the MMS values by having each class partition only the set of
items allocated under 𝑋 . This produces smaller (or equal) values, making this CMMS with respect
to allocated items a weaker requirement than our CMMS with respect to all items.
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Match-and-Shift achieves a 1/2-approximation of the stronger requirement. In contrast, the
proof of Theorem 2 shows that no non-wasteful5 algorithm can achieve (1/2 + 𝜖)-approximation of
even the weaker requirement, for any 𝜖 > 0, because all items are allocated in our construction.

4 DETERMINISTIC ALGORITHMS FOR DIVISIBLE ITEMS

We now turn our attention to deterministic online matching of divisible items. First, we design
an algorithm that simultaneously achieves non-wastefulness, (1 − 1/𝑒)-CEF, (1 − 1/𝑒)-CPROP, and
1/2-USW. Later, we prove upper bounds on the approximation ratio of each guarantee that hold for
any algorithm.

4.1 Algorithm Equal-Filling

We propose an algorithm, Eqal-Filling (presented as Algorithm 2), that divides items equally at
the class level and performs water-filling to further divide the items assigned to each class between
the agents in that class. Recall that our model has a capacity constraint:

∑
𝑜∈𝑀 𝑥𝑎,𝑜 ⩽ 1 for each

agent 𝑎. Agent 𝑎 is saturated if
∑

𝑜∈𝑀 𝑥𝑎,𝑜 = 1, and unsaturated otherwise.
When item 𝑜 arrives, Eqal-Filling continuously splits the item equally among classes with

at least one unsaturated agent who likes the item.6 At the end of this process, each class either
receives the same fraction 𝛽𝑜 of the item, or has all of its agents who like item 𝑜 saturated. This
computation is performed in Line 7 of Algorithm 2. Then, to divide fraction of item 𝑜 assigned
to each class 𝑖 within its members, we conduct water-filling among the members who like item
𝑜 , which continuously prioritizes agents with the lowest utility. At the end of this process, each
member who likes item 𝑜 either receives the same final utility 𝛾𝑖,𝑜 or is saturated. This computation
is performed in Line 12 of Algorithm 2.

ALGORITHM 2: Eqal-Filling
1 Initialize 𝑋 = (𝑥𝑎,𝑜 )𝑎∈𝑁,𝑜∈𝑀 so that 𝑥𝑎,𝑜 = 0 for every agent 𝑎 and item 𝑜

2 Initialize 𝑌 = (𝑦𝑖,𝑜 )𝑖∈[𝑘 ],𝑜∈𝑀 so that 𝑦𝑖,𝑜 = 0 for every class 𝑖 and item 𝑜

3 when item 𝑜 ∈ 𝑀 arrives do
4 /*class-phase*/
5 Define the demand of each class 𝑖 ∈ [𝑘] as 𝑑𝑖,𝑜 =

∑
𝑎∈𝑁𝑖,𝑜

(1 −∑
𝑜′∈𝑀 𝑥𝑎,𝑜′)

6 Find the largest 𝛽𝑜 ⩽ 1 satisfying
∑
𝑖∈[𝑘 ] min{𝛽𝑜 , 𝑑𝑖,𝑜 } ⩽ 1

7 Set 𝑦𝑖,𝑜 = min{𝛽𝑜 , 𝑑𝑖,𝑜 } for each 𝑖 ∈ [𝑘]
8 for 𝑖 = 1 to 𝑘 do
9 /*individual-phase*/

10 Let 𝑁𝑖,𝑜 denote the set of neighbours of item 𝑜 in class 𝑖 , i.e., 𝑁𝑖,𝑜 = {𝑎 ∈ 𝑁𝑖 : (𝑎, 𝑜) ∈ 𝐸}
11 Find the largest 𝛾𝑖,𝑜 ⩽ 1 satisfying

∑
𝑗 ∈𝑁𝑖,𝑜

max
{
𝛾𝑖,𝑜 −

∑
𝑜′∈𝑀 𝑥𝑎,𝑜′, 0

}
⩽ 𝑦𝑖,𝑜

12 Set 𝑥𝑎,𝑜 = max
{
𝛾𝑖,𝑜 −

∑
𝑜′∈𝑀 𝑥𝑎,𝑜′, 0

}
for all 𝑎 ∈ 𝑁𝑖,𝑜

Theorem 3. For deterministic matching of divisible items, Equal-Filling (Algorithm 2) satisfies

non-wastefulness, (1 − 1/𝑒)-CEF, (1 − 1/𝑒)-CPROP, and 1/2-USW.

Proof. We prove that Eqal-Filling satisfies each of the desirable properties.

NW. Non-wastefulness follows by the algorithm’s definition.

5Seeking the weaker requirement makes sense only with non-wastefulness since the empty matching vacuously satisfies it.
6We do not yet need to know how the fraction of item 𝑜 assigned to a class is divided between its members; we can simply
keep track of the total remaining capacity of the agents in the class who like the item.



Hadi Hosseini, Zhiyi Huang, Ayumi Igarashi, and Nisarg Shah 13

1/2-USW. This is implied by non-wastefulness (Proposition 1).

(1 − 1/𝑒)-CEF. Consider two arbitrary classes 𝑖 and 𝑗 . We want to prove that class 𝑖’s value for its
matching is at least 1− 1

𝑒
times its optimistic value for class 𝑗 ’s matching, i.e.,𝑉𝑖 (𝑋 ) ⩾ (1−1/𝑒) ·𝑉 ∗𝑖 (𝑌𝑗 ).

For 𝜃 ∈ [0, 1], let 𝑓 (𝜃 ) denote the number of agents in class 𝑖 who have value (“water level”) at
least 𝜃 under 𝑋 . Let 𝑁𝑖 (𝜃 ) be the set of these 𝑓 (𝜃 ) agents and 𝑁 𝑖 (𝜃 ) = 𝑁𝑖 \ 𝑁𝑖 (𝜃 ). One can check
that for any 𝜃 ∈ [0, 1],

∫ 𝜃

0 𝑓 (𝑧) d𝑧 =
∑

𝑎∈𝑁𝑖
min(𝜃,∑𝑜∈𝑀 𝑥𝑎,𝑜 ).

Let us now rewrite both𝑉𝑖 (𝑋 ) and𝑉 ∗𝑖 (𝑌𝑗 ) in terms of 𝑓 (𝑦). Plugging in 𝜃 = 1 above, we see that
the total value of the agents in class 𝑖 is given by

𝑉𝑖 (𝑋 ) =
∫ 1

0
𝑓 (𝑧) d𝑧.

Next, fix an arbitrary 𝜃 ∈ (0, 1]. In order to upper bound 𝑉 ∗𝑖 (𝑌𝑗 ), we consider the value derived
from 𝑌𝑗 by the agents in 𝑁𝑖 (𝜃 ) and those in 𝑁 𝑖 (𝜃 ).

Since agents in 𝑁 𝑖 (𝜃 ) remain unsaturated till the end, for every item 𝑜 liked by any such agent,
the fraction 𝑦𝑖,𝑜 of the item given to class 𝑖 must be at least as much as the fraction 𝑦 𝑗,𝑜 of it given
to class 𝑗 . Further, the portion given to class 𝑖 must be assigned to agents who, at the time of the
assignment, had value less than 𝜃 . Hence, the total fraction of items given to class 𝑗 that are liked
by at least one agent in 𝑁 𝑖 (𝜃 ), which is an upper bound on the contribution of the agents in 𝑁 𝑖 (𝜃 )
to 𝑉 ∗𝑖 (𝑌𝑗 ), is at most

∫ 𝜃

0 𝑓 (𝑧) d𝑧. Note that the 𝑓 (𝜃 ) agents in 𝑁𝑖 (𝜃 ) contribute at most 1 each to
𝑉 ∗𝑖 (𝑌𝑗 ). Combining these observations, the optimistic value of class 𝑖 for the items assigned to class
𝑗 satisfies

𝑉 ∗𝑖 (𝑌𝑗 ) ⩽
∫ 𝜃

0
𝑓 (𝑧) d𝑧 + 𝑓 (𝜃 ), ∀0 < 𝜃 ⩽ 1.

Multiplying the above inequality by 𝑒𝜃−1 and integrating over 𝜃 ∈ (0, 1], we get:(
1 − 1

𝑒

)
𝑉 ∗𝑖 (𝑌𝑗 ) =

∫ 1

𝜃=0
𝑒𝜃−1 𝑉 ∗𝑖 (𝑌𝑗 ) d𝜃

⩽

∫ 1

𝜃=0
𝑒𝜃−1

(∫ 𝜃

𝑧=0
𝑓 (𝑧) d𝑧 + 𝑓 (𝜃 )

)
d𝜃

=

∫ 1

𝑧=0
𝑓 (𝑧)

(∫ 1

𝜃=𝑧

𝑒𝜃−1 d𝜃
)
d𝑧 +

∫ 1

𝜃=0
𝑒𝜃−1 𝑓 (𝜃 ) d𝜃

=

∫ 1

𝑧=0

(
1 − 𝑒𝑧−1

)
𝑓 (𝑧) d𝑧 +

∫ 1

𝑧=0
𝑒𝑧−1 𝑓 (𝑧) d𝑧

=

∫ 1

𝑧=0
𝑓 (𝑧) d𝑧 = 𝑉𝑖 (𝑋 ),

where the third transition follows from breaking the integral over the two terms and exchanging
the order of integrals in the first part; and during the fourth transition, we rename the index from
𝜃 to 𝑧 in the second part.

(1 − 1/𝑒)-CPROP. Consider an arbitrary class 𝑖 . We want to prove that class 𝑖’s value for the
matching is at least 1 − 1/𝑒 times its proportional share, i.e., 𝑉𝑖 (𝑋 ) ⩾ (1 − 1/𝑒) · prop𝑖 . Consider an
arbitrary divisible partition of the items 𝑌 , consisting of non-negative vectors 𝑌𝑖 = (𝑦𝑖,𝑜 )𝑜∈𝑀 for
𝑖 ∈ [𝑘] satisfying ∑

𝑖∈[𝑘 ] 𝑦𝑖,𝑜 = 1 for each 𝑜 ∈ 𝑀 . It suffices to prove that:

𝑘 ·𝑉𝑖 (𝑋 ) ⩾
(
1 − 1

𝑒

)
·
∑︁
𝑗 ∈[𝑘 ]

𝑉 ∗𝑖 (𝑌𝑗 ).
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Recall that 𝑓 (𝜃 ) denotes the number of agents in class 𝑖 who have value at least 𝜃 under 𝑋 , 𝑁𝑖 (𝜃 )
is the set of these 𝑓 (𝜃 ) agents, and 𝑁 𝑖 (𝜃 ) = 𝑁𝑖 \ 𝑁𝑖 (𝜃 ). Fix an arbitrary 𝜃 ∈ (0, 1].
Since the agents in 𝑁 𝑖 (𝜃 ) remain unsaturated till the end, for each item 𝑜 liked by at least one

such agent, the algorithm gives 𝑦𝑖,𝑜 ⩾ 1/𝑘 fraction of the item to class 𝑖 (but not necessarily to the
agents in 𝑁 𝑖 (𝜃 )). Further, as argued above, this portion of the item must be assigned to the agents
in the class who, at the time of the assignment, have value less than 𝜃 . Hence, the total number of
items liked by at least one agent in 𝑁 𝑖 (𝜃 ), which is an upper bound on the contribution of these
agents to

∑
𝑗 ∈[𝑘 ] 𝑉

∗
𝑖 (𝑌𝑗 ), is at most 𝑘

∫ 𝜃

0 𝑓 (𝑧) d𝑧.
Also, each of 𝑓 (𝜃 ) many agents in 𝑁𝑖 (𝜃 ) can contribute a value of at most 1 to 𝑉 ∗𝑖 (𝑌𝑗 ) for each

𝑗 ∈ [𝑘]. Hence, the total contribution of these agents to
∑

𝑗 ∈[𝑘 ] 𝑉
∗
𝑖 (𝑌𝑗 ) is at most 𝑘 · 𝑓 (𝜃 ).

Combining the two observations, we get that∑︁
𝑗 ∈[𝑘 ]

𝑉 ∗𝑖 (𝑌𝑗 ) ⩽ 𝑘 ·
(∫ 𝜃

0
𝑓 (𝑧)𝑑𝑧 + 𝑓 (𝜃 )

)
, ∀0 < 𝜃 ⩽ 1.

Multiplying the inequality by 𝑒𝜃−1, integrating over 𝜃 ∈ [0, 1], and following the same steps as
in the (1 − 1/𝑒)-CEF proof above, we have:(

1 − 1
𝑒

)
·
∑︁
𝑗 ∈[𝑘 ]

𝑉 ∗𝑖 (𝑌𝑗 ) ⩽ 𝑘 ·
∫ 1

0
𝑓 (𝑧) d𝑧 = 𝑘 ·𝑉𝑖 (𝑋 ),

as needed. □

4.2 Impossibility Results

Our goal in this section is to provide upper bounds on the fairness and efficiency guarantees
that hold for any deterministic online algorithm for matching divisible items. We prove that the
(1− 1/𝑒)-CPROP guarantee achieved by Eqal-Filling is tight, and establish a weaker upper bound
on CEF and USW.

Theorem 4. No deterministic online algorithm for matching divisible items can achieve any of the

following guarantees:

• 𝛼-CEF for any 𝛼 > 3/4 and non-wastefulness,
• 𝛼-CPROP for any 𝛼 > 1 − 1/𝑒,
• 𝛼-USW for any 𝛼 > 1 − 1/𝑒.

Proof. We argue each impossibility separately.

CEF and NW. Consider any deterministic online algorithm that satisfies non-wastefulness.
Consider an instance that consists of two classes, 𝑁1 = {𝑎1, 𝑎2, 𝑎3} and 𝑁2 = {𝑏1, 𝑏2, 𝑏3}, and four
items 𝑜1, 𝑜2, 𝑜3, 𝑜4 arriving in that order. We denote by 𝑋 the matching that will be produced by the
algorithm on this instance.
Agents 𝑎1, 𝑎2, 𝑏1, and 𝑏2 like the first two items 𝑜1 and 𝑜2. By non-wastefulness, the algorithm

must fully divide 𝑜1 and 𝑜2 between {𝑎1, 𝑎2, 𝑏1, 𝑏2}. Without loss of generality, suppose that the
total fraction of these items assigned to class 𝑁1 is at least the total fraction assigned to class 𝑁2,
i.e.,

∑
𝑎∈𝑁1

∑
𝑜∈{𝑜1,𝑜2 } 𝑥𝑎,𝑜 ⩾

∑
𝑏∈𝑁2

∑
𝑜∈{𝑜1,𝑜2 } 𝑥𝑏,𝑜 . Further, we assume, without loss of generality,

that agent 𝑏1 obtains at least as much total fraction of these items as agent 𝑏2, i.e.,
∑

𝑜∈{𝑜1,𝑜2 } 𝑥𝑏1,𝑜 ⩾∑
𝑜∈{𝑜1,𝑜2 } 𝑥𝑏2,𝑜 . Finally, all agents of class 𝑁1 as well as agent 𝑏1 like the remaining two items 𝑜3

and 𝑜4; agents 𝑏2 and 𝑏3 do not like them. We will prove that 𝑉2 (𝑋 ) ⩽ (3/4) ·𝑉 ∗2 (𝑌1).
First, we show that 𝑉2 (𝑋 ) ⩽ 3/2. Observe that the value derived by 𝑏2 under 𝑋 is at most 1/2. This

holds because the total fraction of 𝑜1 and 𝑜2 assigned to 𝑏2 is at most 1/2 by the assumptions above,



Hadi Hosseini, Zhiyi Huang, Ayumi Igarashi, and Nisarg Shah 15

and the agent does not like items 𝑜3 and 𝑜4. Further, agent 𝑏3 does not like any of the items. Thus,
the total value class 𝑁2 can achieve under 𝑋 is 𝑉2 (𝑋 ) ⩽ 1 + 1/2 = 3/2.

Next, we show that 𝑉 ∗2 (𝑌1) ⩾ 2. Note that 𝑁1 must receive a total fraction of at least 1 from each
of {𝑜1, 𝑜2} and {𝑜3, 𝑜4}. Since 𝑏2 likes every item in {𝑜1, 𝑜2} and 𝑏1 likes every item in {𝑜3, 𝑜4}, class
𝑁2 can optimistically derive a total value of at least 2 by assigning 𝑌1,𝑜1 and 𝑌1,𝑜2 fractions of 𝑜1 and
𝑜2 to 𝑏2 (capped by 1), and 𝑌1,𝑜3 and 𝑌1,𝑜4 fractions of 𝑜3 and 𝑜4 to 𝑏1 (capped by 1).

This shows that the algorithm does not achieve 𝛼-CEF for any 𝛼 > 3/4.

USW. Note that the utilitarian social welfare is simply the size of the (divisible) matching, which
is independent of the class information. Hence, the 1 − 1/𝑒 upper bound on USW follows from the
classical 1 − 1/𝑒 upper bound on the competitive ratio of any online divisible matching algorithm;
see, e.g., the work of Kalyanasundaram and Pruhs [2000].

CPROP. Consider an instance of a single class. In this case, the proportional share of the class
coincides with the value usw(𝑋 ∗) of a USW-optimal matching 𝑋 ∗. Thus, the 1 − 1/𝑒 upper bound
on CPROP approximation follows from the 1 − 1/𝑒 upper bound on USW approximation. □

Remark 3. Similar to Remark 2, one may wonder what we can say about a weaker notion of
proportionality with respect to only the allocated items, i.e., if the proportional share of each class is
defined based on the divisible matchings of the allocated items (instead of all items). In Proposition 7
in Appendix C, we show that the upper bound of 1 − 1/𝑒 continues to hold even for this weaker
version. However, unlike in the case of indivisible items, this does not immediately follow from
the proof above (which considers an instance with a single class, for which, trivially, the weaker
version is exactly satisfied). The proof of Proposition 7 is much more intricate.

While Eqal-Filling achieves the optimal 1 − 1/𝑒 approximation of CPROP, its guarantees with
respect to CEF and USW identified in Theorem 3 are weaker than the upper bounds in Theorem 4.
One might wonder if this is simply because our analysis in Theorem 3 is loose. We show that this is
not the case. Hence, future work must focus either on proving better upper bounds, or on designing
new algorithms which might surpass Eqal-Filling.

Proposition 3. Equal-Filling does not achieve any of the following guarantees:

• 𝛼-CEF for any 𝛼 > 1 − 1/𝑒,
• 𝛼-CPROP for any 𝛼 > 1 − 1/𝑒,
• 𝛼-USW for any 𝛼 > 1/2.

5 RANDOMIZED ALGORITHMS FOR INDIVISIBLE ITEMS

Recall from Section 3 that for indivisible items, no deterministic online algorithm can achieve
𝛼-CMMS for any 𝛼 > 1/2. When moving to randomized algorithms, one can naturally hope to
approximate CPROP instead of CMMS because the value to a class is evaluated in expectation.
However, apriori it is not clear whether a randomized algorithm can achieve 𝛼-CPROP for any
𝛼 > 1/2.

By applying a recently introduced rounding technique, called Online Correlated Selection (OCS)
[Fahrbach et al., 2020], to the divisible matching given by Eqal-Filling (Algorithm 2), we are
able to design a randomized algorithm for indivisible items that achieves 0.593-CPROP.

We start by introducing a recent result about OCS that forms the backbone of our approach.

Lemma 1 (c.f., Gao et al. 2021). There is a polynomial-time online algorithm which works as follows.

In each step, it takes as input a non-negative vector (𝑥𝑎,𝑜 )𝑎∈𝑁 for some 𝑜 ∈ 𝑀 satisfying

∑
𝑎∈𝑁 𝑥𝑎,𝑜 ⩽ 1

and selects an agent 𝑎 with positive 𝑥𝑎,𝑜 . Further, by the end, each agent 𝑎 is selected at least once with
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probability at least:

𝑝 (𝑥𝑎) = 1 − exp
(
−𝑥𝑎 − 1

2 · 𝑥
2
𝑎 − 4−2

√
3

3 · 𝑥3𝑎
)
,

where 𝑥𝑎 =
∑

𝑜∈𝑀 𝑥𝑎,𝑜 .

Technically, such an algorithm is called (multi-way) semi-OCS instead of OCS. But the nomen-
clature is unimportant for our application, so we will call it OCS for brevity, and refer interested
readers to the works of Fahrbach et al. [2020] and Gao et al. [2021] for a detailed comparison.
How good is the guarantee in Lemma 1? For comparison, consider the simpler independent

randomized rounding algorithm, which, upon receiving the vector (𝑥𝑎,𝑜 )𝑎∈𝑁 , selects each agent 𝑎
with probability 𝑥𝑎,𝑜 , independently of the rounding outcomes in the previous steps. By the end,
each agent 𝑎 is selected at least once with probability 1−∏

𝑜∈𝑀 (1−𝑥𝑎,𝑜 ) ⩾ 1− exp(−∑
𝑜∈𝑀 𝑥𝑎,𝑜 ) =

1 − exp(−𝑥𝑎). Readers can verify that using this weaker bound in the proof of Theorem 5 only
yields 1/2-CPROP. The improved guarantee in Lemma 1 is critical for achieving an approximation
better than 1/2.

Our algorithm, Eqal-Filling-OCS (presented as Algorithm 3), runs a variant of Eqal-Filling
in the background to get a guiding divisible matching 𝑋 = (𝑥𝑎,𝑜 )𝑎∈𝑁,𝑜∈𝑀 . The only difference is
that unlike Eqal-Filling, this variant does not cap the value (total fraction of all items) assigned
to an agent at 1. This is because the algorithm will perform rounding to compute an indivisible
matching, and by Lemma 1, the probability that an agent 𝑎 is matched depends on the value 𝑥𝑎 of
the agent in the divisible matching in such a manner that even reaching a value of 1 would not
guarantee being matched with certainty.
Upon receiving a new item 𝑜 , the algorithm first continues running this variant of Eqal-

Filling to obtain the guiding division (𝑥𝑎,𝑜 )𝑎∈𝑁 (Lines 5-12), and then lets OCS select an agent 𝑎∗
accordingly (Line 14). If the selected agent 𝑎∗ is not yet matched, the algorithm matches item 𝑜 to
this agent. If 𝑎∗ is already matched, the algorithm matches item 𝑜 to an arbitrary unmatched agent
who likes it, and discards the item if there is no such agent (Line 15).

ALGORITHM 3: Eqal-Filling-OCS
1 Initialize an empty indivisible matching 𝑋 = (𝑥𝑎,𝑜 )𝑎∈𝑁,𝑜∈𝑀
2 Initialize an empty divisible matching 𝑋 = (𝑥𝑎,𝑜 )𝑎∈𝑁,𝑜∈𝑀
3 Maintain a class-level divisible matching 𝑌 = (𝑦𝑖,𝑜 = 0)𝑖∈[𝑘 ],𝑜∈𝑀 such that 𝑦𝑖,𝑜 =

∑
𝑎∈𝑁𝑖

𝑥𝑎,𝑜

4 when item 𝑜 ∈ 𝑀 arrives do
5 /*class-phase divisible matching*/
6 For each class 𝑖 , let 𝑁𝑖,𝑜 be the set of agents in class 𝑖 who like item 𝑜

7 Let 𝑘𝑜 be the number of classes 𝑖 such that 𝑁𝑖,𝑜 ≠ ∅
8 Let 𝑦𝑖,𝑜 = 1

𝑘𝑜
for each of these 𝑘𝑜 classes

9 /*individual-phase divisible matching*/
10 for each class 𝑖 with 𝑦𝑖,𝑜 > 0 do
11 Find 𝛾𝑜 such that

∑
𝑎∈𝑁𝑖,𝑜

max(𝛾𝑜 − 𝑥𝑎, 0) = 𝑦𝑖,𝑜

12 Let 𝑥𝑎,𝑜 = max(𝛾𝑜 − 𝑥𝑎, 0) for all 𝑎 ∈ 𝑁𝑖,𝑜

13 /*indivisible matching rounded by OCS*/
14 Send (𝑥𝑎,𝑜 )𝑎∈𝑁 to the OCS in Lemma 1 and let it select an agent 𝑎∗

15 Match 𝑜 to 𝑎∗ if 𝑎∗ is not yet matched, and to an arbitrary unmatched neighbor (if any) otherwise

Theorem 5. For randomized matching of indivisible items, Equal-Filling-OCS (Algorithm 3) satisfies

non-wastefulness, 0.593-CPROP, and 1/2-USW.



Hadi Hosseini, Zhiyi Huang, Ayumi Igarashi, and Nisarg Shah 17

Proof. Non-wastefulness is clear from Line 15 of Algorithm 3. Proposition 1 implies 1/2-USW.
Hence, we focus on the interesting 0.593-CPROP guarantee.
Fix an arbitrary class 𝑖 . The first part of the analysis bounds the proportional value of class

𝑖 using the guiding divisible matching 𝑋 . This part is almost verbatim to its counterpart in the
proof of Theorem 3, except we do not bound the value threshold 𝜃 by 1. We include this part to be
self-contained.

For 𝜃 ⩾ 0, let 𝑓 (𝜃 ) denote the number of agents in class 𝑖 who have value at least 𝜃 under 𝑋 . Let
𝑁𝑖 (𝜃 ) denote the set of these 𝑓 (𝜃 ) agents, and let 𝑁 𝑖 (𝜃 ) = 𝑁𝑖 \ 𝑁𝑖 (𝜃 ).

Fix any 𝜃 > 0. For each item 𝑜 liked by at least one agent in 𝑁 𝑖 (𝜃 ), Algorithm 3 assigns a fraction
𝑦𝑖,𝑜 ⩾ 1/𝑘𝑜 to class 𝑖 in the guiding divisible matching (but not necessarily to the agents in 𝑁 𝑖 (𝜃 )).
Further, any agent in 𝑁𝑖 receiving a positive share of item 𝑜 must have value less than 𝜃 right
after receiving it. Hence, the total number of items liked by at least one agent in 𝑁 𝑖 (𝜃 ) is at most
𝑘
∫ 𝜃

0 𝑓 (𝑧) d𝑧.
On the other hand, the total value that agents in 𝑁𝑖 (𝜃 ) can obtain from any set of items is at

most 𝑓 (𝜃 ) (at most 1 per agent).
Therefore, for any divisible partition of the items, denoted by non-negative vectors𝑌𝑖 = (𝑦𝑖,𝑜 )𝑜∈𝑀

for 𝑖 ∈ [𝑘] such that
∑

𝑖∈[𝑘 ] 𝑌𝑖,𝑜 = 1 for each 𝑜 ∈ 𝑀 , we have:∑︁
𝑗 ∈[𝑘 ]

𝑉 ∗𝑖 (𝑌𝑗 ) ⩽ 𝑘 ·
(∫ 𝜃

0
𝑓 (𝑧) d𝑧 + 𝑓 (𝜃 )

)
, ∀𝜃 > 0.

This implies that the proportional share of 𝑖 is bounded by:

prop𝑖 ⩽
∫ 𝜃

0
𝑓 (𝑧) d𝑧 + 𝑓 (𝜃 ), ∀𝜃 > 0. (1)

Next, we lower bound the expected value of class 𝑖 for the randomized indivisible matching
𝑋 . OCS ensures that for each agent 𝑎 in class 𝑖 , its probability of being matched is at least 𝑝 (𝑥𝑎).
Hence, the expected value of class 𝑖 for 𝑋 is:

E[𝑉𝑖 (𝑋 )] ⩾
∑︁
𝑎∈𝑁𝑖

𝑝 (𝑥𝑎) (Lemma 1)

= −
∫ ∞

0
𝑝 (𝜃 ) d𝑓 (𝜃 ) (definition of 𝑓 (𝜃 ))

=

∫ ∞

0
𝑝 ′(𝜃 ) 𝑓 (𝜃 ) d𝜃 . (integration by parts, 𝑝 (0) = 𝑓 (∞) = 0)

Multiplying inequality (1) by non-negative coefficients 𝑐 (𝜃 ) (to be determined later), and inte-
grating over 𝜃 > 0 gives that:

prop𝑖 ·
∫ ∞

0
𝑐 (𝜃 ) d𝜃 ⩽

∫ ∞

0
𝑐 (𝜃 )

(∫ 𝜃

0
𝑓 (𝑧) d𝑧 + 𝑓 (𝜃 )

)
d𝜃

=

∫ ∞

0
𝑐 (𝜃 )

∫ 𝜃

0
𝑓 (𝑧) d𝑧 d𝜃 +

∫ ∞

0
𝑐 (𝜃 ) 𝑓 (𝜃 ) d𝜃

=

∫ ∞

0

(∫ ∞

𝑧

𝑐 (𝜃 ) d𝜃 + 𝑐 (𝑧)
)
𝑓 (𝑧) d𝑧,

where, during the last transition, we exchange the order of integrals in the first part and change
the index from 𝜃 to 𝑧 in the second part.
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We choose 𝑐 (𝜃 ) = −𝑒𝜃
∫ ∞
𝜃

𝑝 ′′(𝑦)𝑒−𝑦 d𝑦, so that
∫ ∞
𝑧

𝑐 (𝜃 ) d𝜃 + 𝑐 (𝑧) = 𝑝 ′(𝑧) for all 𝑧 > 0. Hence,
we get that:

prop𝑖 ·
∫ ∞

0
𝑐 (𝜃 ) d𝜃 ⩽

∫ ∞

0
𝑝 ′(𝑧) 𝑓 (𝑧) d𝑧 ⩽ E𝑉𝑖 (𝑋 ) .

The theorem then follows by numerically calculating the integral:∫ ∞

0
𝑐 (𝜃 ) d𝜃 ≈ 0.5936 > 0.593.

This concludes the proof of the theorem. □

In Appendix D, we briefly discuss other randomized algorithms and their obstacles in achieving
better than 1/2 approximation to CPROP. We also present a randomized algorithm based on the
classical Ranking algorithm, which achieves (1 − 1/𝑒)-CEF. While it achieves this guarantee non-
vacuously (i.e., it does not simply return the empty matching), it still violates non-wastefulness. It
would be interesting to analyze its efficiency.

6 DISCUSSION

Our work introduces the novel framework of class fairness in online matching. We derive bounds on
approximate fairness and efficiency guarantees that deterministic and randomized online algorithms
can achieve in this framework for matching divisible and indivisible items, and leave open a number
of exciting open questions. For example, can a deterministic algorithm for matching divisible items
achieve a CEF approximation together with non-wastefulness better than 1 − 1/𝑒? (We conjecture
the answer to be no.) Can it achieve any reasonable CEF or CPROP approximation together with
a USW approximation better than 1/2 (ideally, 1 − 1/𝑒)? Can a randomized algorithm for matching
indivisible items achieve any reasonable CEF approximation together with either non-wastefulness
or a USW approximation?

More broadly, our basic framework paves the road for interesting extensions. For example, one
can allow agents to have non-binary values for the items, consider class fairness notions that give
more importance to bigger classes, consider both agents and items arriving online [Huang et al.,
2020], study weaker adversarial models, or consider stochastic instead of adversarial arrivals.

All of these fall under the umbrella of online fair allocation of private goods, which is a literature
still in its infancy with many exciting research directions in sight. Studying its counterpart, online
fair allocation of public goods, is another worthy goal, which may bring its own set of challenges.
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APPENDIX

A OMITTED MATERIAL FROM SECTION 2

Proposition 1. Every non-wasteful (divisible or indivisible) matching is
1/2-USW.

Proof of Proposition 1. Let 𝑋 ∗ be a matching maximizing the utilitarian social welfare. With-
out loss of generality, we can pick 𝑋 ∗ to be integral. Let 𝑋 be any non-wasteful (divisible or
indivisible) matching. Hence, for every (𝑎, 𝑜) ∈ 𝐸, we have ∑

𝑜′∈𝑀 𝑥𝑎,𝑜′ = 1 or
∑

𝑎′∈𝑁 𝑥𝑎′,𝑜 = 1. Then,
we have

usw(𝑋 ∗) =
∑︁

(𝑎,𝑜) :𝑥∗𝑎,𝑜=1
1 ⩽

∑︁
(𝑎,𝑜) :𝑥∗𝑎,𝑜=1

( ∑︁
𝑜′∈𝑀

𝑥𝑎,𝑜′ +
∑︁
𝑎′∈𝑁

𝑥𝑎′,𝑜

)
⩽

∑︁
𝑎∈𝑁

∑︁
𝑜′∈𝑀

𝑥𝑎,𝑜′ +
∑︁
𝑜∈𝑀

∑︁
𝑎′∈𝑁

𝑥𝑎′,𝑜 = 2 · usw(𝑋 ),

where the second transition holds because 𝑥∗𝑎,𝑜 = 1 implies (𝑎, 𝑜) ∈ 𝐸 and 𝑋 is non-wasteful, and
the third transition holds because 𝑋 ∗ is an indivisible matching (i.e., if 𝑥∗𝑎,𝑜 = 1, 𝑥∗

𝑎′,𝑜′ = 1, and
(𝑎, 𝑜) ≠ (𝑎′, 𝑜 ′), then 𝑎 ≠ 𝑎′ and 𝑜 ≠ 𝑜 ′). This proves that 𝑋 is 1/2-USW. □

Proposition 2. For 𝛼 ∈ (0, 1], if there is a deterministic online algorithm satisfying 𝛼-CMMS (resp.,
𝛼-CPROP), then there is a non-wasteful deterministic online algorithm satisfying 𝛼-CMMS (resp.,

𝛼-CPROP). This holds for matching both divisible and indivisible items.

Proof of Proposition 2. Let us first consider indivisible items. Let 𝐴 be any deterministic
online algorithm that may be wasteful. Consider a non-wasteful version of it, denoted as 𝐴′, that
works as follows. It runs 𝐴 in the background and treats 𝐴’s output as an advice. Importantly, 𝐴
keeps its own internal state and is oblivious to the actual matching decisions made by 𝐴′. For an
item 𝑜 , suppose that 𝐴 matches 𝑜 to agent 𝑎. Algorithm 𝐴′ would follow 𝐴’s advice and match 𝑜 to
𝑎 if 𝑎 is not yet matched, and would otherwise match 𝑜 to any unmatched agent who likes item 𝑜 .

By definition, 𝐴′ is non-wasteful. Further, we can prove by induction over the steps that the set
of agents matched by𝐴′ is a superset of the set of agents matched by𝐴. Since CMMS is a monotone
property (i.e., increasing agent values preserves its approximation), 𝐴′ achieves at least as good an
approximation of CMMS as 𝐴 does.

For divisible items, the same proof works for CPROP, except 𝐴′ now gives a fraction of 𝑜 to each
agent 𝑎 that is the minimum of the fraction of 𝑜 matched to 𝑎 under the advice given by 𝐴 and the
remaining capacity of 𝑎 in the current matching maintained by 𝐴′. □

B OMITTED MATERIAL FROM SECTION 3

B.1 Pessimal class envy-freeness

One may wonder whether relaxing the way each class measures its hypothetical value for a set of
items could help alleviating the incompatibility between class envy-freeness and non-wastefulness.
We show that even if each class considers a pessimistic value for a set of items (in other words,
considers worst-case scenario for matching the items), the clash between envy-freeness and non-
wastefulness persists.

Given a vector𝒚 = (𝑦𝑜 )𝑜∈𝑀 ∈ {0, 1}𝑀 representing a set of items, the pessimistic valuation𝑉 ⊖
𝑖
(𝒚)

of class 𝑖 for 𝒚 is the value of a minimum-cardinality maximal matching between the agents of 𝑁𝑖

and the set { 𝑜 ∈ 𝑀 | 𝑦𝑜 = 1 }. This problem has shown to be NP-hard for graphs with maximum
degree 3 and 𝑘-regular bipartite graphs for 𝑘 ⩾ 3 [Demange and Ekim, 2008, Yannakakis and Gavril,
1980].



Hadi Hosseini, Zhiyi Huang, Ayumi Igarashi, and Nisarg Shah 22

𝑎1

𝑎2

𝑏1

𝑏2

𝑜1

𝑜2

𝑜3

Fig. 3. An allocation that is PEF but not CEF. The red group pessimally considers the worst-case matching of
items 𝑜1 and 𝑜3 with the value of 1.

We compare the value 𝑉𝑖 (𝑋 ) derived by class 𝑖 from matching 𝑋 with class 𝑖’s pessimistic
valuation for the items matched to another class 𝑗 , i.e. 𝑉 ⊖

𝑖
(𝑌𝑗 (𝑋 )).

Definition 9 (Pessimal class envy-freeness). A matching 𝑋 is 𝛼-pessimal class envy-free (𝛼-PEF)
if for every pair of classes 𝑖, 𝑗 ∈ [𝑘], 𝑉𝑖 (𝑋 ) ⩾ 𝛼 ·𝑉 ⊖

𝑖
(𝑌𝑗 (𝑋 )). When 𝛼 = 1, we simply refer to it as

pessimal class envy-freeness (PEF).

Similar to its optimistic counterpart, CEF, a PEF matching may not always exist. Therefore, we
consider the following relaxation of PEF for integral matchings.

Definition 10 (Pessimal class envy-freeness up to one item). An integral matching 𝑋 is 𝛼-pessimal

class envy-free up to one item (𝛼-PEF1) if for every pair of classes 𝑖, 𝑗 ∈ [𝑘], either 𝑌𝑗 (𝑋 ) = ∅ or
there exists an item 𝑜 ∈ 𝑌𝑗 (𝑋 ) such that𝑉𝑖 (𝑋 ) ⩾ 𝛼 ·𝑉 ⊖

𝑖
(𝑌𝑗 (𝑋 ) \ {𝑜}). When 𝛼 = 1, we simply refer

to it as class envy-freeness up to one item (PEF1).

It is easy to verify that PEF1 is weaker than CEF1. Intuitively, a class values its matching compared
to the items assigned to another class if it has a pessimistic view of the items arrival and matched
items, should the items were exchanged. Clearly, a CEF matching is also PEF, and similarly CEF1
implies PEF1.

Example 3. In the example given in Figure 3, there are two classes 𝑁1 = {𝑎1, 𝑎2} and 𝑁2 = {𝑏1, 𝑏2}.
The bold edges indicate the matched items. This matching is not CEF, since class 𝑁1 envies class 𝑁2
should it able to optimally match items 𝑜1 and 𝑜3 within its members. However, the same matching
is PEF because class 𝑁1 considers a pessimal matching of the same items, that is 𝑜1 and 𝑜3, where
item 𝑜1 is matched to 𝑎1 upon its arrival, and thus, 𝑜3 remains unmatched (Since there is no edge
from 𝑎2 to 𝑜3).

The following proposition strengthens our previous results on the incompatibility between
non-wastefulness and CEF1 by showing that non-wastefulness remains incompatible with a weaker
fairness notion of PEF1.

Proposition 4. No deterministic algorithm for matching indivisible items can guarantee non-

wastefulness and PEF1.

Proof. Consider the example given in Figure 1. It is easy to verify that the matching is non-
wasteful. However, in this scenario the pessimal value of class 𝑁1 for the items assigned to the class
𝑁2 is 3, implying that the matching is not PEF1. □

B.2 Relationships Between CEF1 and CMMS
Proposition 5 (CEF1+NW⇏ CMMS). Given an indivisible instance, a CEF1+NW matching does

not imply any 𝛼-CMMS for any 𝛼 > 0.

Proof. We construct an instance for which a 𝛼-CEF1+NW matching with 𝛼 = 1 gives only a
0-CMMS approximation.
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class 𝑘
. . .

class 1
. . .

𝑘 agents

class 2
. . .

𝑘 agents

. . .
class 𝑘 − 1

. . .

𝑘 agents

type 1

. . .

𝑘 items

type 2

. . .

𝑘 items

. . .

type 𝑘 − 1

. . .

𝑘 items

Fig. 4. A CEF1+NW matching that does not imply any approximation for CMMS.

Suppose there are 𝑘 classes 𝑁1, 𝑁2, . . . , 𝑁𝑘 . Each 𝑁𝑖 for 𝑖 ∈ [𝑘 − 1] consists of 𝑘 agents. The last
class 𝑁𝑘 consists of 𝑘 − 1 agents 𝑎1, 𝑎2, . . . , 𝑎𝑘−1. There are 𝑘 (𝑘 − 1) items that are partitioned into
𝑘 − 1 subsets𝐶1,𝐶2, . . . ,𝐶𝑘−1. For 𝑗 ∈ [𝑘 − 1],𝐶 𝑗 consists of 𝑘 items, 𝑜1𝑗 , 𝑜2𝑗 , . . . , 𝑜𝑘 𝑗 , each of which
is referred to as a type 𝑗 item. For each 𝑗 ∈ [𝑘 − 1], every agent in class 𝑁 𝑗 likes every item in 𝐶 𝑗 .
For class 𝑁𝑘 , each agent 𝑎 𝑗 for 𝑗 ∈ [𝑘 − 1] likes every item in 𝐶 𝑗 . For example, agent 𝑎2 likes 𝑘
items 𝑜12, 𝑜22, . . . , 𝑜𝑘2 but does not like none of the other items.
Now, consider a matching 𝑋 that gives no item to class 𝑁𝑘 and matches arbitrarily each of the

𝑘 items in 𝐶 𝑗 to one of the 𝑘 agents in each class 𝑁 𝑗 for 𝑗 ∈ [𝑘 − 1] (as illustrated in Figure 4).
Since each of the 𝑘 (𝑘 − 1) items are fully assigned to an agent who likes it, the matching 𝑋 is
clearly non-wasteful. Further, this matching is CEF1. In fact, all classes except 𝑁𝑘 receive a perfect
matching and are not envious of any other class. Also, for 𝑗 ∈ [𝑘 − 1], there is at most one agent 𝑎 𝑗
in 𝑁𝑘 who likes an item in𝐶 𝑗 . Thus, class 𝑁𝑘 is not envious for more than one item since𝑉 ∗

𝑘
(𝑌𝑗 ) ⩽ 1

for any 𝑗 ∈ [𝑘 − 1]. Thus, the matching is CEF1.
In contrast, consider a partition (𝐿1, 𝐿2, . . . , 𝐿𝑘 ) of the items where 𝐿𝑖 = {𝑜𝑖1, 𝑜𝑖2, . . . , 𝑜𝑖𝑘−1} for

each 𝑖 ∈ [𝑘]. Observe that for each 𝑖 = 1, 2, . . . , 𝑘 , each agent 𝑎 𝑗 in 𝑁𝑘 likes exactly one item 𝑜𝑖 𝑗
in 𝐿𝑖 , i.e., 𝐿𝑖 ∩𝐶 𝑗 = {𝑜𝑖 𝑗 } for 𝑗 ∈ [𝑘 − 1]. This means that there is a perfect matching of size 𝑘 − 1
between 𝑁𝑘 and the items of each 𝐿𝑖 , yielding 𝑉 ∗1 (𝐿𝑖 ) ⩾ 𝑘 − 1 for 𝑖 ∈ [𝑘]. We thus establish that
mms𝑘 ⩾ 𝑘 − 1. Given that class 𝑁1’s value for 𝑋 is 𝑉1 (𝑋 ) = 0, 𝑋 provides 0-CMMS approximation,
which proves the claim. □

Proposition 6 (CMMS⇏ CEF1+NW). Given an indivisible instance, a CMMS matching does not

imply 𝛼-CEF1 for any 𝛼 > 0.

Proof. Consider an instance with 𝑘 classes each with 𝑘 agents. There are 𝑘 − 1 items liked by
every agent in each class. A matching that assigns all 𝑘 −1 of items to a single class, say 𝑁1, satisfies
CMMS. This is because the CMMS value for each class is obtained by partitioning the 𝑘 − 1 items
into 𝑘 bundles, yielding mms𝑖 = 0 for 𝑖 = 1, 2, . . . , 𝑘 . However, this matching is not CEF1 (nor any
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𝛼 approximation of it for 𝛼 > 0) because every class values the matching assigned to 𝑁1 as 𝑘 − 1
while only receiving 0 valuation. □

C OMITTED MATERIAL FROM SECTION 4

C.1 Proportionality with respect to allocated items

Our objective of this section is to show that (1− 1/𝑒)-bound is tight even for CPROP with respect to
the allocated items. Formally, we define the proportional share of class 𝑖 with respect to a set 𝑆 of
items as

prop𝑆𝑖 = max
𝑋 ∈X(𝑆)

min
𝑗 ∈[𝑘 ]

𝑉 ∗𝑖 (𝑌𝑗 (𝑋 )) .

where X(𝑆) is the set of (divisible) matchings of the set of items 𝑆 to the set of agents 𝑁 . For
𝛼 ∈ (0, 1], we say that matching 𝑋 is 𝛼-class proportional (𝛼-CPROP) with respect to a set 𝑆 of
items if for every class 𝑖 ∈ [𝑘], 𝑉𝑖 (𝑋 ) ⩾ 𝛼 · prop𝑆𝑖 . For 𝛼 ∈ (0, 1], a deterministic online algorithm
for matching divisible items is 𝛼-class proportional (𝛼-CPROP) with respect to the allocated items if
when all items have arrived, it produces a matching that is 𝛼-class proportional with respect to the
items that have been fully assigned by the algorithm.

Proposition 7. No deterministic algorithm for matching divisible items satisfies 𝛼-CPROP with

respect to the allocated items for any 𝛼 > 1 − 1/𝑒.

Proof. We will prove that no deterministic online algorithm satisfying non-wastefulness can
achieve𝛼-CPROPwith respect to the allocated items for any 𝛼 > 1−1/𝑒. By the proof of Proposition 2,
this implies that no deterministic algorithm can guarantee 𝛼-CPROP with respect to the allocated
items for any 𝛼 > 1 − 1/𝑒.
Take any non-wasteful algorithm for divisible item allocation and consider the following ad-

versarial instance. There are two classes of 3𝑛 agents each, 𝑁1 = {𝑎1, . . . , 𝑎𝑛, 𝑑1, . . . , 𝑑2𝑛} and
𝑁2 = {𝑎′1, . . . , 𝑎′𝑛, 𝑑 ′1, . . . , 𝑑 ′2𝑛}. We call the agents 𝑑1, . . . , 𝑑2𝑛, 𝑑 ′1, . . . , 𝑑

′
2𝑛 dummy agents. There are 2𝑛

items, labeled 𝑜𝑖 and 𝑜 ′𝑖 for 𝑖 ∈ [𝑛].
The construction of the instance works in rounds as follows.
• We start with 𝑡 = 1, 𝑅0

1 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}, and 𝑅0
2 = {𝑎′1, 𝑎′2, . . . , 𝑎′𝑛}.

• In round 𝑡 , items 𝑜𝑡 arrives, followed immediately by item 𝑜 ′𝑡 . Both these items are liked by
agents in 𝑅𝑡−11 and 𝑅𝑡−12 .
• Let 𝑉 𝑡 (𝑎) denote the value that agent 𝑎 derives at the end of round 𝑡 when the algorithm
finishes allocating both items. Find the lowest valuation agent in each class. WLOG, say 𝑎𝑡 ∈
argmin𝑎∈𝑅𝑡−1

1
𝑉 𝑡 (𝑎) and 𝑎′𝑡 ∈ argmin𝑎′∈𝑅𝑡−1

2
𝑉 𝑡 (𝑎′). Set 𝑅𝑡1 ← 𝑅𝑡−11 \ {𝑎𝑡 }, 𝑅𝑡2 ← 𝑅𝑡−12 \ {𝑎′𝑡 },

and 𝑡 ← 𝑡 + 1.
We stop this process after the first round 𝑡∗ such that at the end of that round every agent in 𝑅𝑡

∗
1

and every agent in 𝑅𝑡
∗
2 is fully saturated.

Without loss of generality, assume that at the end of round 𝑡∗, the total value of agents in 𝑁1 is
at most the total value of agents in 𝑁2, i.e.,

∑
𝑎∈𝑁1 𝑉

𝑡∗ (𝑎) ⩽ ∑
𝑎′∈𝑁2 𝑉

𝑡∗ (𝑎′). For shorthand, let us
denote 𝑉 𝑡 (𝐴) = ∑

𝑎∈𝐴𝑉
𝑡 (𝑎) for a set of agents 𝐴.

Then, the remaining 2(𝑛 − 𝑡∗) items that arrive are liked by agents in 𝑁2 ∪ 𝑅𝑡
∗
1 . Note that by

non-wastefulness and by the fact that 𝑁2 contains 2𝑛 dummy agents, the 2(𝑛 − 𝑡∗) items are fully
assigned to some agent.

We claim the following properties at the end of round 𝑡∗.
• The agents 𝑛 − 𝑡∗ agents in 𝑅𝑡

∗
1 and the 𝑛 − 𝑡∗ agents in 𝑅𝑡

∗
2 are all fully saturated.

• 𝑉 𝑡∗ (𝑁1) ⩽ 𝑡∗, 𝑉 𝑡∗ (𝑁2) ⩾ 𝑡∗ − 1.
• 𝑡∗ ⩽ (1 − 1/𝑒) · 𝑛 (in particular, the process will stop after no more than 𝑛 rounds).



Hadi Hosseini, Zhiyi Huang, Ayumi Igarashi, and Nisarg Shah 25

The first claim follows immediately due to the definition of 𝑡∗. For the second claim, note that
the total value of both classes after 𝑡 rounds must be at most 2𝑡 since only 2𝑡 items have arrived.
Also, the total value of both classes after 𝑡 rounds must be at least 2(𝑡 − 1); this is because the 𝑡 th
round only happens if some agent in 𝑅𝑡−11 ∪ 𝑅𝑡−12 was not fully saturated after 𝑡 − 1 rounds, and
since this agent was part of 𝑅𝑡 ′1 ∪ 𝑅𝑡

′
2 for all 𝑡 ′ ⩽ 𝑡 − 1, non-wastefulness implies that the algorithm

must have assigned the 2(𝑡 − 1) items from the first 𝑡 − 1 rounds fully. These two claims, along
with the convention that 𝑉 𝑡∗ (𝑁1) ⩽ 𝑉 𝑡∗ (𝑁2) implies the second claim.

Before we prove the third claim, we show why these claims imply the desired bound on the envy
ratio. At the end of the algorithm, the total value of class 𝑁1 is at most 𝑡∗ because of the second
claim and the fact that they do not receive any items from the last 2(𝑛 − 𝑡∗) items (as all agents in
𝑅𝑡
∗
1 are saturated after round 𝑡∗).
In contrast, the proportional fair share prop𝑆1 of class 𝑁1 with respect to the allocated items 𝑆 is at

least 𝑛 − 1. Note that all the items except for 𝑜𝑡∗ and 𝑜 ′𝑡∗ are fully assigned. Thus,𝑀 \ {𝑜𝑡∗ , 𝑜 ′𝑡∗ } ⊆ 𝑆 .
Further, consider two sets 𝑃1 = {𝑜1, . . . , 𝑜𝑡∗−1, 𝑜𝑡∗+1, . . . , 𝑜𝑛} and 𝑃2 = {𝑜 ′1, . . . , 𝑜 ′𝑡∗−1, 𝑜 ′𝑡∗+1, . . . , 𝑜 ′𝑛}.
From 𝑃1, the 𝑡∗ − 1 items 𝑜1, 𝑜2, . . . , 𝑜𝑡∗−1 can be matched to 𝑡∗ − 1 agents 𝑎1, 𝑎2, . . . , 𝑎𝑡∗−1 and the
remaining 𝑛 − 𝑡∗− items can be matched to 𝑛 − 𝑡∗ agents in 𝑅𝑡

∗
1 . Similarly, from 𝑃2, 𝑡∗ − 1 items

𝑜 ′1, 𝑜
′
2, . . . , 𝑜

′
𝑡∗−1 can be matched to 𝑡∗ agents 𝑎′1, 𝑎

′
2, . . . , 𝑎

′
𝑡∗−1 and the remaining 𝑛 − 𝑡∗ items can be

matched to 𝑛 − 𝑡∗ agents in 𝑅𝑡
∗
1 . Thus, prop

𝑆
1 ⩾ 𝑛 − 1. From the third claim, if 𝑉1 (𝑋 ) ⩾ 𝛼 · prop𝑆1 ,

then (1 − 1/𝑒)𝑛 ⩾ 𝛼 (𝑛 − 1), meaning that (1 − 1/𝑒) 𝑛
𝑛−1 ⩾ 𝛼 .

Finally, we show that 𝑡∗ ⩽ (1 − 1/𝑒) · 𝑛. To see this, we first show that after 𝑡 rounds,

𝑉 𝑡 (𝑁1 \ 𝑅𝑡1) +𝑉 𝑡 (𝑁2 \ 𝑅𝑡2) ⩽
2𝑡
𝑛
+ 2(𝑡 − 1)

𝑛 − 1 + . . . +
2 · 1

𝑛 − 𝑡 + 1 .

For the base case, note that after the first round, 𝑉 1 (𝑎1) + 𝑉 1 (𝑎′1) ⩽ 2/𝑛 follows from the
pigeonhole principle. Suppose this claim holds after 𝑡 − 1 rounds. Then, after round 𝑡 , we have

𝑉 𝑡 (𝑎𝑡 ) +𝑉 𝑡 (𝑎′𝑡 ) ⩽
2𝑡 − (𝑉 𝑡−1 (𝑁1 \ 𝑅𝑡−11 ) +𝑉 𝑡−1 (𝑁2 \ 𝑅𝑡−12 ))

𝑛 − 𝑡 + 1 .

Adding𝑉 𝑡−1 (𝑁1 \ 𝑅𝑡−11 ) +𝑉 𝑡−1 (𝑁2 \ 𝑅𝑡−12 ) = 𝑉 𝑡 (𝑁1 \ 𝑅𝑡−11 ) +𝑉 𝑡 (𝑁2 \ 𝑅𝑡−12 ) to both sides, we obtain

𝑉 𝑡 (𝑁1 \ 𝑅𝑡1) +𝑉 𝑡 (𝑁2 \ 𝑅𝑡2) ⩽
2𝑡

𝑛 − 𝑡 + 1 +
𝑛 − 𝑡

𝑛 − 𝑡 + 1 · (𝑉
𝑡−1 (𝑁1 \ 𝑅𝑡−11 ) +𝑉 𝑡−1 (𝑁2 \ 𝑅𝑡−12 )) .

Using the induction hypothesis, we get the desired result. Consider the smallest 𝑡 such that

2𝑡 − 2 −
(
2𝑡
𝑛
+ 2(𝑡 − 1)

𝑛 − 1 + . . . +
2 · 1

𝑛 − 𝑡 + 1

)
⩾ 2(𝑛 − 𝑡).

Note that the process must stop at 𝑡∗ ⩽ 𝑡 . This is because the total value of both classes after
𝑡 round is at least 2𝑡 − 2, but the value to the removed agents is at most the expression in the
brackets. Hence, the remaining allocation must have saturated the remaining 2(𝑛 − 𝑡) agents. After
simple algebra, we can see that the left hand side is equal to 2 · (𝑛 − 𝑡) · (𝐻𝑛 − 𝐻𝑛−𝑡 ) − 2. If this is
at least 2(𝑛 − 𝑡), then 𝐻𝑛 − 𝐻𝑛−𝑡 ⩾ 1 + 1/(𝑛 − 𝑡). The smallest 𝑡 when this is satisfied is roughly
(1 − 1/𝑒) · 𝑛 + 𝑜 (𝑛). □

C.2 Upper bounds for Algorithm 2

Proposition 3. Equal-Filling does not achieve any of the following guarantees:

• 𝛼-CEF for any 𝛼 > 1 − 1/𝑒,
• 𝛼-CPROP for any 𝛼 > 1 − 1/𝑒,
• 𝛼-USW for any 𝛼 > 1/2.
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Proof. The fact that Algorithm 2 cannot achieve 𝛼-CPROP for 𝛼 > 1 − 1/𝑒 immediately follows
from Theorem 4.

For each of the fairness or efficiency guarantees, we provide an instance for which Algorithm 2
cannot achieve the corresponding bound.

CEF. Consider the following instancewith two classes𝑁1 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} and𝑁2 = {𝑎′1, 𝑎′2, . . . , 𝑎′2𝑛}.
There are 2𝑛 items 𝑜1, 𝑜 ′1, 𝑜2, 𝑜

′
2, . . . , 𝑜𝑛, 𝑜

′
𝑛 . There are 𝑛 rounds: in round 𝑡 ∈ [𝑛], item 𝑜𝑡 arrives,

followed immediately by item 𝑜 ′𝑡 . Each agent 𝑎′𝑖 (𝑖 ∈ [2𝑛]) likes every item. Each agent 𝑎𝑖 (𝑖 ∈ [𝑛])
likes the items 𝑜𝑡 and 𝑜 ′𝑡 with 𝑡 = 1, 2, . . . , 𝑖; namely, agent 𝑎1 likes the items 𝑜1, 𝑜 ′1, agent 𝑎2 likes
items 𝑜1, 𝑜 ′1, 𝑜2, 𝑜

′
2, and so on.

Note that since 𝑁2 has 2𝑛 agents who like all 2𝑛 items, for each item, there is at least one agent
in 𝑁2 who is not saturated and likes that item. Thus, until the agents in 𝑁1 who like 𝑜𝑡 and 𝑜 ′𝑡 are
fully saturated, the equal-filling algorithm splits the item into halves among the two classes. The
algorithm assigns the amount 1

2𝑛 of {𝑜𝑡 , 𝑜 ′𝑡 } to each agent in 𝑁2. On the other hand, it assigns the
amount 1

𝑛−(𝑡−1) of 𝑜𝑡 and 𝑜
′
𝑡 to each agent 𝑖 of class 𝑁1 with 𝑖 ⩾ 𝑗 ; for example, agent 𝑎1 receives 1

𝑛

of {𝑜1, 𝑜 ′1}; agent 𝑎2 receives 1
𝑛
of {𝑜1, 𝑜 ′1} and 1

𝑛−1 of {𝑜2, 𝑜 ′2}; agent 𝑎3 receives 1
𝑛
of {𝑜1, 𝑜 ′1}, 1

𝑛−1 of
{𝑜2, 𝑜 ′2}, and 1

𝑛−2 of {𝑜3, 𝑜
′
3}; and so on.

Let 𝑋 denote the matching returned by Algorithm 2. We will establish that 𝑉1 (𝑋 ) ⩽ (1 −
1/𝑒)𝑉 ∗1 (𝑌2). First, it is not difficult to see that under 𝑋 , class 𝑁2 is assigned to at least 1 for each
item set of {𝑜𝑡 , 𝑜 ′𝑡 } (𝑡 ∈ [𝑛]). Thus, 𝑉 ∗1 (𝑌2) ⩾ 𝑛. Now, let 𝑡∗ = 𝑛 − ⌈𝑛

𝑒
⌉. It can be easily checked by

the integral test that
∑𝑡∗

𝑡=1
1

𝑛+1−𝑡 is between 1− 5
𝑛
and 1. Thus, after the algorithm assigns 𝑜𝑡∗+5, 𝑜 ′𝑡∗+5,

the set 𝑁1,𝑜𝑡 becomes empty, i.e., there is no agent in 𝑁1 who is not saturated and likes new items
𝑜𝑡 , 𝑜

′
𝑡 for 𝑡 > 𝑡∗ + 5. Thus, the value 𝑉1 (𝑋 ) derived by class 𝑁1 from 𝑋 is at most

𝑡∗ + 5 < (1 − 1
𝑒
)𝑛 + 5 ⩽ (1 − 1

𝑒
)𝑉 ∗1 (𝑌2) + 5,

which proves the claim.

USW. Let 𝑛 be a positive integer. Consider 𝑛 + 1 classes: There are 𝑛 classes 𝑁 𝑗 , each of which
consists of a single agent 𝑐 𝑗 for 𝑗 = 1, 2, . . . , 𝑛. The last class 𝑁𝑛+1 consists of 𝑛 agents {𝑎1, 𝑎2, . . . , 𝑎𝑛}.
There are 2𝑛 items: 𝑛 red items 𝑟1, 𝑟2, . . . , 𝑟𝑛 and 𝑛 blue items 𝑏1, 𝑏2, . . . , 𝑏𝑛 . Each red item is liked
by every agent. Each blue item 𝑏𝑖 is liked by the single agent 𝑐𝑖 in 𝑁𝑖 . Now the instance admits
a perfect matching of size 2𝑛 that matches every agent 𝑐𝑖 for 𝑖 ∈ [𝑛] to the blue item 𝑏𝑖 and the
remaining 𝑛 agents in 𝑁𝑛+1 arbitrarily to the remaining 𝑛 red items.
Now suppose that the items arrive in the order of 𝑟1, 𝑟2, . . . , 𝑟𝑛, 𝑏1, 𝑏2, . . . , 𝑏𝑛 . For each red item

𝑟𝑖 (𝑖 ∈ [𝑛]), the equal-filling algorithm assigns an equal amount 1
𝑛+1 of fractions among the 𝑛 + 1

classes. Thus, after the algorithms matches the last red item 𝑟𝑛 , the total amount of fractions each
class 𝑁𝑖 for 𝑖 ∈ [𝑛+1] has received is 𝑛

𝑛+1 . For each blue item 𝑏𝑖 (𝑖 ∈ [𝑛]), the equal-filling algorithm
assigns an amount of 1

𝑛+1 to the agent 𝑐𝑖 in 𝑁𝑖 since 𝑐𝑖 is the only agent who likes the blue item
𝑏𝑖 but has already been saturated up to 𝑛

𝑛+1 . Thus, the utilitarian social welfare of the resulting
matching 𝑋 is given as follows:

𝑛∑︁
𝑖=1

𝑉𝑖 (𝑋 ) +𝑉𝑛+1 (𝑋 ) =
𝑛∑︁
𝑖=1

1 + 𝑛

𝑛 + 1 = 𝑛 + 𝑛

𝑛 + 1 .

This proves the claim. □
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D OMITTED MATERIAL FROM SECTION 5

D.1 Discussion on Other Randomized Algorithms

Readers familiar with the online matching literature may wonder why can’t we use the Ranking
algorithm of Karp et al. [1990] to decide how to match items within each class, and combine it
with some fair class-level matching approach. While we believe this is an interesting direction for
future research, there is a concrete technical difficulty in analyzing such algorithms. Naturally, the
class-level matching must take into account which agents are already matched to previous items.
This means that the realization of randomness used by Ranking within some class 𝑖 will influence
what items are allocated to the class!

How about applying Ranking directly, ignoring how agents are partitioned into classes? While
this approach circumvents the above challenge, it fails on two classes with lopsided sizes. In the
extreme, consider a class with only one agent, and another class with 𝑛 ≫ 1 agents, and only one
item. The second class will get the item with probability 𝑛

𝑛+1 while the first class gets it only with
probability 1

𝑛+1 .
Finally, we observe that it is necessary to have randomness in both the class-level matching and

the individual-level matching, in order to exploit the power of randomized algorithms.

Proposition 8. If an algorithm assigns deterministically at the class-level, it is at best
1
2 -CPROP.

Proof. Consider two classes 𝑁1 = {𝑎1, 𝑎2, 𝑎3} and 𝑁2 = {𝑏1, 𝑏2, 𝑏3}. For 1 ⩽ 𝑖 ⩽ 3, the 𝑖-th item
is liked by 𝑎𝑖 and 𝑏𝑖 . If the algorithm assigns all three items to the same class, it is only 0-CPROP.
Otherwise, assume without loss of generality that 2 items go to class 2. Let the next item be only
liked by the matched agent in class 1 and the unmatched agent in class 2, as in Figure 1. The
algorithm is then at best 1

2 -CPROP. □

Proposition 9. If an algorithm assigns deterministically within each class, it is at best
1
2 -CPROP.

Proof. It becomes apparent when we consider a single class. The proposition then reduces to
the fact that deterministic online matching algorithms are at best 1

2 -competitive. We can extend
this hard instance to 𝑘 classes by making 𝑘 copies of the class and each item. □

D.2 Discussion on Randomized Algorithms and CEF

As discussed in the last subsection, if the the class-level matching depends on which agents are
already matched, i.e., if it is adaptive to the realization of randomness in the agent-level matching,
then the realization of randomness in an online algorithm, e.g., Ranking, within each class would
affect what items get assigned to the class. How about using a class-level matching algorithm
that is oblivious to the randomness in the agent-level matching? Although such algorithms must
violate non-wastefulness in general, we find an algorithm that isn’t blatantly wasteful and looks
interesting enough to be a stepping stone towards stronger algorithms in future works.
We call this algorithm Eqal-Ranking. For each item, it randomly assigns the item to a class

with at least one agent who likes the item. Within each class, it runs a separate Ranking algorithm
to match items to agents therein.

Proposition 10. Given an online indivisible instance, Equal-Ranking guarantees (1 − 1/𝑒)-CEF.

Proof. Consider any class 𝑖 and any other class 𝑗 . Let 𝑦𝑖 = (𝑦𝑖𝑜 )𝑜∈𝑀 ∈ {0, 1}𝑀 be the vector that
represents the subset of items assigned to 𝑖 by Eqal-Ranking at the class-level, regardless of
whether such the items are matched to agents successfully. Define 𝑦 𝑗 similarly. Note that both 𝑦𝑖
and 𝑦 𝑗 are random variables that depend on the class-level random assignments of items. Finally,
let 𝑋 = (𝑥𝑎𝑜 )𝑎∈𝑁,𝑜∈𝑀 ∈ {0, 1}𝑁×𝑀 be the matrix that represents the matching by Eqal-Ranking.
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We seek to prove that:
E[𝑉𝑖 (𝑋 )] ⩾ (1 − 1/𝑒) E[𝑉 ∗𝑖 (𝑦 𝑗 )] .

Conditioned on the subset of items assigned to 𝑖 , i.e., 𝑦𝑖 , the Ranking algorithm ensures that (see,
e.g., Karp et al. [1990]):

E
[
𝑉𝑖 (𝑋 ) | 𝑦𝑖

]
⩾ (1 − 1/𝑒)𝑉 ∗𝑖 (𝑦𝑖 ) .

It remains to show that:
E[𝑉 ∗𝑖 (𝑦𝑖 )] ⩾ E[𝑉 ∗𝑖 (𝑦 𝑗 )] .

Define 𝑦 𝑗 be such that 𝑦 𝑗𝑜 = 𝑦 𝑗𝑜 if class 𝑖 has at least one agent who likes item 𝑜 , and 𝑦 𝑗𝑜 = 0
otherwise. By definition 𝑉 ∗𝑖 (𝑦 𝑗 ) = 𝑉 ∗𝑖 (𝑦 𝑗 ) and therefore it suffices to prove:

E[𝑉 ∗𝑖 (𝑦𝑖 )] ⩾ E[𝑉 ∗𝑖 (𝑦 𝑗 )] .
Note that for any item 𝑜 , Eqal-Ranking ensures that the probability that 𝑦𝑖𝑜 = 1 is greater

than or equal to the probability that 𝑦 𝑗𝑜 = 0. Further, the assignment of items at the class-level
are independent. Hence we get that random variable 𝑦𝑖 stochastically dominates 𝑦 𝑗 . The above
inequality now follows by the monotonicity of 𝑉 ∗𝑖 . □
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