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Abstract

In the past few years, conferences like AAAI and NeurIPS have grown tremendously. While on the one
hand this has attracted submissions from a large number of communities, on the other hand it has also
resulted in a poor reviewing experience for some communities, whose submissions end up being assigned
to less qualified reviewers outside of their communities. An often-advocated solution is to break up such
large conferences into smaller conferences to decentralize the reviewing process. However, this can lead
to isolation of various communities and slower emergence of truly interdisciplinary ideas.

In this work, we tackle this challenge by introducing a notion of group fairness, namely the core, to
the peer review setting. A reviewing assignment is in the core if every subset of researchers (a possible
community) is treated in such a manner such that they cannot achieve a better outcome by breaking off
and organizing a smaller conference on their own.

We study a simple peer review model, prove that it always admits a reviewing assignment in the core,
and design an efficient algorithm to find one such assignment. On the negative side, we show that the
core is incompatible with achieving a good worst-case approximation of social welfare, an often-sought
desideratum. We complement these results by conducting experiments with real data. We observe that
our algorithm, in addition to satisfying the core, generates good social welfare on average. In contrast,
existing review assignment systems violate the core, treat many communities unfairly, and significantly
incentivize them to disengage.

1 Introduction

Computer Science is a rapidly advanced field, and therefore peer-reviewed conferences are at the heart of
the research progress, since their reviewing time is usually quite fast [6, 29]. In many of these conferences,
such as AAMAS, AAAI, and NeurIPS, the assignment of the papers to reviewers is usually an automated
procedure, due to their massive scale. Famous automated systems that are used in practise are the Toronto
Paper Matching System [1], Microsoft CMT1, and OpenReview2. The authors of the submissions are usu-
ally very interested to receive useful feedback from their peers, regarding how they could improve their
paper [28, 13, 20]. Naturally, the overall experience of an author for a peer review procedure highly de-
pends on the quality of the reviews that her manuscripts receive.

In many large conferences, the typical procedure of selecting the reviewers of each manuscript is the fol-
lowing one. First, for each paper-reviewer pair is calculated a similarity score based on various parameters
such as the subject area of the paper and the reviewer, the bidding of the reviewer, etc. [1, 12, 11, 18, 27].
Then, an assignment is calculated through an optimization problem where the usual objectives are either
to maximize the utilitarian social welfare, which is equal to the total similarity, or the egalitarian social
welfare, which is equal to the minimum score of each submission, subject to constraints related to the total
number of papers that each reviewer can review and the total number of reviewers that each paper should
be assigned to. Under both objectives, it is possible that the review quality on some papers is sacrificed. To
see that, consider the case that there are four submissions, p1, p2, p3 and p4, and four reviewers, 1, 2, 3 and

1https://cmt3.research.microsoft.com/
2https://github.com/openreview/openreview-matcher
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4 who can review up one paper each. Assume that the first two reviewers have similarity score equal to 1

1/2 3/4
p1 1 ε
p2 1 ε
p3 0.9 0
p4 0.9 0

for p1 and p2 and equal to 0.9 for p3 and p4, while the other two reviewers have similarity score equal to
a negligible quantity ε > 0 for p1 and p2 and have zero similarity score for p3 and p4. This may happen,
when 1 and 2 work on topics that these papers consider, while 3 and 4 belong in a different community. If
the goal is to maximize the utilitarian social welfare, then p1 and p2 are assigned to the first two review-
ers, while p3’s and p4’s utilities are completely sacrificed, while if the goal is to maximize the egalitarian
social welfare, the opposite happens. Papers that are assigned to inappropriate reviewers may receive poor
feedback or even may be unfairly rejected, which may cause their authors to be significantly unsatisfied
with the whole procedure. Thus, finding reviewing assignments that are fair is very important, and the last
years researchers have focused in this direction [19].

Peng et al. [17] recently mentioned that a major problem with the prestigious mega conferences is that
they constitute the main venues for several communities, and as a result, in some cases, people are asked
to review submissions that are beyond their main areas of work. They claim that a reasonable solution
is to move to a de-centralized publication process by creating more specialized conferences appropriate
for different communities. In particular, they say that by this way “Reviewers and reviewees will be peers,
collaborators, and problem-specific interlocutors, not generic members of a large anonymized community.”. However,
this solution could cause the isolation of different communities which in its turn could cause various other
problems such as the difficulty of emerging interdisciplinary ideas. Moreover, it usually takes several years
until a conference becomes famous and acceptable across the members of a community. So, a reasonable
question is

...how can we treat each group of researchers in a fair way in the current review and publication
processes?

To answer this question, we use the concept of fairness, which, to the best of our knowledge, we are the
first that introduce in a peer review setting, called core [5]. In this context, this notion requires that given an
assignment there is no subset of authors– who can also serve as reviewers– that can deviate as following:
They can find an assignment of their submissions among themselves such that

• no author reviews her own submissions,

• each paper is reviewed by as many reviewers as in the given assignment,

• each reviewer reviews no more papers than in the given assignment, and

• the submissions of each author are assigned to better reviewers than in the given assignment.

Intuitively, this notion of fairness requires that any group of authors is treated in a way that it does not have
any incentive to deviate from the given assignment and create its own assignment that meets the constraints
of the peer review procedure. In other words, any sub-community in a big conference is treated in a way
that it does not have any incentive to deviate from the conference and create its own smaller conference.
Note that this definition provides fairness to every sub-community and not only to pre-defined ones, and as
result it guarantees that even emerged interdisciplinary subcommunities, are treated fairly.

1.1 Our Contribution

In this work, we consider the case that each submission is authored by one agent that also serves as re-
viewer. A reviewing assignment is valid if each paper is reviewed by kp reviewers, each reviewer reviews
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up to ka papers and no agent reviews her own submissions. To ensure that a valid assignment always exists,
we assume that the maximum number of papers that each agent can submit is at most

⌊
ka/kp

⌋
.

In Section 3, we present an efficient algorithm that always returns a valid assignment in the core under
very minor assumptions regarding the preferences of the authors for different potential reviewers. In par-
ticular, we assume that each author holds an ordinal preference over the reviewers with respect to each of
her submissions and the extension of these preferences to preferences over sets of reviewers that review her
submissions follows some very natural properties.

In Section 4, we show that there are instances where no assignment in the core can provide an approx-
imation better than Ω(n) with respect to the utilitarian social welfare and bounded approximation with
respect to the egalitarian social welfare. Moreover, we show that it is NP-hard to find an assignment in
the core with maximum utilitarian social welfare and an assignment in the core that provides bounded
approximation to the best egalitarian welfare that can be achieved by any assignment in the core.

In Section 5, we conduct experiments with real data and observe that our algorithm achieves good
utilitarian and egalitarian social welfare in the average case, while broadly applied methods fail to find
assignments in the core, and as a result communities are incentivized to deviate.

1.2 Related Work

The reviewing assignment problem has been extensively studied [30]. Toronto Paper Matching System [1]
which is a very broadly applied method focuses on maximizing the utilitarian welfare and this approach
has been adopted by other popular conference management systems such as EasyChair3 and HotCRP 4 [25].
O’Dell et al. [14] got a different approach where the goal is maximize the minimum total utility that a paper
gets, and Stelmakh et al. [25] generalized this approach by maximizing the minimum paper score, then
maximizing the next smallest paper score, etc. One of the key issues in reviewer assignment is to ensure
that the assignment is fair and efficient for the reviewers as well as the papers/authors. Several papers
have examined this issue in different respects (see, e.g., [16, 4, 10, 8, 21]). The core property we focus on can
also be viewed as a fairness or efficiency requirement.

Assignment of papers to reviewers is essentially a matching problem and hence has connections with
several classical problems in matching. Our model is related to exchange problems with endowments.
Agents can be viewed as being endowed by their own papers which they wish to exchange with other
agents. In contrast to classical exchange problem with endowments, our model has a distinctive require-
ment that agents need to give away all their items/papers as the papers need to be reviewed by the agent
who gets the paper. The difference is crucial as explained next.

A basic exchange problem the Shapley-Scarf housing market in which each agent owns one house.
Shapley and Scarf [22] showed that a simple yet elegant mechanism called Gale’s Top Trading Cycle (TTC)
finds an allocation which is in the core. TTC is based on multi-way exchanges of houses between agents.
Since the basic assumption in the model is that agents have strict preferences over houses, TTC is also
strict core selecting and therefore Pareto optimal. Our model involves agents getting multiple items. For
problems with multiple endowments, Konishi et al. [9] showed that the core can be empty under additive
valuations. Note our problem is different as individual rationality has no bite in our context and an agent
is required to give away all of his ‘resources’ (own papers).

Our model also has connections with matching with two-sided preferences where agents have prefer-
ences over reviewers. In many to many matchings with two-sided preferences, several solution concepts
have been used to identify desirable matchings. The classical concept of pairwise stability requires that there
are no two agents who are not partners, but by becoming partners, possibly dissolving some of their part-
nerships to remain within their quotas and possibly keeping other ones, can both obtain a strictly preferred
set of partners. A matching corewise-stable if there is no subset of agents who by forming all their partner-
ships only among themselves, can all obtain a strictly preferred set of partners. A matching µ will be called
setwise-stable (SW) if there is no subset of agents who by forming new partnerships only among themselves,

3https://easychair.org
4https://hotcrp.com
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possibly dissolving some partnerships of µ to remain within their quotas and possibly keeping other ones,
can all obtain a strictly preferred set of partners [23]. For a detailed taxonomy of stability concepts for
matching for many to many matchings, see the paper by Klaus and Walzl [7].

2 Model

For q ∈ N, we use [q] to denote the set {1, . . . , q}. There is a set of agents N = [n] where each agent can
serve as reviewer and may also author some papers. Let Pi = {pi,1, . . . , pi,mi} be the set of submissions of
agent i where mi ∈ N and P = (P1, . . . , Pn). We call pi,` as the `-th submission of agent i. Whenever all the
agents have just one submission, we drop ` and simply write pi. Let us define m = ∑i∈N mi, i.e. m denotes
the total number of submissions.

Preferences. Each agent i ∈ N has a preference ranking over the agents in N \ {i} with respect to her `-th
submission, denoted by σi,`.5 This preference can be based on a mixture of factors, such as how qualified
the other agents are to review her `-th submission and how likely they are to provide a positive review. Let
σi,`(i′) be the position of agent i′ ∈ N \ {i} in the ranking. An agent i prefers her submissions pi,` to be
reviewed by i′ rather than i′′, if σi,`(i′) < σi,`(i′′). Again, when all the agents have just one submission, we
drop ` and just write σi. Let~σ = (σ1,1, . . . , σ1,m1 , . . . , σn,1, . . . , σn,mn).

Typically, each paper receives multiple reviews; hence, we need to define the preferences of agents over
sets of reviewers. When agent i prefers (resp., weakly prefers) her `-th submission to be reviewed by the set
of agents S rather than the set of agents S′, we denote it by S �i,` S′ (resp., S �i,` S′). We assume that this
extension from preferences over individual agents to preferences over sets of agents satisfies the following
natural property.

Definition 1 (Order Separability). Let S1, S2, S3 ⊆ N with |S1| = |S2|. If for each i′ ∈ S1 and each i′′ ∈ S2, it
holds that σi,`(i′) < σi,`(i′′), then S1 ∪ S3 �i,` S2 ∪ S3.

Assignment. A review assignment (sometimes simply called as assignment) R ∈ {0, 1}n×m is a binary
matrix such that R(i, j) = 1, if agent i is assigned to review submission j. With a slight abuse of notation,
we denote with Ra

i = {j ∈ [m] : R(i, j) = 1}, i.e. the submissions that agent i reviews and with Rp
j = {i ∈

[n] : R(i, j) = 1}, i.e. the agents that review submission j. We say that a review assignment is valid if:

• For each j ∈ [m], |Rp
j | = kp, i.e. each paper is reviewed by kp agents.

• For each i ∈ [n], |Ra
i | ≤ ka, i.e. each agent reviews at most ka submissions.

• For each i ∈ [n] and ` ∈ [mi], R(i, pi,`) = 0, i.e. no agent is assigned to review her own submissions.

To ensure that a valid assignment always exists, we impose the constraint that mi · kp ≤ ka for each i ∈ N,
which implies that m · kp ≤ n · ka.

Given N′ ⊆ N and P′i ⊆ Pi for each i ∈ N′ with P′ = ∪i∈N′P′i , an assignment R̂ ∈ {0, 1}|N′ |×|P′ | that is
restricted over N′ and P′ is called valid if each submission in P′ is reviewed by kp agents from N′ and each
agent in N′ is assigned to review at most ka submissions from P′ \ P′i .

Hereinafter, when referring to an assignment or a restricted assignment, we will assume validity, unless
specified otherwise.

5Our algorithms continue to work with weak orders; one can arbitrarily break ties to convert them into strict orders before feeding
them into our algorithms.
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Reviewers
Rounds 1 2 3 4 5

1 : p3 p2 p4
2 : p1 p3 p6
3 : p2 p1 p4
4 : p1 p5
5 : p2 p3
6 : p5

(a) Execution of PeerReview-TTC

Reviewers
Rounds 1 1 2

1 : p3, p2, p4 ��p3, p6 p2, p4 p6 p2,��p4, p5
2 : p1, p3, p6 p1, p3, p6 p1, p3, p6
3 : p2, p1, p4 p2, p1, p4 p2, p1, p4
4 : p1, p5, p6 p1, p5, p6 p1, p5, p6
5 : p2, p3 p2, p3 p2, p3, p4
6 : p5, p4 p5, p4, p3 p5, p4, p3︸ ︷︷ ︸ ︸ ︷︷ ︸

Phase 1 Phase 2

(b) Execution of Filling-Gaps

Figure 1: Execution of PRCore when n = 6, kp = ka = 1, σ1 = 2 � 3 � 4 � . . ., σ2 = 3 � 1 � 5 � . . .,
σ3 = 1 � 2 � 5 � . . ., σ4 = 1 � 3 � 5 � . . ., σ5 = 6 � 4 � . . . and σ6 = 2 � . . .. On the left table,
we see the assignments that are established in each round of PeerReview-TTC by eliminating cycles. After
the execution of PeerReview-TTC, three papers, p4, p5, p6 are not completely assigned. Thus, U = {4, 5, 6}
and L = {3}. On the right table, we see that there is a cycle in the greedy graph which is eliminated at the
first round of Phase 1. In Phase 2, where ~ρ = (6, 5), at the first round, since p3 is authored by an agent in
U ∪ L \ {6}, is not reviewed by 6 and is completely assigned, p3 is assigned to 6 while it is removed form
1 in which p6 is now assigned. At the second round, since p4 is authored by an agent in U ∪ L \ {5}, is not
reviewed by 5 and is completely assigned, p4 is assigned to 5 while it is removed form 1 in which p5 is now
assigned.

Preferences over assignments. Recall that �i,` (resp., �i,`) denotes the preferences (resp., weak prefer-
ences) of agent i over possible sets of reviewers to her `-th submission. To extend this to preferences (resp.,
weak preferences) of the agent over assignments, denoted by �i (resp., �i), we need to collate her pref-
erences across all her submissions. We simply require that the collated preference extension satisfies the
following natural property.

Definition 2 (Consistency). Let R be an assignment, R̂ be an assignment restricted over N′ ⊆ N and P′ =
∪i∈N′P′i , where P′i ⊆ Pi for each i ∈ N′, and i ∈ N′ be an agent. If Rp

pi,` �i,` R̂p
pi,` for each pi,` ∈ P′i , then we

must have R �i R̂.

Core. In this work, we are interested in finding assignments such that no subset of agents has an incentive
to deviate with any subset of their submissions and implement a restricted assignment that each deviating
agent prefers. Formally:

Definition 3 (Core). An assignment R is in the core if there is no N′ ⊆ N, P′i ⊆ Pi for each i ∈ N′, and
assignment R̂ restricted over N′ and P′ = ∪i∈N′P′i such that R̂ �i R for each i ∈ N′.

Note that a core assignment R guarantees no subset of agents simultaneously finds an alternative as-
signment R̂ restricted to them and a subset of their submissions strictly better according to any preference
extension satisfying order separability and consistency. In other words, every deviating agent must find R
weakly better than R̂ for every single one of her submissions in the deviation simultaneously, which is a
demanding guarantee for the assignment R to provide. Nonetheless, our main result is that an assignment
with such a strong guarantee always exists.

3 Assignment in the Core

In this section, we show that when the preferences of the agents are order separable and consistent, an as-
signment in the core always exists and can be found in polynomial time. The main algorithm (Algorithm 3),
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Algorithm 1 PeerReview-TTC(N, P,~σ, ka, kp)

1: Let R(i, j)← 0 for every i ∈ N and j ∈ P . Initialize an empty assignment
2: Construct the preference graph GR
3: while ∃ cycle in GR do
4: Eliminate the cycle
5: Update P̄i-s by removing any completely assigned paper
6: Update GR
7: end while
8: U ← {i ∈ N : P̄i 6= ∅}
9: L← the last kp − |U|+ 1 agents in N \U to have all their submissions completely assigned

10: Return R, L, U

which is called PRCore, uses Algorithm 1 and Algorithm 2. Algorithm 1 is quite similar to the Top-Trading-
Cycles (TTC) mechanism. After the execution of Algorithm 1, it is possible that there are submissions that
have not been assigned to kp agents, but either no agent can review more submissions or all the agents that
can review more submissions already review them. In this case, we call Algorithm 2 which ensures that
each submission is reviewed by kp agents, by making tweaks in the assignment. It is important to mention
that assignments, that were established in the execution of Algorithm 1, may be removed in the execution
of Algorithm 2.

Before we describe the algorithms in detail, let us introduce some more notation. Let m∗ = maxi∈N mi.
For reasons that will become clear later, we want to ensure that mi = m∗, for each i ∈ N. To achieve
that, we add m∗ −mi dummy submissions to agent i, denoted by pi,mi+1, pi,mi+2, . . . , pi,m∗ , and the rankings
over reviewers with respect to these submissions are arbitrary. An assignment is called partial if no agent
reviews more than ka submissions, but there are submissions that are reviewed by less than kp agents.
A submission that is reviewed by kp agents under a partial assignment is called completely assigned and
incompletely assigned, otherwise. We denote with P̄i(R̂) the set of submissions of i that are incompletely
assigned under a partial assignment R̂, i.e. P̄i(R̂) = {pi,` ∈ Pi : |R̂p

pi,` | < kp}. Let P̄(R̂) = (P̄1(R̂), . . . , P̄n(R̂)).
We omit R̂ from the notation when it is clear from context.

In order to define the PeerReview-TTC algorithm (Algorithm 1), we first need to introduce the notion
of a preference graph. Suppose we have a partial assignment R̂. Each agent i with P̄i 6= ∅ picks one of her
incompletely assigned submissions arbitrarily. Without loss of generality, we assume that she picks her `∗-
th submission. We define the directed preference graph GR̂ = (N, ER̂) where each agent is a node and for
each i with P̄i 6= ∅, (i, i′) ∈ ER̂ if and only if i′ is ranked higher in σi,`∗ among the agents that don’t review
pi,`∗ and review less than ka submissions. In other words, each agent points her most preferred agent with
respect to pi,`∗ that does not already review it and can review at least one more submission. Moreover,
for each i ∈ N with P̄i = ∅, we add an edge from i to i′, where i′ is an arbitrary agent with P̄i′ 6= ∅, i.e.
each agent, whose all submissions are completely assigned, points an arbitrary agent whose some of her
submissions are not completely assigned.

PeerReview-TTC starts with an empty assignment, constructs the preference graph and searches for a
directed cycle in the graph. If such a cycle exists, the algorithm eliminates it as following: For each (i, i′) that
is included in the cycle, it assigns submission pi,`∗ to i′ (if i’s submissions are already completely assigned,
it does nothing) and removes pi,`∗ from P̄i, if it is now completely assigned. Then, the algorithm updates
the preference graph and continues to eliminate cycles in the same way. When there are no left cycles in
the preference graph, the algorithm terminates and returns a set U that contains all the agents that some of
their submissions are incompletely assigned and a set L that contains the last kp − |U|+ 1 agents whose all
submissions became completely assigned.

PRCore first calls PeerReview-TTC and if U is non-empty it also calls Algorithm 2, called Filling-Gaps,
to ensure that the final assignment is valid. Before we describe the algorithm, we also need to introduce
the notion of a greedy graph. Suppose that we have a partial assignment R̂ which indicates a set U that
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Algorithm 2 Filling-Gaps(N, P,~σ, ka, kp, R, L, U)

Phase 1
1: Construct the greedy graph GR
2: while ∃ cycle do
3: Eliminate the cycle
4: Update P̄i-s by removing any completely assigned paper
5: Update U and L by moving any agent i from U to L if P̄i = ∅
6: Update GR
7: end while

Phase 2
8: Construct an order ~ρ over the agents in U such that ∀i ∈ U \ {ρ(1), . . . , ρ(t− 1), ρ(t)} and ∀pi,` ∈ P̄i,

R(ρ(t), pi,`) = 1
9: for t ∈ [|U|] do

10: while P̄ρ(t) 6= ∅ do
11: Pick arbitrary pρ(t),` ∈ P̄ρ(t)
12: Find completely assigned pi′ ,`′ such that R(ρ(t), pi′ ,`′) = 0 for some i′ ∈ U ∪ L \ {ρ(t)}
13: Find i′′ 6= ρ(t) such that R(i′′, pρ(t),`) = 0 and R(i′′, pi′ ,`′) = 1
14: R(i′′, pρ(t),`)← 1
15: R(i′′, pi′ ,`′)← 0
16: R(ρ(t), pi′ ,`′)← 1
17: Remove pρ(t),` from P̄ρ(t) if it is completely assigned
18: end while
19: end for
20: Return R

Algorithm 3 PRCore(N, P,~σ, ka, kp)

1: R, L, U =PeerReview-TTC(N, P,~σ, ka, kp)
2: if |U| > 0 then
3: R =Filling-Gaps(N, P,~σ, ka, kp, R, L, U)
4: end if
5: Return R

contains all the agents whose at least one submission is incompletely assigned. We define the directed
greedy graph GR̂ = (U, ER̂) where (i, i′) ∈ ER̂ if R̂(i′, pi,`) = 0 for some pi,` ∈ P̄i. In other words, while
in the preference graph, agent i points only to her favourite potential reviewer with respect to one of her
incomplete submissions, in the greedy graph agent i points to any agent in U \ {i} that could review at least
one of her submissions that is incompletely assigned.

Filling-Gaps consists of two phases. In the first phase, starting from the partial assignment R that was
created in Algorithm 1, it constructs the greedy graph, searches for cycles and eliminates a cycle by assign-
ing submission pi,` to agent i′ for each (i, i′) in the cycle that exists due to pi,` (when an edge exists due
to multiple submissions, the algorithm chooses one of them arbitrary). Then, it updates P̄i be removing
any pi,` that became completely assigned and also updates U be moving any i to L if P̄i became empty. It
continues by updating the greedy graph and eliminating cycles in the same away. When no more cycles
exist in the greedy graph, if U is empty, the algorithm terminates. Otherwise, the algorithm starts the sec-
ond phase, where in |U| rounds ensures that the incomplete submissions of each agent become completely
assigned as following. It constructs an order ~ρ over the agents in U, that has some specific properties, and
in round t ∈ [|U|], for each incomplete assigned pρ(t),`, it finds a completely assigned submission j′ that is
authored by some agent in U ∪ L \ {ρ(t)} and is not reviewed by ρ(t) and an agent i that reviews j′ but not
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pρ(t),`, and then, it moves j′ from i to ρ(t) and assigns pρ(t),` to i. Figure 1 shows the execution of PRCore in
a small instance.

Theorem 1. RPCore returns an assignment in the core, in polynomial time.

Proof. First, in the next lemma, we show that the assignment that the algorithm returns is valid.

Lemma 1. RPCore returns a valid assignment.

Proof. First, note that in Algorithm 1, if an agent i with P̄i 6= ∅ is assigned one submission due to the
elimination of a cycle, then we know that one of her submissions that is incompletely assigned is also
assigned to an agent that does not review it already. Hence, we see that until P̄i becomes empty, we have
that

|Ra
i | = ∑

j∈[m∗ ]
|Rp

pi,j |. (1)

Since ∑j∈[m∗ ] |R
p
pi,j | = m∗ · kp ≤ ka, we get that i is not assigned more than ka papers to review until the point

where all of her submissions become completely-assigned. After that point, the agent may still participate
in a cycle as long as she reviews strictly less than ka submissions. Thus, we see that if Algorithm 1 terminates
with an empty set U, i.e. all the submissions are completely assigned, the assignment that it returns is valid,
as each submission is reviewed by kp different agents, each agent reviews at most ka submissions and no
author reviews her own submissions.

Now, suppose that Algorithm 1 returns a non-empty set U. First, we show that |U| ≤ kp. For each i ∈ U,
from Equation (1), we know that

|Ra
i | = ∑

j∈[m∗ ]
|Rp

pi,j | < m∗ · kp ≤ ka (2)

as there exists at least one submission of i that is assigned to less than kp agents. Hence, we get that i can
review more submissions. Now, suppose for contradiction that at the last iteration of the algorithm, each
agent i ∈ U has an outgoing edge in the preference graph. In this case, we claim that there exists a directed
cycle in the preference graph which is a contradiction as Algorithm 1 would have not been terminated yet.
To see that, note that each outgoing edge of an agent i ∈ U either goes to another agent i′ ∈ U, since i′ can
review more submissions, or goes to an agent i′ 6∈ U whose all submissions are completely-assigned. In the
latter case, i′ has an outgoing edge to an agent in U by the definition of the preference graph. Thus, starting
from any agent in U, we conclude in an agent in U and eventually we would found a cycle. Therefore,
we have that there exists an agent i∗ ∈ U that at the last iteration of the algorithm arbitrary picks her
incomplete submission pi∗ ,`∗ and does not have any outgoing edge to any other agent. This means that
all the agents that can review more submissions, already review pi∗ ,`∗ . Since all the agents in U \ {i∗} can
review more submissions, we get that all of them are assigned pi∗ ,`∗ . But since pi∗ ,`∗ is not completely
assigned, we conclude that |U \ {i∗}| < kp. Therefore, we have that |L| ≥ 1 and from their definitions, we
get that |U ∪ L| = kp + 1.

When U is non empty, PRCore calls Filling-Gaps. This algorithm first eliminates cycles in the greedy
graph. With similar arguments as in the elimination of cycles in the preference graph, we conclude that
during and after the first phase of Filling-Gaps, Equation (1) is still true for any i ∈ N with P̄i 6= ∅. When no
more cycles exist and U is still non empty, the algorithm constructs an order over the agents U, denoted by
~ρ, such that ρ(t) reviews all the incompletely assigned submissions of each i ∈ U \ {ρ(1), . . . , ρ(t− 1), ρ(t)}.

To see why such an order exists, first note that the greedy graph is a DAG, since it has no cycles. If
we construct the topological ordering of the DAG over the nodes in U, denoted by ~ρ, we get that no i ∈
U \ {ρ(1), . . . , ρ(t− 1), ρ(t)} has an outgoing edge to ρ(t). But since ρ(t) can review more submissions and
each such i has incomplete submissions, from the definition of the greedy graph, we get that ρ(t) reviews
all the incompletely assigned submissions of each i in U \ {ρ(1), . . . , ρ(t− 1), ρ(t)}.
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After having created the order ~ρ, Algorithm 2 runs |U| rounds, where in round t ∈ [|U|], it ensures that
all the submissions of agent ρ(t) become completely assigned as following. For each pρ(t),` ∈ P̄ρ(t), it finds
a completely assigned submission pi′ ,`′ of an agent i′ ∈ U ∪ L \ {ρ(t)} that is not reviewed by ρ(t). It also
finds an agent i′′ that reviews pi′ ,`′ , but does not review pρ(t),`. Then, the algorithm assigns pρ(t),` to i′′, and
moves pi′ ,`′ from i′′ to ρ(t).

Before, we show that there exist pi′ ,`′ and i′′ with the desired properties, we show that it holds |Ra
ρ(t)| =

∑j∈[m∗ ] |R
p
pρ(t),j
|, before and during the execution of round t. We already know that this is true after the first

phase of Filling-Gaps. In the second phase, note that until round t, if ρ(t) is assigned a new submission to
review, she is removed one of the old assigned submissions. Moreover, none of her incompletely assigned
submissions is assigned to any agent. Hence, indeed before round t, we have the desired property. Now,
note that when we execute step t, ρ(t) is assigned one more submission to review and one of her incomplete
submissions is assigned to a new agent. Thus, it is still true that |Ra

ρ(t)| = ∑`∈[m∗ ] |R
p
pρ(t),`
|.

Now, we show that as long as P̄ρ(t) is non-empty, there exists a completely assigned submission pi′ ,`′ of
an agent i′ ∈ U ∪ L \ {ρ(t)} that is not reviewed by ρ(t). Note that at iteration t, all the submissions of each
agent in i′ ∈ L∪ {ρ(1), . . . , ρ(t− 1)} are completely assigned. Thus, any incompletely assigned submission,
that does not belong to ρ(t), belongs to some agent i ∈ U \ {ρ(1), . . . , ρ(t− 1), ρ(t)}. But, we already know
that ρ(t) reviews any such submission. Moreover, we note that ρ(t) cannot review all the submissions of all
the agents in U ∪ L \ {ρ(t)}. Indeed, if we assume for contradiction that ρ(t) reviews all the submissions of
all the agents in U ∪ L \ {ρ(t)}, then we have that

|Ra
ρ(t)| = ∑

`∈[m∗ ]
|Rp

pρ(t),`
| = kp ·m∗,

since |U ∪ L \ {ρ(t)}| = kp and each of them has m∗ submissions, which would imply that all the submis-
sions of ρ(t) are completely assigned since ρ(t) has m∗ submissions and each of them should be assigned to
kp reviewers. Hence, we get that since ρ(t) reviews all the incompletely assigned submissions but cannot
review all the submissions of all agents in i ∈ U ∪ L \ {ρ(t)}, there exists a completely assigned submission
that belongs to some i′ ∈ U ∪ L \ {ρ(t)} and is not reviewed by ρ(t).

Next, we show that there exists i′′ that reviews pi′ ,`′ , but does not review pρ(t),`. Indeed, since pi′ ,`′ is
reviewed by kp agents and not from ρ(t), while pρ(t),` is reviewed by strictly less than kp agents, it exists an
agent that reviews the former submission but not the latter.

Note that after this assignment, any submission except for pρ(t),` is assigned to the same number of
reviewers as before this step and every agent except for ρ(t) reviews the same number of submissions as
before this step. Moreover, we see that after step t, it remains true that |Ra

ρ(t)| = ∑`∈[m∗ ] |R
p
pρ(t),`
|, as if ρ(t)

is assigned a new submission, an old assigned submission is removed, while if pρ(t),` is assigned to a new
reviewer, it is removed form another reviewer. Thus, we conclude that after the execution of Filling-Gaps,
the assignment is valid.

Now, we show that the final assignment R that PRCore returns is in the core. First, note that while it is
probable that an assignment of a submission of an agent in U ∪ L, that was established during the execution
of Algorithm 1, to be removed in the execution of Algorithm 2, this never happens for submissions that
belong to some agent in N \ (U ∪ L). Now, for the sake of contradiction, we assume that N′ ⊆ N, with
P′i ⊆ Pi for each i ∈ N′, deviate to a restricted assignment R̃ over N′ and ∪i∈N′P′i . Note that R̃ is valid if
and only if |N′| > kp, as if |N′| ≤ kp, there is no way each submission in ∪i∈N′P′i to be completely assigned,
since no agent can review her own submissions.

Now, we distinguish into two cases.

Case I: ∃i ∈ N′ : i 6∈ L ∪U. Let i∗ ∈ N′ be the first agent in N′ whose all submissions became completely
assigned in the execution of PeerReview-TTC. Note that since there exists i 6∈ U ∪ L, we get that i∗ 6∈ U ∪ L
from the definitions of U and L. Now, consider any pi∗ ,`. Let Q1 = Rp

pi∗ ,`
\ (Rp

pi∗ ,`
∩ R̃p

pi∗ ,`
) and Q2 =
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R̃p
pi∗ ,`
\ (Rp

pi∗ ,`
∩ R̃p

pi∗ ,`
). If Q1 = ∅, then we have that Rp

pi∗ ,`
= R̃p

pi∗ ,`
which means that Rp

pi∗ ,`
�i∗ ,` R̃p

pi∗ ,`
.

Otherwise, let
i′ = argmax

i∈Q1

σi∗ ,`(i),

i.e. i′ is ranked at the lowest position in σi∗ ,` among the agents that review pi∗ ,` under R but not under R̃
and let

i′′ = argmin
i∈Q2

σi∗ ,`(i),

i.e. i′′ is ranked at the highest position in σi∗ ,` among the agents that review pi∗ ,` under R̃ but not under
R. We have R(i′, pi∗ ,`) = 1, if and only if i∗ has an outgoing edge to i′ at some round of PeerReview-TTC.
At the same round, we get that i′′ can review more submissions, since i′′ ∈ N′ and if i∗ has incompletely
assigned submissions, then any i ∈ N′ has incompletely assigned submissions, and hence |Ra

i′′ | < kp ·m∗ ≤
ka. This means that if σi∗ ,`(i′) > σi∗ ,`(i′′), then i∗ would point i′′ instead of i′. Hence, we conclude that
σi∗ ,`(i′) < σi∗ ,`(i′′). Then, from the definition of i′ and i′′ and from the order separability property we have
that Rp

pi∗ ,`
�i∗ ,` R̃p

pi∗ ,`
. Thus, either if Q1 is empty or not, we have that for any pi∗ ,` ∈ P′i , it holds that

Rp
pi∗ ,`
�i∗ ,` R̃p

pi∗ ,`
and from consistency we get that R �i∗ R̃ which is a contradiction.

Case II: @i ∈ N′ : i 6∈ L ∪ U. In this case we have that N′ = U ∪ L, as |U ∪ L| = kp + 1. This means
that for each i ∈ U ∪ L and ` ∈ [m∗], R̃p

pi,` = (U ∪ L) \ {i}. Let i∗ ∈ L be the first agent in L whose
all the submissions became completely assigned in the execution of PeerReview-TTC. Consider any pi∗ ,`.
Note that it is probable that while pi∗ ,` was assigned to some agent i in PeerReview-TTC, it was moved to
another agent i′ during the execution of Filling-Gaps. But, i′ belongs to U and we can conclude that if pi∗ ,`
is assigned to some i ∈ N \U at the output of PRCore, this assignment took place during the execution of
PeerReview-TTC. Now, let Q1 = Rp

pi∗ ,`
\ (Rp

pi∗ ,`
∩ R̃p

pi∗ ,`
) and Q2 = R̃p

pi∗ ,`
\ (Rp

pi∗ ,`
∩ R̃p

pi∗ ,`
). If Q1 = ∅, then

we have that Rp
pi∗ ,`

= R̃p
pi∗ ,`

which means that Rp
pi∗ ,`
�i∗ ,` R̃p

pi∗ ,`
. If Q1 6= ∅, then Q1 ⊆ N \ (U ∪ L) and

Q2 ⊆ U ∪ L since R̃p
pi∗ ,`

= U ∪ L. Let
i′ = argmax

i∈Q1

σi∗ ,`(i),

i.e. i′ is ranked at the lowest position in σi∗ ,` among the agents that review pi∗ ,` under R but not under R̃
and let

i′′ = argmin
i∈Q2

σi∗ ,`(i),

i.e. i′′ is ranked at the highest position in σi∗ ,` among the agents that review pi∗ ,` under R̃ but not un-
der R. From above, we know that the assignment of pi∗ ,` to i′ was implemented during the execution of
PeerReview-TTC, since i′ ∈ N \ (U ∪ L). Hence, with very similar arguments as in the previous case, we
will conclude that σi∗ ,`(i′) < σi∗ ,`(i′′). We have R(i′, pi∗ ,`) = 1 if and only if i∗ has an outgoing edge to
i′ at some round of PeerReview-TTC. At this round, we know that i′′ can review more submissions, since
i′′ ∈ N′ and if i∗ has incompletely assigned submissions, then any i ∈ N′ has incompletely assigned sub-
missions. This means that if σi∗ ,`(i′) > σi∗ ,`(i′′), then i∗ would point i′′ instead of i′. Hence, we conclude
that σi∗ ,`(i′) < σi∗ ,`(i′′). Then, from the definition of i′ and i′′ and from the order separability property we
have that Rp

pi∗ ,`
�i∗ ,` R̃p

pi∗ ,`
. Thus, either if Q1 is empty or not, we have that for any pi∗ ,` ∈ P′i , it holds that

Rp
pi∗ ,`
�i∗ ,` R̃p

pi∗ ,`
and from consistency we get that R �i∗ R̃ which is a contradiction.

4 Core and Other Objectives

In the previous section, we show that an assignment in the core is guaranteed to exist under very minor
assumptions regarding the preferences of the authors. As we mentioned in the introduction, existing works
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have focused on different objectives. To be able to compare our objective with the existing ones, from now
on, we take the standard approach that for each paper j and each reviewer i, it is given a similarity score
S(i, j) which is calculated as a function of different parameters. Given an assignment R, we also assume
that the utilities of the papers and the authors are additive, i.e. the utility of a paper j, denoted by up

j , is

equal to up
j = ∑i∈Rp

j
S(i, j) and the utility of an author i, denoted by ua

i , is equal to ua
i = ∑j∈Pi

up
j .

The most known objective, as it is used at the Toronto Paper Matching System (TPMS) [1] is the maxi-
mization of the utilitarian social welfare (USW), which is given by

USW(R) = ∑
i∈N

∑
j∈Pi

up
j (R).

We denote the algorithm which computes such an assignment as TPMS.
A different objective that was introduced by Stelmakh et al. [25] is to maximize the egalitarian social

welfare (ESW) which is given by

ESW(R) = min
j∈∪i∈N Pi

up
j (R).

Stelmakh et al. [25] considered the extended leximin version of this objective where subject to maximize the
minimum utility of all papers, they aim to maximize the second minimum utility of all papers, and subject
to that they aim to maximize the third minimum utility of all papers and so on. The algorithm that achieves
this objective is called PeerReview4All (PR4A).

A reasonable question is whether the core is compatible with good approximations of USW and ESW.
Below, we show that there are instances where any solution in the core does not achieve an approximation
ratio better than Ω(n) with respect to USW and a finite approximation ratio with respect to ESW.

Theorem 2. For any n, kp and ka, where ka is divisible by kp, when n ≥ 2 · kp · ka + 1, there exists an instance such
that no assignment in the core achieves approximation ratio better than Ω(n/ka) with respect to USW and a finite
approximation with respect to ESW.

The proof can be found in the appendix. The condition of the theorem is quite realistic since in practice
kp and ka are small constants. Thus, we can also get the following Corollary.

Corollary 1. There are instances where no assignment in the core achieves approximation ratio better than Ω(n)
with respect to USW.

It is known from the literature that we can find an assignment with maximum USW in polynomial
times using standard tools [26]. In the previous section, we also presented a polynomial time algorithm
that finds an assignment in the core. Here, we surprisingly show that if NP 6= P, there is no polynomial
time algorithm that finds an assignment in the core with maximum USW. Moreover, it is known that finding
an assignment with maximum egalitarian social welfare is a NP-hard problem [2]. Here, we show that it is
NP-hard to find an assignment in the core with bounded approximation to the maximum ESW that can be
achieved by any assignment in the core. The proof can be found in the appendix.

Theorem 3. Finding an assignment in the core with maximum social welfare is NP-hard. Moreover, finding an
assignment in the core with bounded approximation with respect to the maximum egalitarian welfare achieved by
assignments in the core is NP-hard.

5 Experiments

In this section, we empirically compare PRCore with TPMS, which is widely used, and PR4A which was
used in ICML 2020 [24]. While the latter does not explicitly take into account conflicts between reviewers
and submissions, when a reviewer is the author of a submission, we set the corresponding score to be equal
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Alg. USW ESW α-Core Dev Pr
PRCore 0.145± 0.01 0.037± 0.01 1 0%
TPMS 0.161± 0.01 0.055± 0.01 1.029± 0.037 65%
PR4A 0.156± 0.01 0.082± 0.01 1.053± 0.053 86%

Table 1: Results on ICLR 2018

Alg. USW ESW α-Core Dev Pr
PRCore 0.985± 0.04 0.075± 0.04 1 0%
TPMS 1.229± 0.04 0.075± 0.04 1.984± 0.32 100%
PR4A 1.059± 0.04 0.075± 0.04 1.456± 0.02 100%

Table 2: Results on CVPR

to a large negative number. FairIR and FairFlow algorithms [8] also did not take conflicts into account,
but the same trick did not work since the latter does not work with negative scores, while when we im-
plemented and incorporated negative scores in the former, it could not find an optimal solution. For this
reason, we do not compare our algorithm with these algorithms.

We use three conference datasets: Conference on Computer Vision and Pattern Recognition (CVPR)
and the 2018 iteration of CVPR which both were used by [8], and International Conference on Learning
Representations (ICLR) 2018, which was used by [31]. In all the experiments, we set ka = kp = 3. In
ICLR’18, the similarity matrix and the conflict matrix are available where the entry in row i and column j
indicates the similarity score and a conflict, respectively, between reviewer i and submission j. As Xu et al.
[31], we deploy the conflict matrix as the authorship matrix. We disregard any reviewer that does not author
any submissions, but note that the addition of more reviewers can only improve the results of our algorithm
since these additional reviewers will have no incentives to deviate. Since in our model each submission is
authored by exactly one author, and no author can submit more than

⌊
ka/kp

⌋
= 1 papers, we found a

maximum matching on the conflict matrix, and use this as the authorship matrix for our experiments, as
Dhull et al. [3] also did. By this way, 883 out of the 911 papers were matched. In CVPR and CVPR’18, the
similarity matrix was available, but not the conflict matrix. In both datasets, there are less reviewers than
papers. We constructed an artificial author matrix, by matching a paper to the reviewer that has the highest
score for it and is not assigned as an author to any other paper so far. By this way, 1373 out of 2623 papers
from CVPR and 2840 out of 5062 papers from CVPR’18 were matched.

To measure the performance of different algorithms with respect to the core, we consider multiplicative
approximations. In particular, we say that an assignment is in the α-core, if there is no deviating coalition
such that all the authors improve their utility by a multiplicative factor of α. For each experiment, we report
USW, ESW and the value of α. Because the calculation of the core approximation requires much time, we
subsample 50 papers from each database and report means and standard deviation over 100 runs. Note,
that if there is an instance where all the authors with initial score equal to 0, deviate to an assignment where
all have strictly positive score, then the value of α would be infinite. To avoid situations where the existence
of such instance would explode the mean value of α to infinite, we make sure that the similarity matrices
do not contain zero values (something that it is very common in CVPR and CVPR’18), by adding 0.0005 to
each cell of a similarity matrix. We also report the probability that a deviating coalition exists. Following
Kobren et al. [8] and Stelmakh et al. [25], we run 4 iterations of PR4A (they actually run only one), which
ensures that the four minimum scores are maximized.

In Table 1, we see the results of ICLR’18. As expected we see that TPMS achieves the highest USW while
PR4A achieves the highest ESW. We see that PRCore achieves a multiplicalte approximation better than 1.2
with respet to USW and better than 2.31 with respect to ESW. Both TMPS and PR4A violate core very often,
but it seems that the improvement of the scores is not very significant. In Table 2, we see the results of
CVPR. Here, again we see that the mutliplicate approximation of PRCore with respect to USW is around
1.3, but it seems to achieve a much better approximation with respect to ESW. On the other hand, TMPS
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Alg. USW ESW α-Core Dev Pr
PRCore 2.62± 0.04 0.075± 0.04 1 0%
TPMS 2.986± 0.04 0.125± 0.04 1.085± 0.03 95%
PR4A 2.928± 0.04 0.847± 0.04 1.182± 0.05 100%

Table 3: Results on CVPR 2018

and PR4A violate core with certainty and in this case the value of α is more than 1.4. Lastly, in Table 3, we
see the results of CVPR’18. In this case, we notice that PRCore achieves a better approximation with respect
to USW, but worse with respect to ESW. Again, TMPS and PR4A violate core almost with certainty and the
value of α is non negligible. Overall, we see that in contrast with the worst case, PRCore seems to achieve
good approximations with respect to both USW and ESW in the average case. Moreover, methods that are
widely used in practise, violate core very often and significantly incentivize communities to deviate.

6 Discussion

This work introduces a novel notion of group fairness, called core, in a peer review setting which asks that
each group is treated in a way that does not have any incentive to deviate and make its own conference. We
show that a review assignment in the core always exists when each submission is authored by one agent
and each agent serves as a reviewer. While, in the worst case, our algorithm achieves bad approximations
with respect to often desirable desideratums, using real data, we show that in the average case, the approx-
imations are quite good. On the other hand, famous reviewing assignment systems fail to satisfy group
fairness very often and therefore incentivize communities to deviate from the current peer review process.

There are many directions for future work. First, our algorithm cannot be applied in the case that each
submission is authored by multiple authors. The main difference is that when a submission is authored
by multiple authors, it is probable that PeerReview-TTC returns U, with |U| > kp. While one can see
that PeerReview-TTC returns an assignment in the core even when a submission is authored by many
agents, the tweaks that are made in Filling-Gaps may result in an assignment that is not in the core when
|U| > kp. Another limitation of our algorithm is that it assumes that each paper is assigned to the same
number of reviewers and each reviewer can review at most the same number of papers. The extension of
our algorithm for the multi-author case, and for the cases that papers are assigned to different numbers
of reviewers and reviewers review different number of papers is an important open problem. Moreover,
strategic issues in conference peer review have been examined in detail in recent years (see the surveys [20,
15]). In Appendix C, we show that our algorithm is not strategyproof. The design of an algorithm that
returns an assignment in the core and is also strategyproof is another interesting problem. Lastly, even if a
community has incentives to deviate, the cost of deviating, may outweigh the benefits of doing it. A more
general model that also includes the cost for a community to break away from a large conference is another
interesting direction.
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A Proof of Theorem 2

Proof. Suppose that each agent submits ka/kp submissions. Let N1 = {1, . . . , bn/2c} and N2 = {bn/2c+
1, . . . , n} Consider an instance where the similarity scores are as following:

• For i, i′ ∈ N1, s(i′, pi,1) = 0

• For i ∈ N1 and i′ ∈ N2, s(i′, pi,1) = 1

• For i, i′ ∈ N2, s(i′, pi,1) = ε1

• For i ∈ N2 and i′ ∈ N1, s(i′, pi,1) = ε2

• For i, i′ ∈ N, s(i′, pi,j) = 0, for each j > 1

where ε1 > ε2.
Now, suppose that there are at least kp + 1 agents in N2 whose first submissions are not exclusively

assigned to reviewers in N2. Then, if they deviate and assign their submissions among themselves, this
would lead in a valid assignment as each submission would be reviewed by kp agents and they would
strictly improve their utility. Thus, we conclude that an assignment is in the core if the first submission of
at most kp authors in N2 are not exclusively assigned to authors in N2. Hence, we get that there are at most
kp · ka assignments of submissions that belong in authors in N1 to reviewers in N2. This means that the
maximum utilitarian welfare of an assignment in the core is equal to kp · ka + n · ka · ε1 where as ε1 goes to
zero the welfare goes to kp · ka. Moreover, for bn/2c > kp · ka, we have that at least one agent in N1 should
have zero utility under any assignment in the core. On the other hand, by assigning the submissions of
the agents in N1 to agents in N2 and the submissions of the agents in N2 (except for the submissions of
the last agent when n is odd) to agents in N1, we achieve utility at least equal to kp · bn/2c. Thus, the
approximation with respect to the optimal social welfare cannot be better than Ω(n/ka). Moreover, by this
way the minimum utility is equal to ε2 and for ε2 > 0, and we get that the approximation with respect to
ESW is unbounded.

B Proof of Theorem 3

Proof. We begin by proving the theorem for the case that ka = kp = 1, and later we generalize it for any ka.
We use a polynomial-time reduction from 2P2N-3SAT, the special case of 3SAT where every boolean

variable appears twice as positive and twice as negative literal. Let φ be an instance of 2P2N-3SAT which
consists of n boolean variables, x1, x2, ..., xn and m clauses C1, C2, ..., Cm with n = 3m/4. We assume that n
is divisible by 3. Given φ, we construct an instance for the assignment review problem such that:

• If φ is satisfiable, then there exists an assignment in the core with social welfare at least 4n/3 and with
minimum paper score ε > 0.

• If φ is not satisfiable, then any assignment in the core has social welfare less than 4n/3− 1/2 and
minimum paper score equal to zero.

The assignment review problem is as following: For each boolean variable xi, we add agents xi,1, xi,2,
x̄i,2 and x̄i,1, where the first two (respectively, the last two) agents corresponds to the two occurrences of the
literal xi (resp., ¬xi). Moreover, for each clause Cj we add agent cj. Each agent has exactly on submission
and the expertises of the agents over the submissions are as follows: For each bolean variable xi,

• S(xi,1, px̄i,1) = S(x̄i,1, pxi ) = ε1

• S(xi,2, px̄i,2) = S(x̄i,2, pxi,2) = ε1

• S(xi,1, px̄i,2) = S(x̄i,2, pxi,1) = ε2
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• S(xi,2, px̄i,1) = S(x̄i,1, pxi,2) = ε2

and for each Cj = (`1 ∨ `2 ∨ `3) where `1, `2 and `3 correspond to the t1-th appearance of literal xi1 (resp.,
of the literal ¬xi1 ), t2-th appearance of literal xi3 (resp., of the literal ¬xi3 ) and t3-th appearance of literal xi3
(resp., of the literal ¬xi3 ), respectively, with t1, t2, t3 ∈ {1, 2},

• S(xi1,t1 , pcj) = S(xi2,t2 , pcj) = S(xi3,t3 , pcj) = 1

• S(i, pcj)=0, for any agent i 6∈ {xi1,t1 , xi2,t12, xi3,t3}

and all the remaining scores are equal to ε3 with 1/(8n) ≥ ε1 > ε2 > ε3 > 0.
If φ is satisfiable, then we use a truth assignment to find an assignment in the core with social welfare at

least 4n/3 and minimum paper score equal to ε2 > 0 as follows: For every true variable xi, we assign pxi,t to
x̄i,t, for each t ∈ {1, 2}. Respectively, for every false variable xi, we assign px̄i,t to xi,t, for each t ∈ {1, 2}. For
every clause Cj, we arbitrary select one of the true literals of the clause, and assign pcj to the corresponding
agent. All the remaining assignments are arbitrary. First, we see that under this assignment each agent cj
has utility 1, as pcj is assigned to a reviewer with similarity score equal to 1. Hence, the social welfare is at
least 4n/3. Moreover, the minimum score utility is equal to ε2. Now, we show that it is also in the core. First,
no agent cj has incentives to deviate as her submission is assigned to one of the best possible agents for her
submission. Now, consider an agent xi,t, for t ∈ {1, 2}, when variable xi is true. From the construction, pxi,t
is assigned to x̄i,t which has the highest similarity score for it and hence xi,t does not have any incentives to
deviate. With similar, arguments we can show that x̄i,t, for t ∈ {1, 2}, does not have incentives to deviate
when xi is false. Next, consider an agent xi,t, for t ∈ {1, 2} when variable xi is false. While x̄i,1 and x̄i,2
are the two agents that have higher similarity score for pxi,t , than its current reviewer, we know from above
that x̄i,1 and x̄i,2 do not have any incentives to deviate. Hence, xi,t does not have any incentive to deviate
with any other agents when xi is false, and similarity we can show that x̄i,t does not have any incentive to
deviate if xi is true. Thus, in any case there is no deviating coalition and the assignment is in the core.

Now, we show that if the social welfare is at least 4n/3, then φ is satisfiable. Moreover, if the lower
utility of each paper is positive, then φ is satisfiable. First, assume for the sake of contradiction that some
pcj is not assigned to an agent that corresponds to one of the literals of Cj. Then, since any other agent has
similarity score equal to 0 for pcj , the sum of utilities of agents cj for j ∈ [m] is at most 4n/3− 1. But since
for any pxi,t and px̄i,t the similarity score of any agent is less than 1/8n and there are 4n such submissions,
we have that the overall sum of utilities is at most 4n/3− 1/2 and we reach a contradiction. Moreover, we
see that in this case the minimum utility of a paper is equal to zero. Hence, we conclude that every pcj is
assigned to an agent that corresponds to one of the literals of Cj. Suppose that pcj is assigned to xi,t, where
xi appears as positive literary to Cj, and without loss of generality assume that t = 1. Then, we see that
pxi,1 is assigned to x̄i,1, as otherwise xi,1 and x̄i,1 could deviate to their own coalition. Moreover, we notice
that the assignment is in the core if and only if at least one of xi,2 and px̄i,2 reviews the other’s submission.
For the sake of contradiction, assume that the assignment meets this requirement by assigning px̄i,2 to xi,2,
but not pxi,2 to x̄i,2. Then, x̄i,1 and xi,2 as none of them reviews each other’s submission, they could deviate
to their own coalition. So, it should be the case that x̄i,2 reviews pxi,2 . Thus, we have that if pcj is assigned
to xi,1, then pxi,1 and pxi,2 are assigned to x̄i,1 and x̄i,2, respectively. Hence, no pcj′ can be assigned to x̄i,1 or
x̄i,2. With similar arguments, we can show that if pcj is assigned to x̄i,t, then there is no pcj′ that is assigned
to xi,1 or xi,2. Now, we see that by setting the variable xi to true if some pcj is reviewed by xi,1 or xi,2, and
to false if some pcj is reviewed by x̄i,1 or x̄i,2 (these cannot happen concurrently), we get an assignment that
satisfies all clauses of φ.

Now, when ka > 1, then for each agent xi,t (resp. x̄i,t) in the above construction, we assume that there
are ka − 1 other agents, denoted by x1

i,t, . . . , xka
i,t such that each of them have similarity score equal to ε4 for

each other’s submission with 1/(8n) > ε4 > ε1. The remaining scores are set as for the case of xi,t. If
there are at least two agents among x1

i,t, . . . , xka
i,t that their submissions are not reviewed by another agent in

{x1
i,t, . . . , xka

i,t}, then they have incentives to deviate. Hence, we see that at most one of them can review a
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submission that does not belong to some agent in {x1
i,t, . . . , xka

i,t} and at most one submission of some agent

in {x1
i,t, . . . , xka

i,t} may not reviewed from some agent in the same set. Thus, by interpreting this agent as xi,t
and this submission as pxi,t , with arguments as above the statement follows.

C Strategyproofness

Theorem 4. PRCore is not strategyproof.

Proof. Consider an instance with n = 4 and kp = ka = 1. Suppose that σ1 = 2 � 3 � 4, σ2 = 3 � 1 � 4 and
σ3 = 1 � 2 � 4. We see that if we run PeerReview-TTC, then the partial assignment that is constructed is
that 1 is assigned p3, 2 is assigned p1 and 3 is assigned p2. Then, Filling-Gaps should be called as p4 is not
completely assigned and there are no more cycles in the preference graph. Since, the submissions of the first
three agents became complete assigned at the same round, L can include any of them. Due to symmetry,
without loss of generality, assume that L = {1}. Then, Filling-Gaps to ensure that the assignment is valid,
moves p1 from 2 to 4 and assigns p4 to 2. Hence, at the final assignment, p1 is assigned to 4. If 1 misreports
σ′1 = 3 � 2 � 4, then when we run PRCore, in PeerReview-TTC, p1 is assigned to 3 and p3 is assigned
to 1, and then p2 is assigned to 4 and p4 is assigned to 2. The algorithm does not call Filling-Gaps as the
assignment is already valid. So, under this misreport p1 is assigned to 3 which 1 strictly prefers than 4. So,
1 has incentives to misreport and we conclude that PRCore is not strategyproof.
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