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We consider Markov decision processes (MDPs) with specifications given as Büchi 
(liveness) objectives, and examine the problem of computing the set of almost-sure winning 
vertices such that the objective can be ensured with probability 1 from these vertices. 
We study for the first time the average-case complexity of the classical algorithm for 
computing the set of almost-sure winning vertices for MDPs with Büchi objectives. Our 
contributions are as follows: First, we show that for MDPs with constant out-degree 
the expected number of iterations is at most logarithmic and the average-case running 
time is linear (as compared to the worst-case linear number of iterations and quadratic 
time complexity). Second, for the average-case analysis over all MDPs we show that 
the expected number of iterations is constant and the average-case running time is 
linear (again as compared to the worst-case linear number of iterations and quadratic 
time complexity). Finally we also show that when all MDPs are equally likely, the 
probability that the classical algorithm requires more than a constant number of iterations 
is exponentially small.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this work, we consider the qualitative analysis of Markov decision processes with Büchi (liveness) objectives, and 
establish optimal bounds for the average case complexity. We start by briefly describing the model and the objectives, then 
the significance of qualitative analysis, followed by the previous results, and finally our contributions.

Markov decision processes. Markov decision processes (MDPs) are standard models for probabilistic systems that exhibit both 
probabilistic and nondeterministic behavior [19], and widely used in verification of probabilistic systems [1,26]. MDPs have 
been used to model and solve control problems for stochastic systems [18]: there, nondeterminism represents the freedom 
of the controller to choose a control action, while the probabilistic component of the behavior describes the system response 
to control actions. MDPs have also been adopted as models for concurrent probabilistic systems [14], probabilistic systems 
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operating in open environments [23], under-specified probabilistic systems [2], and applied in diverse domains [26]. A spec-
ification describes the set of desired behaviors of the system, which in the verification and control of stochastic systems is 
typically an ω-regular set of paths. The class of ω-regular languages extends classical regular languages to infinite strings, 
and provides a robust specification language to express all commonly used specifications, such as safety, liveness, fairness, 
etc. [25]. Parity objectives are a canonical way to define such ω-regular specifications. Thus MDPs with parity objectives 
provide the theoretical framework to study problems such as the verification and control of stochastic systems.

Qualitative and quantitative analysis. The analysis of MDPs with parity objectives can be classified into qualitative and 
quantitative analysis. Given an MDP with parity objective, the qualitative analysis asks for the computation of the set of 
vertices from where the parity objective can be ensured with probability 1 (almost-sure winning). The more general quanti-
tative analysis asks for the computation of the maximal (or minimal) probability at each state with which the controller can 
satisfy the parity objective.

Importance of qualitative analysis. The qualitative analysis of MDPs is an important problem in verification that is of in-
terest independent of the quantitative analysis problem. There are many applications where we need to know whether 
the correct behavior arises with probability 1. For instance, when analyzing a randomized embedded scheduler, we are 
interested in whether every thread progresses with probability 1 [5]. Even in settings where it suffices to satisfy certain 
specifications with probability p < 1, the correct choice of p is a challenging problem, due to the simplifications introduced 
during modeling. For example, in the analysis of randomized distributed algorithms it is quite common to require correct-
ness with probability 1 (see, e.g., [21,20,24]). Furthermore, in contrast to quantitative analysis, qualitative analysis is robust 
to numerical perturbations and modeling errors in the transition probabilities, and consequently the algorithms for qualita-
tive analysis are combinatorial. Finally, for MDPs with parity objectives, the best known algorithms and all algorithms used 
in practice first perform the qualitative analysis, and then perform a quantitative analysis on the result of the qualitative 
analysis [14,15,3,4,6,12]. Thus qualitative analysis for MDPs with parity objectives is one of the most fundamental and core 
problems in verification of probabilistic systems.

Previous results. The qualitative analysis for MDPs with parity objectives is achieved by iteratively applying solutions of the 
qualitative analysis of MDPs with Büchi objectives [14,15,12]. The qualitative analysis of an MDP with a parity objective with 
d priorities can be achieved by O (d) calls to an algorithm for qualitative analysis of MDPs with Büchi objectives, and hence 
we focus on MDPs with Büchi objectives. The qualitative analysis problem for MDPs with Büchi objectives has been widely 
studied. The classical algorithm for the problem was given in [14,15], and the worst case running time of the classical 
algorithm is O (n · m) time, where n is the number of vertices, and m is the number of edges of the MDP. Many improved 
algorithms have also been given in the literature, such as [11,7–10], and several special cases have also been studied [13], 
and the current best known worst case complexity of the problem is O (min{n2, m · √m}). Moreover, there exists a family of 
MDPs where the running time of the improved algorithms match the above bound. While the worst case complexity of the 
problem has been studied, to the best of our knowledge the average case complexity of none of the algorithms has been 
studied in the literature.

Our contribution. In this work we study for the first time the average case complexity of the qualitative analysis of MDPs 
with Büchi objectives. Specifically we study the average case complexity of the classical algorithm for the following two 
reasons: First, the classical algorithm is very simple and appealing as it iteratively uses solutions of the standard graph 
reachability and alternating graph reachability algorithms, and can be implemented efficiently by symbolic algorithms. Sec-
ond, while more involved algorithms that improve the worst case complexity have been proposed [11,7–10], it has also 
been established in [8,10] that there are simple variants of the involved algorithms that require at most a linear running 
time in addition to the time of the classical algorithm, and hence the average case complexity of these variants is no more 
than the average case complexity of the classical algorithm. We study the average case complexity of the classical algo-
rithm and establish that compared to the quadratic worst case complexity, the average case complexity is linear. Our main 
contributions are summarized below:

1. MDPs with constant out-degree. We first consider MDPs with constant out-degree. In practice, MDPs often have constant 
out-degree: for example, see [16] for MDPs with large state space but constant number of actions, or [18,22] for exam-
ples from inventory management where MDPs have constant number of actions (the number of actions correspond to 
the out-degree of MDPs). We consider MDPs where the out-degree of every vertex is fixed and given. The out-degree 
of a vertex v is dv and there are constants dmin and dmax such that for every v we have dmin ≤ dv ≤ dmax. Moreover, 
every subset of the set of vertices of size dv is equally likely to be the neighbor set of v , independent of the neighbor
sets of other vertices. We show that the expected number of iterations of the classical algorithm is at most logarithmic 
(O (log n)), and the average case running time is linear (O (n)) (as compared to the worst case linear number of itera-
tions and quadratic O (n2) time complexity of the classical algorithm, and the current best known O (n · √n) worst case 
complexity). The average case complexity of this model implies the same average case complexity for several related 
models of MDPs with constant out-degree. For further discussion on this, see Remark 2.
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2. MDPs in the Erdös–Rényi model. To consider the average case complexity over all MDPs, we consider MDPs where the 
underlying graph is a random directed graph according to the classical Erdös–Rényi random graph model [17]. We 
consider random graphs Gn,p , over n vertices where each edge exists with probability p (independently of other edges). 
To analyze the average case complexity over all MDPs with all graphs equally likely, we need to consider the Gn,p

model with p = 1
2 (i.e., each edge is present or absent with equal probability, and thus all graphs are considered equally 

likely). We show a stronger result (than only p = 1
2 ) that if p ≥ c·log(n)

n , for some constant c > 2, then the expected 
number of iterations of the classical algorithm is constant (O (1)), and the average case running time is linear (again 
as compared to the worst case linear number of iterations and quadratic time complexity). Note that we obtain that 
the average case (when p = 1

2 ) running time for the classical algorithm is linear over all MDPs (with all graphs equally 
likely) as a special case of our results for p ≥ c·log(n)

n , for any constant c > 2, since 1
2 ≥ 3·log(n)

n for n ≥ 17. Moreover we 
show that when p = 1

2 (i.e., all graphs are equally likely), the probability that the classical algorithm will require more 

than constantly many iterations is exponentially small in n (less than 
(

3
4

)n
).

Implications of our results. We now discuss several implications of our results. First, since we show that the classical algorithm 
has average case linear time complexity, it follows that the average case complexity of qualitative analysis of MDPs with 
Büchi objectives is linear time. Second, since qualitative analysis of MDPs with Büchi objectives is a more general problem 
than reachability in graphs (graphs are a special case of MDPs and reachability objectives are a special case of Büchi objec-
tives), the best average case complexity that can be achieved is linear. Hence our results for the average case complexity 
are tight. Finally, since for the improved algorithms there are simple variants that never require more than linear time as 
compared to the classical algorithm it follows that the improved algorithms also have average case linear time complexity. 
Thus we complete the average case analysis of the algorithms for the qualitative analysis of MDPs with Büchi objectives. In 
summary our results show that the classical algorithm (the most simple and appealing algorithm) has excellent and optimal 
(linear-time) average case complexity as compared to the quadratic worst case complexity.

Technical contributions. The two key technical difficulties to establish our results are as follows: (1) Though there are many 
results for random undirected graphs, for the average case analysis of the classical algorithm we need to analyze random 
directed graphs; and (2) in contrast to other results related to random undirected graphs that prove results for almost all 
vertices, the classical algorithm stops only when all vertices satisfy a certain reachability property; and hence we need 
to prove results for all vertices (as compared to almost all vertices). In this work we set up novel recurrence relations to 
estimate the expected number of iterations, and the average case running time of the classical algorithm. Our key technical 
results prove many interesting inequalities related to the recurrence relation for reachability properties of random directed 
graphs to establish the desired result. We believe the new interesting results related to reachability properties we establish 
for random directed graphs will find future applications in average case analysis of other algorithms related to verification.

2. Definitions

Markov decision processes (MDPs). A Markov decision process (MDP) G = ((V , E), (V 1, V P ), δ) consists of a directed graph 
(V , E), a partition (V 1, V P ) of the finite set V of vertices, and a probabilistic transition function δ: V P →D(V ), where D(V )

denotes the set of probability distributions over the vertex set V . The vertices in V 1 are the player-1 vertices, where player 1
decides the successor vertex, and the vertices in V P are the probabilistic (or random) vertices, where the successor vertex 
is chosen according to the probabilistic transition function δ. We assume that for u ∈ V P and v ∈ V , we have (u, v) ∈ E iff 
δ(u)(v) > 0, and we often write δ(u, v) for δ(u)(v). For a vertex v ∈ V , we write E(v) to denote the set {u ∈ V | (v, u) ∈ E}
of possible out-neighbors, and |E(v)| is the out-degree of v . For technical convenience we assume that every vertex in the 
graph (V , E) has at least one outgoing edge, i.e., E(v) �= ∅ for all v ∈ V .

Plays, strategies and probability measure. An infinite path, or a play, of the graph G is an infinite sequence ω =
〈v0, v1, v2, . . .〉 of vertices such that (vk, vk+1) ∈ E for all k ∈ N. We write � for the set of all plays, and for a vertex v ∈ V , 
we write �v ⊆ � for the set of plays that start from the vertex v . A strategy for player 1 is a function σ : V ∗ · V 1 → D(V )

that chooses the probability distribution over the successor vertices for all finite sequences 
w ∈ V ∗ · V 1 of vertices ending 
in a player-1 vertex (the sequence represents a prefix of a play). A strategy must respect the edge relation: for all 
w ∈ V ∗
and u ∈ V 1, if σ( 
w · u)(v) > 0, then v ∈ E(u). Let � denote the set of all strategies. Once a starting vertex v ∈ V and a 
strategy σ ∈ � is fixed, the outcome of the MDP is a random walk ωσ

v for which the probabilities of events are uniquely 
defined, where an event A ⊆ � is a measurable set of plays. For a vertex v ∈ V and an event A ⊆ �, we write Pσ

v (A) for 
the probability that a play belongs to A if the game starts from the vertex v and player 1 follows the strategy σ .

Objectives. We specify objectives for the player 1 by providing a set of winning plays � ⊆ �. We say that a play ω satisfies
the objective � if ω ∈ �. We consider ω-regular objectives [25], specified as parity conditions. We also consider the special 
case of Büchi objectives.
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• Büchi objectives. Let B ⊆ V be a set of Büchi vertices. For a play ω = 〈v0, v1, . . .〉 ∈ �, we define Inf(ω) = {v ∈ V | vk =
v for infinitely many k} to be the set of vertices that occur infinitely often in ω. The Büchi objectives require that some 
vertex of B be visited infinitely often, and defines the set of winning plays Büchi(B) = {ω ∈ � | Inf(ω) ∩ B �= ∅}.

• Parity objectives. For c, d ∈ N, we write [c..d] = {c, c + 1, . . . , d}. Let p: V → [0..d] be a function that assigns a priority
p(v) to every vertex v ∈ V , where d ∈N. The parity objective is defined as Parity(p) = {ω ∈ � | min

(
p(Inf(ω))

)
is even}. 

In other words, the parity objective requires that the minimum priority visited infinitely often is even. In the sequel we 
will use � to denote parity objectives.

Qualitative analysis: almost-sure winning. Given a player-1 objective �, a strategy σ ∈ � is almost-sure winning for player 1 
from the vertex v if Pσ

v (�) = 1. The almost-sure winning set 〈 〈1〉 〉almost(�) for player 1 is the set of vertices from which 
player 1 has an almost-sure winning strategy. The qualitative analysis of MDPs corresponds to the computation of the 
almost-sure winning set for a given objective �.

Remark 1 (Implication for parity objectives). The almost-sure winning set for MDPs with parity objectives can be computed 
using O (d) calls to compute the almost-sure winning set of MDPs with Büchi objectives [12,14,15,3,4,6]. Hence we focus on 
the qualitative analysis of MDPs with Büchi objectives. We will establish that the average case complexity is linear for Büchi 
objectives which implies an O (m · d) upper bound on the average case complexity for the qualitative analysis of MDPs with 
parity objectives, where m is the number of edges.

Algorithm for qualitative analysis. The algorithms for qualitative analysis for MDPs do not depend on the transition func-
tion, but only on the graph G = ((V , E), (V 1, V P )). We now describe the classical algorithm for the qualitative analysis of 
MDPs with Büchi objectives. The algorithm requires the notion of random attractors.

Random attractor. Given an MDP G , let U ⊆ V be a subset of vertices. The random attractor AttrP (U ) is defined as follows: 
X0 = U , and for i ≥ 0, let Xi+1 = Xi ∪ {v ∈ V P | E(v) ∩ Xi �= ∅} ∪ {v ∈ V 1 | E(v) ⊆ Xi}. In other words, Xi+1 consists of 
(a) vertices in Xi , (b) probabilistic vertices that have at least one edge to Xi , and (c) player-1 vertices, whose every successor 
is in Xi . Then AttrP (U ) = ⋃

i≥0 Xi . Observe that the random attractor is equivalent to the alternating reachability problem 
(reachability in AND-OR graphs).

Classical algorithm. The classical algorithm for MDPs with Büchi objectives is a simple iterative algorithm, and every itera-
tion uses graph reachability and alternating graph reachability (random attractors). Let us denote the MDP in iteration i by 
Gi with vertex set V i . Then in iteration i the algorithm executes the following steps: (i) computes the set Z i of vertices that 
can reach the set of Büchi vertices B ∩ V i in Gi ; (ii) let U i = V i \ Z i be the set of remaining vertices; if U i is empty, then 
the algorithm stops and outputs Z i as the set of almost-sure winning vertices, and otherwise removes AttrP (U i) from the 
graph, and continues to iteration i + 1. The classical algorithm requires O (n) iterations, where n = |V |, and each iteration 
requires O (m) time, where m = |E|. Moreover the above analysis is tight, i.e., there exists a family of MDPs where the 
classical algorithm requires �(n) iterations, and total time �(n · m). Hence �(n · m) is the tight worst case complexity of 
the classical algorithm for MDPs with Büchi objectives. In this work we consider the average case analysis of the classical 
algorithm.

3. Average case analysis for MDPs with constant out-degree

In this section we consider the average case analysis of the number of iterations and the running time of the classical 
algorithm for computing the almost-sure winning set for MDPs with Büchi objectives on the families of graphs with constant 
out-degree (out-degree of every vertex fixed and bounded by two constants dmin and dmax).

Family of graphs and results. We consider families of graphs where the vertex set V (|V | = n), the target set of Büchi vertices B
(|B| = t), and the out-degree dv of each vertex v is fixed across the whole family. The only varying component is the edges 
of the graph; for each vertex v , every set of vertices of size dv is equally likely to be the neighbor set of v , independent of 
neighbors of other vertices. Finally, there exist constants dmin and dmax such that dmin ≤ dv ≤ dmax for all vertices v . We will 
show the following for this family of graphs: (a) if the target set B has size more than 30 · x · log(n), where x is the number 
of distinct degrees, (i.e., t ≥ 30 · x · log(n)), then the expected number of iterations is O (1) and the average running time is 
O (n); and (b) if the target vertex set B has size at most 30 · x · log(n), then the expected number of iterations required is 
O (log(n)) and average running time is O (n).

Notation. We use n and t for the total number of vertices and the size of the target set, respectively. We will denote by 
x the number of distinct out-degrees. Let di , for 1 ≤ i ≤ x, be the distinct out-degrees. Since for all vertices v we have 
dmin ≤ dv ≤ dmax, it follows that we have x ≤ dmax − dmin + 1. Let ai be the number of vertices with degree di and ti be the 
number of target (Büchi) vertices with degree di .



K. Chatterjee et al. / Theoretical Computer Science 573 (2015) 71–89 75
The event R(k1, k2, . . . , kx). The reverse reachable set of the target set B is the set of vertices u such that there is a path 
in the graph from u to a vertex v ∈ B . Let S be any set comprising of ki vertices of degree di , for 1 ≤ i ≤ x. We define 
R(k1, k2, . . . , kx) as the probability of the event that all vertices of S can reach B via a path that lies entirely in S . Due to 
symmetry between vertices, this probability only depends on ki , for 1 ≤ i ≤ x and is independent of S itself.1 For ease of 
notation, we will sometimes denote the event itself by R(k1, k2, . . . , kx). We will investigate the reverse reachable set of B , 
which contains B itself. Recall that ti vertices in B have degree di , and hence we are interested in the case when ki ≥ ti for 
all 1 ≤ i ≤ x.

Consider a set S of vertices that is the reverse reachable set, and let S be composed of ki vertices of degree di and of 
size k, i.e., k = |S| = ∑x

i=1 ki . Since S is the reverse reachable set, it follows that for all vertices v in V \ S , there is no edge 
from v to a vertex in S (otherwise there would be a path from v to a target vertex and then v would belong to S). Thus 
there are no incoming edges from V \ S to S . Thus for each vertex v of V \ S , all its neighbors must lie in V \ S itself. This 

happens with probability 
∏

i∈[1,x],ai �=ki

((n−k
di

)
( n

di

)
)ai−ki

, since in V \ S there are ai − ki vertices with degree di and the size of 

V \ S is n − k (recall that [1, x] = {1, 2, . . . , x}). Note that when ai �= ki , there is at least one vertex of degree di in V \ S that 
has all its neighbors in V \ S and hence n − k ≥ di . For simplicity of notation, we skip mentioning ai �= ki and substitute 
the term by 1 where ai = ki . The probability that each vertex in S can reach a target vertex is R(k1, k2, . . . , kx). Hence the 
probability of S being the reverse reachable set is given by:

x∏
i=1

((n−k
di

)
(n

di

)
)ai−ki

· R(k1,k2, . . . ,kx)

There are 
∏x

i=1

(ai−ti
ki−ti

)
possible ways of choosing ki ≥ ti vertices (since the target set is contained) out of ai . Notice that the 

terms are 1 where ai = ki . The value k can range from t to n and exactly one of these subsets of V will be the reverse 
reachable set. So the sum of probabilities of this happening is 1. Hence we have:

1 =
n∑

k=t

∑
∑

ki=k,ti≤ki≤ai

⎛
⎝ x∏

i=1

(
ai − ti

ki − ti

)
·
((n−k

di

)
(n

di

)
)ai−ki

⎞
⎠ · R(k1,k2, . . . ,kx) (1)

Let

ak1,k2,...,kx =
⎛
⎝ x∏

i=1

(
ai − ti

ki − ti

)
·
((n−k

di

)
(n

di

)
)ai−ki

⎞
⎠ · R(k1,k2, . . . ,kx);

αk =
∑

∑
ki=k,ti≤ki≤ai

ak1,k2,...,kx .

Thus, ak1,k2,...,kx is the probability that the reverse reachable set has exactly ki vertices of degree di for 1 ≤ i ≤ x, and αk
is the probability that the reverse reachable set has exactly k vertices.

Our goal is to show that for 30 ·x · log(n) ≤ k ≤ n −1, the value of αk is very small; i.e., we want to get an upper bound on 

αk . Note that two important terms in αk are 
((n−k

di

)
/
(n

di

))ai−ki
and R(k1, k2, . . . , kx). Below we get an upper bound for both 

of them. Firstly note that when k is small, for any set S comprising of ki vertices of degree di for 1 ≤ i ≤ x and |S| = k, the 
event R(k1, k2, . . . , kx) requires each non-target vertex of S to have an edge inside S . Since k is small and all vertices have 
constant out-degree spread randomly over the entire graph, this is highly improbable. We formalize this intuitive argument 
in the following lemma.

Lemma 1 (Upper bound on R(k1, k2, . . . , kx)). For k ≤ n − dmax

R(k1,k2, . . . ,kx) ≤
x∏

i=1

(
1 −

(
1 − k

n − di

)di
)ki−ti

≤
x∏

i=1

(
di · k

n − dmax

)ki−ti

.

Proof. Let S be the given set comprising of ki vertices of degree di , for 1 ≤ i ≤ x. Then for every non-target vertex of S , for 
it to be reachable to a target vertex via a path in S , it must have at least one edge inside S . This gives the following upper 
bound on R(k1, k2, . . . , kx).

1 This holds because the out-degrees of vertices in S are fixed, but their neighbors are chosen randomly.
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R(k1,k2, . . . ,kx) ≤
x∏

i=1

(
1 −

(n−k
di

)
(n

di

)
)ki−ti

We have the following inequality for all di , 1 ≤ i ≤ x:(n−k
di

)
(n

di

) =
di−1∏
j=0

(
1 − k

n − j

)
≥

(
1 − k

n − di

)di

≥ 1 − di · k

n − di

The first inequality follows by replacing j with di ≥ j, and the second inequality follows from standard binomial expansion. 
Using the above inequality in the bound for R(k1, k2, . . . , kx) we obtain

R(k1,k2, . . . ,kx) ≤
x∏

i=1

(
1 −

(
1 − k

n − di

)di
)ki−ti

≤
x∏

i=1

(
di · k

n − di

)ki−ti

≤
x∏

i=1

(
di · k

n − dmax

)ki−ti

The result follows. �
Now for 

((n−k
di

)
/
(n

di

))ai−ki
, we give an upper bound. First notice that when ai �= ki , there is at least one vertex of degree 

di outside the reverse reachable set and it has all its edges outside the reverse reachable set. Hence, the size of the reverse 
reachable set (i.e. n − k) is at least di . Thus, 

(n−k
di

)
is well defined.

Lemma 2. For any 1 ≤ i ≤ x such that ai �= ki , we have 
((n−k

di

)
( n

di

)
)ai−ki

≤
(

1 − k
n

)di ·(ai−ki)

.

Proof. We have((n−k
di

)
(n

di

)
)ai−ki

=
⎛
⎝di−1∏

j=0

(
1 − k

n − j

)⎞
⎠ai−ki

≤
(

1 − k

n

)di ·(ai−ki)

The inequality follows since j ≥ 0 and we replace j by 0 in the denominator. The result follows. �
Next we simplify the expression of αk by taking care of the summation.

Lemma 3. The probability that the reverse reachable set is of size exactly k is αk, and

αk ≤ nx · max∑
ki=k,ti≤ki≤ai

ak1,k2,...,kx .

Proof. The probability that the reverse reachable set is of size exactly k is given by

αk =
∑

∑
ki=k,ti≤ki≤ai

⎛
⎝ x∏

i=1

(
ai − ti

ki − ti

)
·
((n−k

di

)
(n

di

)
)ai−ki

⎞
⎠ · R(k1,k2, . . . ,kx)

(refer to Eq. (1)). Since

αk =
∑

∑
ki=k,ti≤ki≤ai

ak1,k2,...,kx ,

and there are x distinct degree’s and n vertices, the number of different terms in the summation is at most nx . Hence

αk ≤ nx · max∑
ki=k,ti≤ki≤ai

ak1,k2,...,kx .

The desired result follows. �
Now we proceed to achieve an upper bound on ak1,k2,...,kx . First of all, intuitively if k is small, then R(k1, k2, . . . , kx) is 

very small (this can be derived easily from Lemma 1). On the other hand, consider the case when k is very large. In this 
case there are very few vertices that cannot reach the target set. Hence they must have all their edges within them, which 
again has very low probability. Note that different factors that bind αk depend on whether k is small or large. This suggests 
we should consider these cases separately. Our proof will consist of the following case analysis of the size k of the reverse 
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reachable set: (1) Small k: 30 · x · log(n) ≤ k ≤ c1 · n for some constant c1 > 0, (2) Large k: c1 · n ≤ k ≤ c2 · n for all constants 
c2 ≥ c1 > 0, and (3) Very large k: c2 ·n ≤ k ≤ n − dmin − 1 for some constant c2 > 0. The analysis of the constants will follow 
from the proofs. Note that since the target set B (with |B| = t) is a subset of its reverse reachable set, the case k < t is 
infeasible. Hence in all the three cases, we will only consider k ≥ t . We first consider the case when k is small.

3.1. Small k: 30 · x · log(n) ≤ k ≤ c1n

In this section we will consider the case when 30 · x · log(n) ≤ k ≤ c1 ·n for some constant c1 > 0. Note that this case only 
occurs when t ≤ c1 · n (since k ≥ t). We will assume this throughout this section. We will prove that there exists a constant 
c1 > 0 such that for all 30 · x · log(n) ≤ k ≤ c1 ·n the probability (αk) that the size of the reverse reachable set is k is bounded 
by 1

n2 . Note that we already have a bound on αk in terms of ak1,k2,...,kx (Lemma 3). We use continuous upper bounds of the 
discrete functions in ak1,k2,...,kx to convert it into a form that is easy to analyze. Let

bk1,k2,...,kx =
x∏

i=1

(
e · (ai − ti)

ki − ti

)ki−ti

· e− k
n ·di ·(ai−ki) ·

(
di · k

n − dmax

)ki−ti

,

where e is Euler’s number (the base of the natural logarithm).

Lemma 4. We have ak1,k2,...,kx ≤ bk1,k2,...,kx .

Proof. We have

ak1,k2,...,kx =
⎛
⎝ x∏

i=1

(
ai − ti

ki − ti

)
·
((n−k

di

)
(n

di

)
)ai−ki

⎞
⎠ · R(k1,k2, . . . ,kx)

≤
x∏

i=1

(
ai − ti

ki − ti

)
·
(

1 − k

n

)di ·(ai−ki)

·
(

di · k

n − dmax

)ki−ti

≤
x∏

i=1

(
e · (ai − ti)

ki − ti

)ki−ti

· e− k
n di(ai−ki) ·

(
di · k

n − dmax

)ki−ti

The first inequality follows from Lemma 1 and Lemma 2. The second inequality follows from the first inequality of Proposi-
tion 1 (in Appendix A) and the fact that 1 − x ≤ e−x . �
Maximum of bk1,k2,...,kx . Next we show that bk1,k2,...,kx drops exponentially as a function of k. Note that this is the reason 
for the logarithmic lower bound on k in this section. To achieve this we consider the maximum possible value achievable 
by bk1,k2,...,kx . Let ∂ki bk1,k2,...,kx denote the change in bk1,k2,...,kx due to change in ki . For fixed 

∑x
i=1 ki = k, it is known that 

bk1,k2,...,kx is maximized when for all i and j we have ∂ki bk1,k2,...,kx = ∂k j bk1,k2,...,kx . We have

∂ki bk1,k2,...,kx = bk1,k2,...,kx ·
(

di · k

n
+ log

(
di · k

n − dmax

)
+ log

(
ai − ti

ki − ti

))
Thus, for maximizing bk1,k2,...,kx , for all i and j we must have

di · k

n
+ log

(
di · k

n − dmax

)
+ log

(
ai − ti

ki − ti

)
= d j · k

n
+ log

(
d j · k

n − dmax

)
+ log

(
a j − t j

k j − t j

)

⇒ ki − ti

(ai − ti) · di ·k
n−dmax

· edi ·k/n
= k j − t j

(a j − t j) · d j ·k
n−dmax

· ed j ·k/n

⇒ ki − ti

(ai − ti) · di · edi ·k/n
= k j − t j

(a j − t j) · d j · ed j ·k/n

This implies that for all i we have

ki − ti

(ai − ti) · di · edi ·k/n
= k − t∑x

i=1(ai − ti) · di · edi ·k/n

⇒ ki − ti = (ai − ti) · di · edi ·k/n∑x
i=1(ai − ti) · di · edi ·k/n

· (k − t)
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Lemma 5. Let L = ∑x
i=1(ai − ti) · di · edi ·k/n. We have

bk1,k2,...,kx ≤
(

L

n − dmax

)−t

·
(

L

n − dmax
· e1−

∑x
i=1 di ·(ai−ti )

n

)k

Proof. The argument above shows that the maximum of bk1,k2,...,kx is achieved when for all 1 ≤ i ≤ x we have ki − ti =
(ai−ti)·di ·edi ·k/n

L · (k − t). Now, plugging the values in bk1,k2,...,kx , we get

bk1,k2,...,kx =
x∏

i=1

(
e · (ai − ti)

ki − ti

)ki−ti

· e− k
n ·di ·(ai−ki) ·

(
di · k

n − dmax

)ki−ti

≤
x∏

i=1

(
e · L

di · edi ·k/n · (k − t)

)ki−ti

· e− k
n ·di ·(ai−ki) ·

(
di · k

n − dmax

)ki−ti

=
x∏

i=1

(
L

n − dmax

)ki−ti

·
(

e(ki−ti) · e−di ·(k/n)·(ki−ti) · e− k
n ·di ·(ai−ki)

)
·
(

di · k

di · (k − t)

)ki−ti

(Rearranging denominators of first and third term, gathering powers of e together)

=
(

L

n − dmax

)∑x
i=1(ki−ti)

·
(

e
∑x

i=1(ki−ti) · e− ∑x
i=1 di ·(k/n)·(ai−ti)

)
·
(

k

(k − t)

)∑x
i=1(ki−ti)

(Product is transformed to sum in exponent)

=
(

L

n − dmax

)(k−t)

·
(

e(k−t) · e−(k/n)·∑x
i=1 di ·(ai−ti)

)
·
(

1 + t

(k − t)

)(k−t)

(As
x∑

i=1

ki − ti = k − t)

≤
(

L

n − dmax

)k−t

· ek−t · e−k/n·∑x
i=1 di ·(ai−ti) · et

(Since 1 + x ≤ ex we have

(
1 + t

k − t

)
≤ e

t
k−t )

=
(

L

n − dmax

)−t

·
(

L

n − dmax
· e1−

∑x
i=1 di ·(ai−ti )

n

)k

(Arranging in powers by t and k).

The desired result follows. �
We now establish an upper bound on each term in the bound of Lemma 5. First, we consider the term L

n−dmax
·

e1−
∑x

i=1 di ·(ai−ti )

n .

Lemma 6. Let n be sufficiently large and let c1 ≤ 0.04
dmax

. Then for all k ≤ c1 · n we have 
(

L
n−dmax

· e1−
∑x

i=1 di ·(ai−ti )

n

)
≤ 9

10 .

Proof. We have the following inequality:(
L

n − dmax
· e1−

∑x
i=1 di ·(ai−ti )

n

)
=

∑x
i=1 di · (ai − ti) · edi ·k/n

n − dmax
· e1−

∑x
i=1 di ·(ai−ti )

n

≤ edmax·c1

n − dmax
·
(

x∑
i=1

di · (ai − ti)

)
· e1−

∑x
i=1 di ·(ai−ti )

n

(di ≤ dmax and k ≤ c1 · n)
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≤ edmax·c1 · n

n − dmax
·
∑x

i=1 di · (ai − ti)

n
· e1−

∑x
i=1 di ·(ai−ti )

n

(multiplying numerator and denominator with n)

= edmax·c1 · n

n − dmax
· d

ed−1

Here,

d = 1

n
·

x∑
i=1

di · (ai − ti) ≥ dmin · n − t

n
≥ dmin · (1 − c1) ≥ 1

The last inequality follows because c1 ≤ 0.5 and dmin ≥ 2. Since f (d) = d/ed−1 is a decreasing function for d ≥ 1, we have 
f (d) ≤ f (dmin · (1 − c1)). Thus,

edmax·c1 · n

n − dmax
· d

ed−1
≤ edmax·c1 · n

n − dmax
· dmin · (1 − c1)

edmin·(1−c1)−1

= e(dmin+dmax)·c1 · n

n − dmax
· dmin · (1 − c1)

edmin−1

≤ e2·dmax·c1 · n

n − dmax
· 2

e
(1 − c1 ≤ 1 and f (dmin) ≤ f (2) = 2/e)

≤ 2 · e−0.92 · 1

0.9

(
n

n − dmax
≤ 1

0.9
for sufficiently large n and c1 ≤ 0.04

dmax

)
≤ 0.9

The desired result follows. �
Finally, we provide an upper bound on the remaining term L

n−dmax
in the bound of Lemma 5.

Lemma 7. For sufficiently large n and c1 ≤ 0.2 we have L
n−dmax

≥ 1.

Proof. We have the following inequality:

L =
x∑

i=1

(ai − ti) · di · edi ·k/n

≥ 2 ·
x∑

i=1

(ai − ti)

= 2 · (n − t)

≥ 2 · n · (1 − c1)

≥ 1.6 · n,

where the second transition holds because edi ·k/n ≥ 1 and di ≥ dmin ≥ 2, the fourth transition holds because t ≤ c1 · n, and 
the last transition holds because c1 ≤ 0.2. Finally, n − dmax < 1.6 · n for large n. Hence, the desired result follows. �

Now we prove a bound on bk1,k2,...,kx .

Lemma 8 (Upper bound on bk1,k2,...,kx ). There exists a constant c1 > 0 such that for sufficiently large n and t ≤ k ≤ c1 · n, we have 

bk1,k2,...,kx ≤
(

9
10

)k
.

Proof. Let 0 < c1 ≤ 0.04
dmax

≤ 0.2 as in Lemma 6. By Lemma 5 we have

bk1,k2,...,kx ≤
(

L

n − dmax

)−t

·
(

L

n − dmax
· e1−

∑x
i=1 di ·(ai−ti )

n

)k

By Lemma 7 we have 
(

L
)

≥ 1, and hence 
(

L
)−t ≤ 1. By Lemma 6 we have
n−dmax n−dmax
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L

n − dmax
· e1−

∑x
i=1 di ·(ai−ti )

n ≤ 9

10

The desired result follows trivially. �
Taking appropriate bounds on the value of k, we get an upper bound on ak1,k2,...,kx . Recall that x is the number of distinct 

degrees and hence x ≤ dmax − dmin + 1.

Lemma 9 (Upper bound on ak1,k2,...,kx ). There exists a constant c1 > 0 such that for sufficiently large n with t ≤ c1 · n and for all 
30 · x · log(n) ≤ k ≤ c1 · n, we have ak1,k2,...,kx < 1

n3·x .

Proof. By Lemma 4 we have ak1,k2,...,kx ≤ bk1,k2,...,kx and by Lemma 8 we have bk1,k2,...,kx ≤
(

9
10

)k
. Thus for k ≥ 30 · x · log(n),

ak1,k2,...,kx ≤
(

9

10

)30·x·log(n)

= n30·x·log(9/10) ≤ 1

n3·x

The desired result follows. �
Lemma 10 (Main lemma for small k). There exists a constant c1 > 0 such that for sufficiently large n with t ≤ c1 · n and for all 
30 · x · log(n) ≤ k ≤ c1 · n, the probability that the size of the reverse reachable set S is k is at most 1

n2 .

Proof. The probability that the reverse reachable set is of size k is given by αk . By Lemma 3 and Lemma 9 it follows that 
the probability is at most nx · n−3·x = n−2·x ≤ 1

n2 . The desired result follows. �
3.2. Large k: c1 · n ≤ k ≤ c2 · n

In this section we will show that for all constants c1 and c2, with 0 < c1 ≤ c2, when t ≤ c2 · n the probability αk is at 
most 1

n2 for all c1 ·n ≤ k ≤ c2 ·n. We start with some notation that we will use in the proofs. Let ai = pi ·n, ti = yi ·n, ki = si ·n
for 1 ≤ i ≤ x and k = s · n for c1 ≤ s < c2. We first present a bound on ak1,k2,...,kx .

Lemma 11. For all constants c1 and c2 with 0 < c1 ≤ c2 and for all c1 · n ≤ k ≤ c2 · n, we have

ak1,k2,...,kx ≤ (n + 1)x · Term1 · Term2,

where

Term1 =
(

x∏
i=1

(
pi − yi

si − yi

)si−yi
(

pi − yi

pi − si

)pi−si

(1 − s)di(pi−si)(1 − (1 − s)di )si−yi

)n

and

Term2 =
x∏

i=1

⎛
⎜⎝1 −

(
1 − s

1−di/n

)di

1 − (1 − s)di

⎞
⎟⎠

n(si−yi)

.

Proof. We have

ak1,k2,...,kx =
⎛
⎝ x∏

i=1

(
ai − ti

ki − ti

)
·
((n−k

di

)
(n

di

)
)ai−ki

⎞
⎠ · R(k1,k2, . . . ,kx)

≤
⎛
⎝ x∏

i=1

(ai − ti + 1) ·
(

ai − ti

ki − ti

)ki−ti

·
(

ai − ti

ai − ki

)ai−ki
((n−k

di

)
(n

di

)
)ai−ki

⎞
⎠ · R(k1,k2, . . . ,kx)

(Applying second inequality of Proposition 1 with � = ai − ti and j = ki − ti)

≤ (n + 1)x ·
⎛
⎝ x∏

i=1

(
ai − ti

ki − ti

)ki−ti

·
(

ai − ti

ai − ki

)ai−ki
((n−k

di

)
(n

di

)
)ai−ki

⎞
⎠ · R(k1,k2, . . . ,kx).

Proposition 1 is presented in Appendix A. The last inequality above is obtained as follows: (ai − ti + 1) ≤ n + 1 as ai ≤ n. 
Our goal is now to show that
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Y =
⎛
⎝ x∏

i=1

(
ai − ti

ki − ti

)ki−ti

·
(

ai − ti

ai − ki

)ai−ki
((n−k

di

)
(n

di

)
)ai−ki

⎞
⎠ · R(k1,k2, . . . ,kx) ≤ Term1 · Term2.

We have (i) ai − ti = n(pi − yi); (ii) ki − ti = n(si − yi); and (iii) ai − ki = n(pi − si). Hence we have

x∏
i=1

(
ai − ti

ki − ti

)ki−ti

·
(

ai − ti

ai − ki

)ai−ki

=
x∏

i=1

(
pi − yi

si − yi

)n(si−yi)
(

pi − yi

pi − si

)n(pi−si)

.

By Lemma 2 we have

x∏
i=1

((n−k
di

)
(n

di

)
)ai−ki

≤
x∏

i=1

(
1 − k

n

)di ·n·(pi−si)

By Lemma 1 we have

R(k1,k2, . . . ,kx) ≤
x∏

i=1

(
1 −

(
1 − k

n − di

)di
)n(si−yi)

Hence we have

Y ≤
x∏

i=1

(
pi − yi

si − yi

)n(si−yi)
(

pi − yi

pi − si

)n(pi−si)
(

1 − k

n

)din(pi−si)
(

1 −
(

1 − k

n − di

)di
)n(si−yi)

=
x∏

i=1

(
pi − yi

si − yi

)n(si−yi)
(

pi − yi

pi − si

)n(pi−si)

(1 − s)din(pi−si)

(
1 −

(
1 − s

1 − di/n

)di
)n(si−yi)

=
(

x∏
i=1

(
pi − yi

si − yi

)si−yi
(

pi − yi

pi − si

)pi−si

(1 − s)di(pi−si)

)n

︸ ︷︷ ︸
X1

·
x∏

i=1

(
1 −

(
1 − s

1 − di/n

)di
)n(si−yi)

︸ ︷︷ ︸
X2

=
(

x∏
i=1

(
pi − yi

si − yi

)si−yi
(

pi − yi

pi − si

)pi−si

(1 − s)di(pi−si)(1 − (1 − s)di )si−yi

)n

·
x∏

i=1

⎛
⎜⎝1 −

(
1 − s

1−di/n

)di

1 − (1 − s)di

⎞
⎟⎠

n(si−yi)

The last equality is obtained by multiplying (1 − (1 − s)di )n(si−yi) to X1 and dividing it from X2. Thus we obtain Y ≤
Term1 · Term2, and the result follows. �

Given the bound in Lemma 11, we now present upper bounds on Term2 and Term1.

Lemma 12. Term2 of Lemma 11, i.e., 
∏x

i=1

(
1−

(
1− s

1−di/n

)di

1−(1−s)di

)n(si−yi)

is bounded from above by a constant.

Proof. We have⎛
⎜⎝1 −

(
1 − s

1−di/n

)di

1 − (1 − s)di

⎞
⎟⎠

n(si−yi)

≤
⎛
⎜⎝1 −

(
1 − s(1 + 2di

n )
)di

1 − (1 − s)di

⎞
⎟⎠

n(si−yi)

(for sufficiently large n)

≤
(

1 − (1 − s)di + (di
1

) · 2sdi
n · (1 − s)di−1

1 − (1 − s)di

)n(si−yi)

(taking first two terms of binomial expansion)
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=
⎛
⎝1 +

(1−s)di−1

1−(1−s)di
· 2sdi

2

n

⎞
⎠

n(si−yi)

≤ e
(1−s)di−1

1−(1−s)di
·2sdi

2·(si−yi)
((1 + x) ≤ ex).

Since c1 ≤ s ≤ c2 we have s is constant, and similarly dmin ≤ di ≤ dmax and hence di is constant. Hence it follows that the 
above expression is constant and hence the product of those terms for 1 ≤ i ≤ x is also bounded by a constant (since x is 
constant). The result follows. �
Lemma 13. There exists a constant 0 < η < 1 such that Term1 of Lemma 11 is at most ηn (exponentially small), i.e.,(

x∏
i=1

(
pi − yi

si − yi

)si−yi
(

pi − yi

pi − si

)pi−si

(1 − s)di(pi−si)(1 − (1 − s)di )si−yi

)n

≤ ηn

Proof. Let

f (di) =
(

pi − yi

si − yi

)si−yi
(

pi − yi

pi − si

)pi−si

(1 − s)di(pi−si)(1 − (1 − s)di )si−yi

Note that f (di) is maximum when

∂di f (di) = 0 ⇔ d∗
i =

log
(

pi−si
pi−yi

)
log(1 − s)

Moreover, it can easily be checked that this maximum value is f (d∗
i ) = 1. Hence, in general we have f (di) ≤ 1. We wish to 

prove that there exists some i such that di �= d∗
i . Suppose for contradicton that di = d∗

i for all i. Then, we have

d∗
i ≥ 2 ⇒ (1 − s)2 ≥ pi − si

pi − yi

for all i. For fractions αi/βi , we have (
∑

i αi)/(
∑

i βi) ≤ maxi αi/βi . Hence, we have

(1 − s)2 ≥
∑

i(pi − si)∑
i(pi − yi)

= 1 − s

1 − y
⇒ (1 − s)(1 − y) ≥ 1

The last inequality is a contradiction, because 0 < s < 1. Hence, not all di can be equal to d∗
i . Hence, 

∏
i f (di) cannot achieve 

its maximum value 1. Since each di∗ ∈ [dmin, dmax] has a compact domain and f is a continuous function, there exists a 
constant η < 1 such that 

∏x
i=1 f (di) ≤ η. The result thus follows. �

Lemma 14 (Main lemma for large k). For all constants c1 and c2 with 0 < c1 ≤ c2 , when n is sufficiently large and t ≤ c2 · n, for all 
c1 · n ≤ k ≤ c2 · n, the probability that the size of the reverse reachable set S is k is at most 1

n2 .

Proof. By Lemma 11, we have ak1,k2,...,kx ≤ (n + 1)x · Term1 · Term2, and by Lemma 12 and Lemma 13, Term2 is a constant 
and Term1 is exponentially small in n, where x ≤ (dmax − dmin + 1). The exponentially small Term1 overrides the polynomial 
factor (n + 1)x and the constant Term2, and ensures that ak1,k2,...,kx ≤ n−3x . By Lemma 3 it follows that αk ≤ n−2x ≤ 1

n2 . �
3.3. Very large k: (1 − 1/e2)n to n − dmin − 1

In this subsection we consider the case when the size k of the reverse reachable set is between (1 − 1
e2 ) · n and n −

dmin − 1. Note that if the reverse reachable set has size at least n − dmin, then the reverse reachable set must be the set 
of all vertices, as otherwise the remaining vertices cannot have enough edges among themselves. Take � = n − k. Hence 
dmin + 1 ≤ � ≤ n/e2. As stated earlier, in this case ak1,k2,...,kx becomes small since we require that the � vertices outside the 

reverse reachable set must have all their edges within themselves; this corresponds to the factor of 
((n−k

di

)
/
(n

di

))ai−ki
. Since 

� is very small, this has a very low probability. With this intuition, we proceed to show the following bound on ak1,k2,...,kx .

Lemma 15. We have ak1,k2,...,kx ≤ (
x · e · �

n

)�
.

Proof. We have
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ak1,k2,...,kx =
⎛
⎝ x∏

i=1

(
ai − ti

ki − ti

)((n−k
di

)
(n

di

)
)ai−ki

⎞
⎠ · R(k1,k2, . . . ,kx)

≤
x∏

i=1

(
ai − ti

ki − ti

)((n−k
di

)
(n

di

)
)ai−ki

(Ignoring probability value R(k1,k2, . . . ,kx) ≤ 1)

=
x∏

i=1

(
ai − ti

ai − ki

)((n−k
di

)
(n

di

)
)ai−ki

(Since

(
x

y

)
=

(
x

x − y

)
)

≤
x∏

i=1

(
ai − ti

ai − ki

)(
1 − k

n

)di(ai−ki)

(By Lemma 2)

≤
x∏

i=1

(
e · (ai − ti)

ai − ki

)ai−ki
(

n − k

n

)di(ai−ki)

(Inequality 1 of Proposition 1)

≤ e� ·
(

�

n

)2�

·
x∏

i=1

(
ai − ti

ai − ki

)ai−ki

(Since di ≥ 2 and
x∑

i=1

(ai − ki) = �)

Recall that in the product appearing in the last expression, we take the value of the term to be 1 where ai = ki . Proposition 1
is presented in Appendix A. Since for all i we have (ai − ti) ≤ n − t , it follows that 

∏x
i=1(ai − ti)

ai−ki ≤ ∏x
i=1(n − t)ai−ki =

(n − t)� .
We also want a lower bound for 

∏x
i=1(ai − ki)

ai−ki . Note that 
∑x

i=1(ai − ki) = � is fixed. Hence, this is a problem of 
minimizing 

∏x
i=1 yi

yi given that 
∑x

i=1 yi = � is fixed. As before, this reduces to ∂ya

∏x
i=1 yi

yi = ∂yb

∏x
i=1 yi

yi , for all a, b. 
Hence, the minimum is attained at yi = �/x, for all i. Hence, 

∏x
i=1(ai − ki)

ai−ki ≥ (
�
x

)�
. Combining these,

ak1,k2,...,kx ≤ e� ·
(

�

n

)2�

·
x∏

i=1

(
ai − ti

ai − ki

)ai−ki

≤ e� ·
(

�

n

)2�

·
(

n − t(
�
x

)
)�

≤
(

x · e · �

n

)�

Hence we have the desired inequality. �
We see that 

(
x · e · �

n

)�
is a convex function in � and its maximum is attained at one of the endpoints. For � = n/e2, the 

bound is exponentially decreasing with n whereas for constant �, the bound is polynomially decreasing in n. Hence, the 
maximum is attained at left endpoint of the interval (constant value of �). However, the bound we get is not sufficient to 
apply Lemma 3 directly. We break this case into two sub-cases; dmax + 1 < � ≤ n/e2 and dmin + 1 ≤ � ≤ dmax + 1.

Lemma 16. For dmax + 1 < � ≤ n/e2 , we have ak1,k2,...,kx < n−(2+x) and αk ≤ 1/n2 .

Proof. As we have seen, we only need to prove this for the value of � where ak1,k2,...,kx attains its maximum i.e. � = dmax +2. 
Note that dmax + 1 = x + dmin ≥ x + 2. Hence,

ak1,k2,...,kx ≤
(

x · e · �

n

)�

(By Lemma 15)

≤
(

x · e · dmax + 2

n

)dmax+2

= (x · e · (dmax + 2))dmax+2 · n−(dmax+2)

< n−(dmax+1) (Since first term is a constant)

≤ n−(2+x)

Hence we obtain the first inequality of the lemma. By Lemma 3 and the first inequality of the lemma we have αk ≤ 1
n2 . �
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Lemma 17. There exists a constant h > 0 such that for dmin + 1 ≤ � ≤ dmax + 1, we have ak1,k2,...,kx < h · n−� and αk ≤ h
n2 .

Proof. By Lemma 15 we have

ak1,k2,...,kx ≤
(

x · e · �

n

)�

≤ (x · e · (dmax + 1))dmax+1 · n−�

Let h = (x · e · (dmax + 1))dmax+1. Hence, first part is proved.
Now, for the second part, we note that since there are � vertices outside the reverse reachable set, and all their edges 

must be within these � vertices, they must have degree at most � −1. Hence, there are now n vertices with at most � −dmin
distinct degrees. Hence, in the summation

αk =
∑

k1,...,kx s.t.∑
ki=k,ti≤ki≤ai

ak1,k2,...,kx ,

there are at most n�−dmin terms. Thus we have

αk ≤ n�−dmin · h · n−� = h · n−dmin ≤ h

n2
.

The desired result follows. �
Lemma 18 (Main lemma for very large k). For all t, for all (1 − 1

e2 ) ·n ≤ k ≤ n − 1, the probability that the size of the reverse reachable 
set S is k is at most O ( 1

n2 ).

Proof. By Lemma 16 and Lemma 17 we obtain the result for all (1 − 1
e2 ) · n ≤ k ≤ n − dmin − 1. Since the reverse reachable 

set must contain all vertices if it has size at least n − dmin, the result follows. �
3.4. Expected number of iterations and running time

From Lemma 10, Lemma 14, and Lemma 18, we obtain that there exists a constant h such that

αk ≤ 1

n2
, 30 · x · log(n) ≤ k < n − dmax − 1

αk ≤ h

n2
, n − dmax − 1 ≤ k ≤ n − dmin − 1

αk = 0 n − dmin ≤ k ≤ n − 1

Hence using the union bound we get the following result

Lemma 19 (Lemma for size of the reverse reachable set). P(|S| < 30 · x · log(n) or |S| = n) ≥ 1 − h
n , where S is the reverse reachable 

set of target set (i.e., with probability at least 1 − h
n either at most 30 · x · log(n) vertices reach the target set or all the vertices reach 

the target set).

Proof.

P(|S| < 30 · x · log(n) or |S| = n) = 1 − P(30 · x · log(n) ≤ |S| ≤ n − 1)

≥ 1 − n − dmax − 1

n2
− h(dmax − dmax)

n2
− 0

≥ 1 − h(n − dmax − 1)

n2
− h(dmax − dmax)

n2

≥ 1 − hn

n2

= 1 − h

n
�

In addition, we note that the number of iterations of the classical algorithm is bounded by the size of the reverse 
reachable set, because after the first iteration, the graph is reduced to the sub-graph induced by the reverse reachable set. 
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Let I(n) and T (n) denote the expected number of iterations and the expected running time of the classical algorithm for 
MDPs on random graphs with n vertices and constant out-degree. Then from above we have

I(n) ≤
(

1 − h

n

)
· 30 · x · log(n) + h

n
· n

It follows that I(n) = O (log(n)). For the expected running time we have

T (n) ≤
(

1 − h

n

)
· (30 · x · log(n))2 + h

n
· n2

It follows that T (n) = O (n). Hence we have the following theorem.

Theorem 1. The expected number of iterations and the expected running time of the classical algorithm for MDPs with Büchi objectives 
over graphs with constant out-degree are O (log(n)) and O (n), respectively.

Remark 2. For Theorem 1, we considered the model where the out-degree of each vertex v is fixed as dv and there exist 
constants dmin and dmax such that dmin ≤ dv ≤ dmax for every vertex v . We discuss the implication of Theorem 1 for related 
models. First, when the out-degrees of all vertices are same and constant (say d∗), Theorem 1 can be applied with the special 
case of dmin = dmax = d∗ . A second possible alternative model is when the out-degree of every vertex is a distribution over 
the range [dmin, dmax]. Since we proved that the average case is linear for every possible value of the out-degree dv in 
[dmin, dmax] for every vertex v (i.e., for all possible combinations), it implies that the average case is also linear when the 
out-degree is a distribution over [dmin, dmax].

4. Average case analysis in Erdös–Rényi model

In this section we consider the classical Erdös–Rényi model of random graphs Gn,p , with n vertices, where each edge is 
chosen to be in the graph independently with probability p [17] (we consider directed graphs and then Gn,p is also referred 
as Dn,p in the literature). First, in Section 4.1 we consider the case when p is � 

(
log(n)

n

)
, and then we consider the case 

when p = 1
2 (that generates the uniform distribution over all graphs). We will show two results: (1) if p ≥ c·log(n)

n , for some 
constant c > 2, then the expected number of iterations is constant and the expected running time is linear; and (2) if p = 1

2
(with p = 1

2 we consider all graphs to be equally likely), then the probability that the number of iterations is more than 
one falls exponentially in n (in other words, graphs where the running time is more than linear are exponentially rare).

4.1. Gn,p with p = � 
(

log(n)
n

)

In this subsection we will show that given p ≥ c·log(n)
n , for some constant c > 2, the probability that not all vertices can 

reach the given target set is O (1/n). Hence the expected number of iterations of the classical algorithm for MDPs with 
Büchi objectives is constant and hence the algorithm works in average time linear in the size of the graph. Observe that 
to show the result the worst possible case is when the size of the target set is 1, as otherwise the chance that all vertices 
reach the target set is higher. Thus from here onwards, we assume that the target set has exactly 1 vertex.

The probability R(n, p). For a random graph in Gn,p and a given target vertex, we denote by R(n, p) the probability that each 
vertex in the graph has a path along the directed edges to the target vertex. Our goal is to obtain a lower bound on R(n, p).

The key recurrence. Consider a random graph G with n vertices, with a given target vertex, and edge probability p. For a set 
K of vertices with size k (i.e., |K | = k), which contains the target vertex, R(k, p) is the probability that each vertex in the 
set K , has a path to the target vertex, that lies within the set K (i.e., the path only visits vertices in K ). The probability 
R(k, p) depends only on k and p, due to the symmetry among vertices.

Consider the subset S of all vertices in V , which have a path to the target vertex. In that case, for all vertices v in V \ S , 
there is no edge going from v to a vertex in S (otherwise there would have been a path from v to the target vertex). Thus 
there are no incoming edges from V \ S to S . Let |S| = i. Then the i · (n − i) edges from V \ S to S should be absent, and 
each edge is absent with probability (1 − p). The probability that each vertex in S can reach the target is R(i, p). So the 
probability of S being the reverse reachable set is given by:

(1 − p)i·(n−i) · R(i, p). (2)

There are 
(n−1

i−1

)
possible subsets of i vertices that include the given target vertex, and i can range from 1 to n. Exactly one 

subset S of V will be the reverse reachable set. So the sum of probabilities of the events that S is reverse reachable set 
is 1. Hence we have:
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1 =
n∑

i=1

(
n − 1

i − 1

)
· (1 − p)i·(n−i) · R(i, p) (3)

Moving all but the last term (with i = n) to the other side, we get the following recurrence relation:

R(n, p) = 1 −
n−1∑
i=1

(
n − 1

i − 1

)
· (1 − p)i·(n−i) · R(i, p). (4)

Bound on p for lower bound on R(n, p). We will prove a lower bound on p in terms of n such that the probability that not all 
n vertices can reach the target vertex is less than O (1/n). In other words, we require

R(n, p) ≥ 1 − O

(
1

n

)
(5)

Since R(i, p) is a probability value, it is at most 1. Hence from Eq. (4) it follows that it suffices to show that

n−1∑
i=1

(
n − 1

i − 1

)
· (1 − p)i·(n−i) · R(i, p) ≤

n−1∑
i=1

(
n − 1

i − 1

)
· (1 − p)i·(n−i) ≤ O

(
1

n

)
(6)

to show that R(n, p) ≥ 1 − O  
(

1
n

)
. We will prove a lower bound on p for achieving Eq. (6). Let us denote by ti = (n−1

i−1

) · (1 −
p)i·(n−i) , for 1 ≤ i ≤ n − 1. The following lemma establishes a relation of ti and tn−i .

Lemma 20. For 1 ≤ i ≤ n − 1, we have tn−i = n−i
i · ti .

Proof. We have

tn−i =
(

n − 1

n − i − 1

)
(1 − p)i·(n−i)

=
(

n − 1

i

)
· (1 − p)i·(n−i)

= n − i

i
·
(

n − 1

i − 1

)
(1 − p)i·(n−i)

= n − i

i
· ti

The desired result follows. �
Define gi = ti + tn−i , for 1 ≤ i ≤ �n/2�. From the previous lemma we have

gi = tn−i + ti = n

i
· ti = n

i
·
(

n − 1

i − 1

)
· (1 − p)i·(n−i) =

(
n

i

)
· (1 − p)i·(n−i).

We now establish a bound on gi in terms of t1. In the subsequent lemma we establish a bound on t1.

Lemma 21. For sufficiently large n, if p ≥ c·log(n)
n with c > 2, then gi ≤ t1 for all 2 ≤ i ≤ � n

2 �.

Proof. Let p ≥ c·log(n)
n with c > 2. Now

t1

gi
= (1 − p)n−1(n

i

) · (1 − p)i·(n−i)
≥ 1

ni · (1 − p)(i−1)·(n−i−1)
(Rearranging powers of (1 − p) and

(
n

i

)
≤ ni)

≥ 1

ni · e
−c·log(n)

n ·(i−1)·(n−i−1)
(1 − x ≤ e−x)

= n
c
n ·(i−1)·(n−i−1)−i

To show that t1 ≥ gi , it is sufficient to show that for 2 ≤ i ≤ �n/2�,

c · (i − 1) · (n − i − 1) − i ≥ 0 ⇔ i · n ≤ c

n (i − 1) · (n − i − 1)
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Note that f (i) = i·n
(i−1)·(n−i−1)

is convex for 2 ≤ i ≤ �n/2�. Hence, its maximum value is attained at either of the endpoints. 
We can see that

f (2) = 2 · n

n − 3
≤ c (for sufficiently large n and c > 2)

and

f (�n/2�) = �n/2� · n

(�n/2� − 1) · (�n/2� − 1)

Note that limn→∞ f (�n/2�) = 2, and hence for any constant c > 2, f (�n/2�) ≤ c for sufficiently large n. The result fol-
lows. �
Lemma 22. For sufficiently large n, if p ≥ c·log(n)

n with c > 2, then t1 ≤ 1
n2 .

Proof. We have t1 = (1 − p)n−1. For p ≥ c·log(n)
n we have

t1 ≤
(

1 − c · log(n)

n

)n−1

≤ e− c·log(n)·(n−1)
n (Since 1 − x ≤ e−x)

≤ e−2·log(n) = 1

n2
(for sufficiently large n, c > 2)

Hence, the desired result follows. �
We are now ready to establish the main lemma that proves the upper bound on R(n, p) and then the main result of the 

section.

Lemma 23. For sufficiently large n, for all p ≥ c·log(n)
n with c > 2, we have R(n, p) ≥ 1 − 1.5

n .

Proof. We first show that 
∑n−1

i=1 ti ≤ 1.5
n . We have

n−1∑
i=1

ti = t1 + tn−1 +
n−2∑
i=2

ti

≤ t1 + tn−1 +
�n/2�∑
i=2

gi (t�n/2� is repeated if n is even)

≤ n · t1 +
�n/2�∑
i=2

gi (We apply ti + tn−i = n

i
· ti with i = 1)

≤ n · t1 +
�n/2�∑
i=2

t1 (By Lemma 21 we have gi ≤ t1 for 2 ≤ i ≤ �n/2�)

≤ 3 · n

2
· t1

≤ 3 · n

2 · n2
(By Lemma 22 we have t1 ≤ 1

n2
)

By Eq. (6) we have that R(n, p) ≥ 1 − ∑n−1
i=1 ti . It follows that R(n, p) ≥ 1 − 1.5

n . �
Theorem 2. The expected number of iterations of the classical algorithm for MDPs with Büchi objectives for random graphs Gn,p, with 
p ≥ c·log(n)

n , where c > 2, is O (1), and the average case running time is linear.

Proof. By Lemma 23 it follows that R(n, p) ≥ 1 − 1.5
n , and if all vertices reach the target set, then the classical algorithm 

ends in one iteration. In the worst case the number of iterations of the classical algorithm is n. Hence the expected number 
of iterations is bounded by

1 ·
(

1 − 1.5
)

+ n · 1.5 = O (1).

n n
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Since the expected number of iterations is O (1) and every iteration takes linear time, it follows that the average case 
running time is linear. �
4.2. Average-case analysis over all graphs

In this section, we consider uniform distribution over all graphs, i.e., all possible different graphs are equally likely. This 
is equivalent to considering the Erdös–Rényi model such that each edge has probability 1

2 . Using 1
2 ≥ 3 · log(n)/n (for n ≥ 17) 

and the results from Section 4.1, we already know that the average case running time for Gn,1/2 is linear. In this section 
we show that in Gn, 1

2
, the probability that not all vertices reach the target is in fact exponentially small in n. It will follow 

that MDPs where the classical algorithm takes more than constant iterations are exponentially rare. We consider the same 
recurrence R(n, p) as in the previous subsection and consider tk and gk as defined before. The following theorem shows the 
desired result.

Theorem 3. In Gn, 1
2

with sufficiently large n the probability that the classical algorithm takes more than one iteration is less than (
3
4

)n
.

Proof. We first observe that Eq. (4) and Eq. (6) holds for all probabilities. Next we observe that Lemma 21 holds for 
p ≥ c·log(n)

n with any constant c > 2, and hence also for p = 1
2 for sufficiently large n. Hence by applying the inequalities of 

the proof of Lemma 23 we obtain that

n−1∑
i=1

ti ≤ 3 · n

2
· t1.

For p = 1
2 we have t1 = (n−1

0

) ·
(

1 − 1
2

)n−1 = 1
2n−1 . Hence we have

R(n, p) ≥ 1 − 3 · n

2 · 2n−1
> 1 − 1.5n

2n
= 1 −

(
3

4

)n

.

The second inequality holds for sufficiently large n. It follows that the probability that the classical algorithm takes more 
than one iteration is less than ( 3

4 )n . The desired result follows. �
Appendix A. Technical appendix

Proposition 1 (Useful inequalities from Stirling inequalities). For natural numbers � and j with j ≤ � we have the following inequali-
ties:

1.
(
�
j

) ≤ ( e·�
j

) j
.

2.
(
�
j

) ≤ (� + 1) · ( �
j

) j · ( �
�− j

)�− j
.

Proof. The proof of the results is based on the following Stirling inequality for factorial:

e ·
(

j

e

) j

≤ j! ≤ e ·
(

j + 1

e

) j+1

.

We now use the inequality to show the desired inequalities:

1. We have(
�

j

)
≤ � j

j! ≤ � j · e j

e · j j
(using Stirling inequality)

≤ 1

e
·
(

e · �
j

) j

≤
(

e · �
j

) j



K. Chatterjee et al. / Theoretical Computer Science 573 (2015) 71–89 89
2. We have(
�

j

)
= �!

j! · (n − j)!

≤
(

e ·
(

� + 1

e

)�+1
)

·
⎛
⎜⎝ 1

e ·
(

j
e

) j · e ·
(

�− j
e

)�− j

⎞
⎟⎠

= 1

e2
· (� + 1) ·

(
� + 1

j

) j

·
(

� + 1

� − j

)�− j

≤ 1

e2
· (� + 1) ·

(
� + 1

�

)� (
�

j

) j

·
(

�

� − j

)�− j

≤ 1

e2
· (� + 1) · e ·

(
�

j

) j

·
(

�

� − j

)�− j
(

Since

(
1 + 1

�

)�

≤ e

)

≤ (� + 1) ·
(

�

j

) j

·
(

�

� − j

)�− j

The first inequality is obtained by applying the Stirling inequality to the numerator (in the first term), and applying the 
Stirling inequality twice to the denominator (in the second term). �
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