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Abstract
The Transformer architecture has achieved con-
siderable success recently; the key component
of the Transformer is the attention layer that en-
ables the model to focus on important regions
within an input sequence. Gradient optimization
with attention layers can be notoriously difficult
requiring tricks such as learning rate warmup to
prevent divergence. As Transformer models are
becoming larger and more expensive to train, re-
cent research has focused on understanding and
improving optimization in these architectures. In
this work our contributions are two-fold: we first
investigate and empirically validate the source
of optimization problems in the encoder-decoder
Transformer architecture; we then propose a new
weight initialization scheme with theoretical justi-
fication, that enables training without warmup or
layer normalization. Empirical results on public
machine translation benchmarks show that our
approach achieves leading accuracy, allowing to
train deep Transformer models with 200 layers
in both encoder and decoder (over 1000 atten-
tion/MLP blocks) without difficulty. Code for
this work is available here: https://github.
com/layer6ai-labs/T-Fixup.

1. Introduction
The Transformer model proposed by Vaswani et al. (2017),
has proven to be a versatile and effective architecture with
broad applications in various fields of deep learning, includ-
ing neural machine translation (Vaswani et al., 2017; Edunov
et al., 2018), language modeling (Devlin et al., 2019; Yang
et al., 2019; Lan et al., 2020; Beltagy et al., 2020), video cap-
tioning and summarization (Bilkhu et al., 2019; Fan et al.,
2018; Chen et al., 2018a) and recommender systems (Chen
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et al., 2019; Sun et al., 2019). Despite the broad applications,
optimization in the Transformer models can be notoriously
difficult (Popel & Bojar, 2018). Most successful implemen-
tations require learning rate warmup, layer normalization,
residual connections and large batch size for learning to
work. Removing any of these components hampers opti-
mization, and the model often fails to learn (Popel & Bojar,
2018). Learning rate warmup is particularly puzzling. Un-
like most deep learning architectures, where learning rate
is initialized to a reasonably high value and then annealed
as training progresses, Transformers instead require gradual
learning rate warmup at the beginning of training. Starting
with a high learning rate without warmup breaks optimiza-
tion, while training with a small learning rate is prohibitively
slow.

As many leading Transformer architectures are large and
require many GPU hours to train (Yang et al., 2019; Lan
et al., 2020), recent research has focused on understanding
and improving optimization in these models (Ahmed et al.,
2017; Chen et al., 2018b; Nguyen & Salazar, 2019; Aji
& Heafield, 2019; Liu et al., 2020). Chen et al. (2018b)
found that layer normalization could be the source of the
problem, and moving it off the main branch improves op-
timization. This finding was further supported by follow
up work (Nguyen & Salazar, 2019; Wang et al., 2019). In
parallel, Zhang et al. (2019b) showed that layer normal-
ization can be fully removed in related ResNet models if
appropriate weight initialization is used. Lastly, Liu et al.
(2020) focused on the Adam optimizer, demonstrating that
during early stages of optimization the inverse of the second
moment is proportional to a divergent integral and can lead
to unstable updates. Despite significant progress, there have
been conflicting conclusions on learning rate warmup from
previous work (Ma & Yarats, 2019; Liu et al., 2020).

In this work, we aim to answer the question of why
Transformer training can break down without learning rate
warmup, and propose a solution. We first show that insta-
bility in the Adam optimizer, in part caused by gradient
vanishing from layer normalization, causes optimization to
break when warmup is not used. We then build on the work
of Zhang et al. (2019b), and propose a weight initializa-
tion scheme for the Transformer that fully eliminates the
need for layer normalization and warmup. By applying this
weight initialization, we achieve highly competitive perfor-
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mance on neural machine translation tasks, and show that
models with 200 layers in both encoder and decoder can be
trained without difficulty. To the best of our knowledge this
is the first study where Transformer models of such depth
are successfully trained. In summary our contributions are
as follows:

• Investigate and empirically validate the main cause of
failure in Transformer optimization when learning rate
warmup is not used.
• Derive weight initialization for the Transformer archi-

tecture that eliminates the need for layer normalization
and warmup.

• Demonstrate that with our weight initialization scheme,
very deep Transformer models can be trained without
difficulty.

• Conduct extensive empirical evaluation on public neu-
ral machine translation benchmarks showing superior
performance.

2. Related Work

We begin by describing the Transformer encoder-decoder
architecture originally proposed for neural machine transla-
tion (Vaswani et al., 2017). The encoder can be viewed as
passing a sequence of input tokens through a series of layers.
Each layer is composed of self-attention block followed by
MLP block with ReLU activations, and the output of the
last layer is typically referred to as “memory”. The decoder
consists of a series of layers composed of self-attention,
encoder-attention using memory as key-value pairs, and
MLP blocks. All blocks in encoder and decoder have resid-
ual by-pass connections followed by layer normalization.
The full Transformer architecture with N layers is shown in
Figure 1.

Given the considerable success of Transformer models in
multiple areas of deep learning (Vaswani et al., 2017; Yang
et al., 2019; Lan et al., 2020), significant effort has recently
been devoted to understating, improving and simplifying
optimization in these models. Zhang et al. (2019b) showed
that architectures with MLP blocks and residual connections
can be trained without layer normalization. This is achieved
by designing a weight initialization scheme that reduces
variance of the error signal during gradient updates. The
authors also apply this approach to the Transformer architec-
ture with similar effect. However, to preserve performance
multiple tricks and extra layers are added into the model.
We expand on the work of Zhang et al. (2019b) and demon-
strate that, by incorporating the specifics of the Transformer
architecture, we can derive a weight initialization scheme
that is highly effective on its own without any additions to
the model or optimization procedure.

Figure 1. Transformer encoder-decoder architecture with N layers.

Another line of research has recently found that the need for
the warmup phase arises from the undesirably large variance
of the inverse of the second moment in the Adam optimizer
during early stages of learning (Liu et al., 2020). With-
out enough update history, noisy second moment estimates
can skew weight updates away from regions where better
minimums exist. The authors correct this by designing a
rectified version of the Adam optimizer and demonstrate
better performance. However, this analysis should apply to
any model trained with Adam; yet only the Transformer and
its derivative models need the warmup phase, while most
other models can be successfully trained without it. More-
over, shallow Transformers with three layers or less can be
successfully trained without warmup (Nguyen & Salazar,
2019). Collectively, these findings indicate that while Adam
could be part of the problem, the Transformer architecture
amplifies it and can even be the root cause.

In parallel, Chen et al. (2018b) observed that the warmup
requirement can be lifted by using the Pre-LN variant of
the Transformer, where layer normalization is moved inside
each block and applied before other operations. Similar
findings were reported by Nguyen & Salazar (2019), who
additionally experiment with different types of normaliza-
tions such as ScaleNorm and FixNorm to speed up conver-
gence and improve performance. Wang et al. (2019) showed
that Pre-LN and additional residual connections also help
with the optimization of deep Transformer models that have
up to 30 layers. Finally, Zhang et al. (2019a) utilized a
depth-dependent scaling initialization together with merged
attention in the decoder to improve training of Transformer
models with up to 20 layers.
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(a) Gradient: baseline (b) Adam: baseline

(c) Gradient: no warmup (d) Adam: no warmup

(e) Gradient: T-Fixup (ours) (f) Adam: T-Fixup (ours)

Figure 2. Log-scale histograms of gradients (left) and Adam up-
dates (right) for the input embedding layer in the encoder during
the first 100 steps of training. Baseline uses warmup and layer
normalization, removing warmup makes gradients vanish desta-
bilizing Adam. Our T-Fixup initialization eliminates the need for
warmup and layer normalization, while keeping both gradients and
Adam updates stable throughout learning.

In this paper we combine the findings from previous work,
and show that the layer normalization does indeed cause
problems in Transformer optimization. However, the gradi-
ent doesn’t explode as hypothesised by Xiong et al. (2020)
but rather vanishes for lower layer parameters, particularly
for input embeddings. This is caused by a combination of
the large variance of the Adam updates as noted by Liu et al.
(2020), and gradient propagation through layer normaliza-
tion. We then build on the work of Zhang et al. (2019b)
and derive a weight initialization scheme that eliminates
the need for layer normalization all together, and as a result
makes optimization work without learning rate warmup.

3. Our Approach
We first identify and empirically validate the source of the
problem in Transformer optimization that makes learning
rate warmup necessary. We then derive a weight initializa-
tion scheme that eliminates this problem, and demonstrate
that with this initialization deep Transformer models can be
trained without difficulty.

3.1. Problem in Transformer Optimization

In this section we demonstrate that the requirement for
warmup comes from a combined effect of high variance
in the Adam optimizer and backpropagation through layer
normalization. Liu et al. (2020) showed that at the begin-
ning of training the variance of the inverse second moment
is proportional to a divergent integral. This can lead to prob-
lematic updates early on and significantly affect optimiza-
tion. The authors further suggested that this is the source
of problems when training Transformers, but didn’t identify
how exactly it occurs. In parallel, Xiong et al. (2020) found
that the magnitude of error signal backpropagating through
layer normalization is inversely proportional to magnitude
of the input. Specifically, the gradient has the following
property: ∥∥∥∥∂LN(x)

∂x

∥∥∥∥ = O

( √
d

||x||

)
(1)

where x is the input to layer normalization and d is the
embedding dimension. If input norm ||x|| is larger than√
d then backpropagation through layer normalization has

a down scaling effect that reduces gradient magnitude for
lower layers. Compounding across multiple layers this can
quickly lead to gradient vanishing.

Combining these two findings, we find that when Trans-
former is trained without learning rate warmup, the variance
in the Adam optimizer, amplified by large initial learning
rate, leads to large updates at the beginning of training.
Figure 2 shows log-scale histograms for input embedding
gradients and Adam updates during the first 100 steps of
training for models trained with and without warmup. Com-
paring Figures 2(b) and 2(d) we see that Adam updates are
an order of magnitude larger during early stages of training
for model without warmup. Large updates in turn increase
the magnitude of inputs to layer normalization as seen in
Figure 3. Figures 3(a) and 3(b) show average L2 norm of
the input to layer normalization after self-attention block in
each layer of the decoder for models trained, with and with-
out warmup respectively. We see that the L2 norm increases
2x to 3x particularly in the upper layers when warmup is
not used. The embedding dimension is set to d = 512

(
√
d ≈ 22.6) so

√
d

||x|| quickly becomes significantly smaller
than 1 as training progresses. This effect is especially pro-
nounced in the upper layers so lower layers get progressively
smaller gradient. Figure 2(c) demonstrates that after only
a few steps the gradient to the input embeddings (lowest
layer) vanishes completely.

Jointly, these effects create a cycle where large updates from
instability in the Adam optimizer coupled with increased
learning rate, lead to gradient vanishing through layer nor-
malization. Vanishing gradients then further destabilize the
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Figure 3. 3(a) and 3(b) show average L2 norms of the input to layer normalization after self-attention block in each layer of the decoder
for models trained with and without warmup respectively. 3(c) shows validation curves for models trained with different settings of
Adam/SGD optimizer, layer normalization (LN) and earning rate warmup. Adam + LN + warmup corresponds to the original baseline
proposed by Vaswani et al. (2017). All results are for the Transformer small model on the IWSLT’17 De-En dataset.

inverse of the second moment in the Adam update. This
cycle continues until there is enough history to stabilize
the optimizer, but by that time the model is stuck in a bad
plateau (Figure 2(c)). The destabilizing effect of the Adam
optimizer can be further observed in Figure 3(c). Here, we
show validation curves for models trained with various com-
binations of Adam/SGD optimizer, layer normalization and
warmup. All modes have identical configurations and only
differ in these three settings. We see that when Adam is used
without warmup, training fully diverges and no progress is
made. However, when Adam is replaced with SGD the
model gets stuck initially, but then recovers and is able to
converge. This further supports the conclusion that the in-
stability in the Adam optimizer, due in part to vanishing
gradients, requires gradual learning rate warmup for opti-
mization to work. Replacing Adam with SGD however,
makes training significantly slower and is not a feasible
solution particularly for large models.

Another potential solution that has been proposed is to move
layer normalization off the main branch (Pre-LN). This
reduces gradient vanishing in lower layers and stabilizes
Adam updates, making optimization easier especially for
deeper Transformer models (Chen et al., 2018b; Wang et al.,
2019). However, recent work has indicated that Pre-LN can
degrade performance on neural machine translation (NMT)
tasks (Nguyen & Salazar, 2019; Wang et al., 2019). For
completeness we also try to remove layer normalization
from the model. But, as seen from Figure 3(c), this makes
training very unstable even when warmup is used. In this
work we show that with appropriate weight initialization
layer normalization can be successfully removed without
destabilizing training.

3.2. Fix Through Initialization

To address the challenges in Transformer optimization we
develop an initialization scheme that enables warmup-free

training even for very deep models. We discussed in Sec-
tion 3.1 that part of the problem comes from the unstable
early updates in the Adam optimizer. The original Adam
update uses a moving average vt = βvt−1 + (1 − β)g2

t

to estimate the second moment of the gradients gt. The
learning rate is then scaled by the inverse square root of vt.
Liu et al. (2020) showed that the variance of this update is
unbounded. This can be particularly problematic in early
stages when second moment is estimated from only a few
samples.

Appropriately bounding vt would ensure that the variance is
finite and reduce instability. We can obtain such a bound by
requiring that the update at each step is limited in magnitude.
Zhang et al. (2019b) demonstrated that this can be achieved
with the SGD optimizer for functions composed of residual
MLP/convolution blocks by appropriately initializing them.
We build on this work and derive analogous initialization
for the attention blocks that are the main components of the
Transformer architecture. We show theoretical derivation
for the SGD update, and demonstrate empirically that our
approach also works well for Adam.

We use f(x,y;θ) to denote the Transformer model with
the output softmax layer and all layer normalization blocks
removed, and L denotes the target loss function. Here, x
and y are inputs to encoder and decoder respectively, and
θ are free parameters to be learned. Analogous to Zhang
et al. (2019b), given a learning rate η, we set the following
optimization goal for the SGD update:

GOAL: f(x,y;θ) is updated by Θ(η) per optimization
step as η → 0. That is, ||∆f || = Θ(η), where ∆f ,

f
(
x− η ∂L

x ,y − η
∂L
y ;θ − η ∂L

∂θ

)
− f(x,y;θ).

The goal requires each update to be bounded in magni-
tude independent of model depth. We give an overview
of how to obtain such a bound here and refer the reader
to the Appendix for detailed derivation. We first separate
the Transformer into encoder fe and decoder fd. The full
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model can be written as f(x,y;θ) = fd(m,y,θd), where
x,y are input embeddings, m = fe(x,θe) is the encoder
memory and θe, θd are free parameters to be learned. Since
input embeddings x and y are also trained together with the
model, we use θE = {x,θe} and θD = {y,θd} to denote
the entire sets of trainable parameters for encoder and de-
coder respectively. Using shorthand notation, the model can
then be written as f(θ) = fd(m,θD) andm = fe(θE).

The goal can be formulated as bounding the decoder update:

∆fd = fd

(
m̃,θD − η

∂L
∂θD

)
− fd(m,θD) (2)

where m̃ = fe

(
θE − η ∂L

∂θE

)
is the updated memory. Us-

ing Taylor expansion we get that the SGD update is propor-
tional to the magnitude of the gradient:

∆f =
∂f

∂θD
∆θD +

∂f

∂θE
∆θE +O(||∆θE ||2 + ||∆θD||2)

= −η
(
∂fd
∂θD

∂fd
∂θD

T ∂L
∂fd

T

+
∂fd
∂fe

∂fe
∂θE

∂fe
∂θE

T ∂fd
∂fe

T ∂L
∂fd

T
)

+O(η2)
(3)

Assuming that
∥∥∥ ∂L
∂fd

∥∥∥ = Θ(1), this implies that we need

to bound the magnitudes of, ∂fe
∂θE

, ∂fd
∂θD

and ∂fd
∂fe

from above
and below to achieve the target goal.

We begin with the decoder and its gradient ∂fd
∂θD

. The de-
coder is a sequence of Ld residual blocksG1, . . . , GLd

such
that yl+1 = yl + Gl(yl;θdl), where yl and θdl are inputs
and parameters of the l’th decoder block respectively. Due
to the residual architecture of each block with direct skip
connections, we have that ∂fd

∂yl

∂fd
∂yl

T
= Θ(1). The gradient

of the decoder can be written as:

∂fd
∂θD

∂fd
∂θD

T

=
∂fd
∂y

∂fd
∂y

T

+

Ld∑
l=1

∂Gl

∂θdl

∂Gl

∂θdl

T

+O

(
Ld∑
l=1

∂Gl

∂θdl

4
) (4)

It follows that if we can bound each summand in Equation 4
to be of order Θ(1/Ld), then ‖∂fd/∂θD‖2 = Θ(1) and the
goal is achieved. Zhang et al. (2019b) showed that Θ(1/Ld)
bound can be obtained for the MLP blocks with appropriate
initialization, and we proceed to derive analogous initializa-
tion for the attention blocks.

The Transformer attention consists of keys, queries and
values that are combined via softmax operation. Given
a, b and c ∈ Rn×d representing the input keys, queries
and values respectively, let k, q,v ∈ Rd×d′

denote the
projection matrices for each input. Moreover, let w ∈
Rd×d′

denote the output projection matrix. The attention is
then defined as:

Attn(a, b, c) = softmax

(
1√
d
bqkTaT

)
cvwT (5)

where the softmax operation is applied across the rows. In
Transformer two versions of attention are used, the encoder
has self-attention where keys, queries and values are the
same. The decoder alternates between self-attention and
encoder-attention where keys and values are taken from the
encoder memory m . We focus on the encoder-attention
here as analogous derivation follows trivially for the self-
attention.

Our aim is to constrain the magnitude of the update for the
encoder-attention. This leads to the main result of this work,
where we show that with appropriate scaling of projection
matrices and encoder memory, we can get the desired bound.
Since we are only considering the magnitude of the update it
is sufficiently instructive to study the case where d = d′ = 1.
In this case the projection matrices reduce to scalars k, q,
v, w ∈ R, andm is a n× 1 vector. Let mi ∈ R denote the
i’th element ofm. Our main result follows:

Theorem 3.1. Let Gl(m,yl;θdl) = Attn(m,yl,m),
assuming that ‖∂L/∂Gl‖ = Θ(1), then ∆Gl ,

Gl

(
m− η ∂L

∂m ,yl;θdl − η
∂L
∂θdl

)
−Gl(m,yl;θdl) satisfies

‖∆Gl‖ = Θ(η/Ld) when:

‖v‖2‖w‖2 + ‖w‖2‖mi‖2 + ‖v‖2‖mi‖2 = Θ(1/Ld)

for all i = 1, . . . , n.

The proof of this theorem is detailed in Appendix A.

Applying Theorem 3.1 to self-attention blocks in the en-
coder, we get that ∂fd

∂θE
is bounded if the following condition

is satisfied:

Le

(
‖ve‖2‖x‖2 + ‖we‖2‖x‖2 + ‖ve‖2‖we‖2

)
= Θ(1) (6)

where vel and wel are parameters in the l’th decoder block
with vel = Θ(ve) andwel = Θ(we) for all l. Following sim-
ilar derivation for the decoder, we get that ∂fd

∂θD
is bounded

if:

Ld(‖vd‖2‖wd‖2 + ‖vd‖2‖y‖2 + ‖wd‖2‖y‖2

+‖vd‖2‖wd‖2 + ‖vd‖2‖m‖2 + ‖wd‖2‖m‖2) = Θ(1)
(7)

whereLd is the number of blocks in the decoder, vdl andwdl

are parameters in the l’th block with vdl = Θ(vd) andwdl =
Θ(wd) for all l. Finally, using the fact that encoder and
decoder are connected via memory in the encoder-attention
blocks, we have that ∂fd

∂fe
= ∂fd

m is bounded if:

Ld(‖vd‖2‖wd‖2) = Θ(1) (8)

Derivations for these conditions are outlined in Appendix B.

By appropriately initialising weights in each block of en-
coder and decoder, we can ensure that the above condi-
tions are satisfied during the initial updates. As we have
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Model IWSLT’14small IWSLT’14small WMT’18base WMT’17base WMT’17big

De-En En-De Fi-En En-De En-De

Baseline 34.2 28.6 25.25 27.3 29.3
(Zhang et al., 2019b) Liu et al. (2020) (Rikters, 2018) (Vaswani et al., 2017) (Ott et al., 2018)

Pre-LN – – – 27.1 28.7
(Chen et al., 2018b)
R-Fixup 34.5 – – – 29.3
(Zhang et al., 2019b)
RAdam, no warmup 34.8 28.5 – – –
(Liu et al., 2020)

T-Fixup 35.5 29.4 25.7 29.1 29.7

Table 1. Test BLEU scores on all datasets. We benchmark small models for IWSLT’14, base models for WMT’17 and WMT’18, and
large models for WMT’17. Unless indicated all baselines use warmup and layer normalization, T-Fixup removes both.

shown, early updates can be particularly unstable so bound-
ing their magnitude can prevent optimization from diverg-
ing. We empirically demonstrate that this is indeed the
case, and further show that it allows to remove both LN
and warmup. There are multiple initialisation schemes
that would satisfy the target conditions. Given that an N -
layer Transformer has Le = 2N and Ld = 3N blocks in
the encoder and decoder respectively, in this work we use
‖vd‖ = ‖wd‖ = ‖x‖ = ‖y‖ = (3Ld)−

1
4 = (9N)−

1
4 .

This satisfies Equations 7 and 8, and we then solve for Equa-
tion 6. Assuming ‖ve‖ = ‖we‖ due to symmetry, we obtain
‖ve‖ = ‖we‖ ≈ 0.67N−

1
4 (see Appendix C). We then

apply our initialisation scheme as follows:

• Apply Xavier initialization for all parameters exclud-
ing input embeddings. Use Gaussian initialization
N (0, d−

1
2 ) for input embeddings where d is the em-

bedding dimension.
• Scale vd and wd matrices in each decoder attention

block, weight matrices in each decoder MLP block and
input embeddings x and y in encoder and decoder by
(9N)−

1
4 .

• Scale ve and we matrices in each encoder attention
block and weight matrices in each encoder MLP block
by 0.67N−

1
4 .

After initialisation, we remove layer normalization from all
blocks and train without learning rate warmup. We refer
to this initialization scheme as T-Fixup. To the best of our
knowledge the closest related work is that of Zhang et al.
(2019b) that proposed initialization for residual MLP blocks
(ResNet models); we refer to that approach as R-Fixup.
We note that in addition to parameter scaling, R-Fixup ap-
plies modifications to the model architecture such as adding
scaling and bias layers to each block. The Depth-Scaled
Initialization (Zhang et al., 2019a) is also inspired by R-
Fixup, but to avoid adding extra layers the authors keep
layer normalization, and instead modify attention structure
to improve performance. Our approach, in contrast, allows
to simply remove layer normalization without any other
modifications to the model. We demonstrate in the exper-

iments section that by appropriately re-scaling the weight
matrices, we can train arbitrarily deep Transformer models
with leading performance.

4. Experiments

We compare Transformer trained with our initialization
against leading models on multiple public NMT bench-
marks including IWSLT’14 De-En, WMT’17 En-De and
low resource language pair WMT’18 Fi-En. We compare
our approach against the original baseline model (Vaswani
et al., 2017), and leading recently proposed Transformer op-
timization methods including Pre-LN (Chen et al., 2018b),
DLCL (Wang et al., 2019), R-Fixup (Zhang et al., 2019b),
RAdam (Liu et al., 2020) and DS-Init (Zhang et al., 2019a)

All experiments are done using the Fairseq library (Gehring
et al., 2017). To stay consistent with previous work we
train three model sizes: small 512-1024-4, base 512-2048-8
and big 1024-4096-16; where the numbers correspond to
embedding dimension, MLP layer size and number of atten-
tion heads respectively. All models have 6 layers in both
encoder and decoder, and we investigate deeper models in
Section 4.2. To accelerate experiments big and base mod-
els on the WMT datasets are trained with mixed precision.
Hyper-parameters for each model are chosen through grid
search and are listed in Appendix D. To demonstrate that
our initialization works well with the Adam optimizer we
use Adam for all experiments. Training is done on an IBM
server with 160 POWER9 CPUs, 600GB RAM and 4 Tesla
V100 GPUs. We use test BLEU metric to compare model
performance.

4.1. NMT Results

The NMT results are shown in Table 1. From the table we
see that T-Fixup performs comparably or beats all baselines
on each dataset. The performance is particularly strong on
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Model Layers BLEU

Baseline 6 27.3
Pre-LN Chen et al. (2018b) 20 28.9
DLCL (Wang et al., 2019) 25 29.2
DLCL-Pre-LN (Wang et al., 2019) 30 29.3

T-Fixup 6 29.1
20 29.4
30 29.7

Table 2. WMT’17 En-De test BLEU results for different versions
of the Transformer base architecture with varying depth.

the WMT’17 En-De dataset where our base model outper-
forms the best baseline by nearly 2 BLEU points. These re-
sults indicate that by using our simple initialization scheme
we can effectively remove both layer normalization and
warmup, and still achieve leading performance.

We also see that the Pre-LN version tends to hurt perfor-
mance, particularly for the big model, with over half point
drop in BLEU on the WMT’17 En-De dataset. The drop in
performance was also noted by Nguyen & Salazar (2019)
and Wang et al. (2019), and suggests that moving layer
normalization inside each block is not an optimal solution
even though it helps with optimization. Finally, R-Fixup
performs comparably to the baseline model with a small
improvement on the IWSLT’14 De-En dataset. However,
as we noted above, R-Fixup requires additional modifica-
tions to the architecture, such as adding scaling/bias layers
and zeroing-out some weights in each block. Our approach,
on the other hand, doesn’t require any modifications and
achieves better performance. So tailoring weight initial-
ization to the specifics of the Transformer architecture is
beneficial.

Figures 2(e) and 2(f) show log histograms for gradients and
Adam updates for T-Fixup small model on the IWSLT’14
De-En datset. Due to higher learning rate under the no-
warmup setting, Adam updates are also initially larger. How-
ever, since layer normalization is removed, large updates
no longer lead to vanishing gradients that destabilize the
optimizer (see Figures 2(c) and 2(d) for comparison). More-
over, Figure 2(e) shows that without layer normalization our
initialization scheme still keeps gradients stable throughout
training. This is in contrast to the baseline model, where
removing layer normalization makes training diverge even
when warmup is used as shown in Figure 3(c).

4.2. Deep Models

The general trend in Transformer models is that increas-
ing size and depth generally leads to better results if suffi-
cient training data is available (Lan et al., 2020). However,
training deeper models has proven to be challenging and
many of the published architectures for neural machine

Model Layers BLEU

Baseline 6 27.6
DS-Init (Zhang et al., 2019a) 12 28.6

20 28.7
LRI (Xu et al., 2019) 12 28.7

24 29.5

T-Fixup 12 29.3
20 29.6
30 30.1

Table 3. WMT’14 En-De test BLEU results for different versions
of the Transformer base architecture with varying depth. T-Fixup
models were trained with the same parameter settings as in Zhang
et al. (2019a)

translation have fewer than 10 layers. Recently, Wang et al.
(2019) showed that encoders with up to 30 layers can be
trained with Pre-LN. The authors also proposed a dynamic
linear combination of layers (DLCL) approach where addi-
tional weighted residual connections are introduced between
Transformer blocks to improve information flow. DLCL
eliminates the need for Pre-LN and improves optimization
for deep models. All of these methods, however, still use
warmup and some form of layer normalization. We thus in-
vestigate whether T-Fixup can be used to successfully train
deep models without either of these requirements.

Table 2 shows WMT’17 En-De test BLEU results for vari-
ous versions of the Transformer base architecture with vary-
ing depth. We compare against deep versions of Pre-LN
and DLCL models with 20 and 25 layers respectively. For
DLCL, we also compare against the Pre-LN version DLCL-
Pre-LN with 30 layers. We train deeper versions of our
model by simply replicating layers, and no additional struc-
tural modifications are done.

From Table 2 we see that increasing depth does improve per-
formance as all deep models outperform the 6 layer baseline
by over 1 point in BLEU. The DLCL has small improve-
ment over the Pre-LN approach, although the comparison
is not entirely fair as Pre-LN has fewer layers. We also see
that our approach outperforms all baselines of comparable
depth. Notably, T-Fixup with 6 layers performs compara-
bly to Pre-LN and DLCL baselines with 20 and 25 layers
respectively. Moreover, T-Fixup with 20 layers outperforms
the best baseline DLCL-Pre-LN that has 30 layers. Simi-
lar results can be observed from Table 3 where we further
compare against two other published baselines that train
deep models, DS-Init (Zhang et al., 2019a) and LRI (Xu
et al., 2019) on the WMT’14 En-De dataset. We again see
that T-Fixup outperforms all baselines of comparable depth.
Together these comparisons cover the majority of published
results to-date with deep Transformer encoder-decoder mod-
els, and demonstrate that T-Fixup can be effectively used to
train deep models.
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Figure 4. 4(a) shows validation curves on the WMT’17 En-De Dataset for the T-Fixup base models of varying depth. 4(b) shows
IWSLT’14 De-En validation curves for the T-Fixup model with a 64-128-2 configuration as depth is increased from 6 to 200 layers in
both encoder and decoder. Test BLEU results are also shown in the legend for each model. 4(c) shows test BLEU results on the WMT’17
En-De dataset for the T-Fixup base model as batch size is increased by a factor of 2x to 8x. All other parameters are kept fixed.

Figure 4(a) shows WMT’17 En-De validation curves for
T-Fixup base models as depth is varied from 6 to 30 layers.
We see that the validation curves remain stable throughout
learning even up to 500K updates. This indicates that with
appropriate initialization, a much higher initial learning rate
(5e-4 instead of 1e-7) can be used without destabilizing
training. T-Fixup of the same depth as the baseline trains
faster, and reaches better validation loss which translates
to better test BLEU as shown in Table 2. The benefit of
increasing depth is also clearly observed from this figure,
where 20 and 30 layer models achieve better validation
losses for most of the training period.

To further investigate whether we can successfully train
very deep models, we significantly increase the depth of the
model to 200 layers in both encoder and decoder. The model
thus has 400 layers in total and over 1000 attention/MLP
blocks. To fit model of this depth on a GPU we reduce the
size to 64-128-2 corresponding to embedding dimension,
MLP layer size and number of attention heads respectively.
As before, we simply apply T-Fixup to initialize the weights
and remove warmup and layer normalization; no other mod-
ifications are done.

Figure 4(b) shows IWSLT’14 De-En validation curves for
the first 50K updates and test BLEU scores for the T-Fixup
models as depth is increased from 6 to 200 layers. From
the figure we see that all models successfully train and
have smooth validation curves. After 50 layers we observe
over-fitting which can be attributed to the small dataset
size. However, all models achieve reasonable test BLEU
scores, particularly given their reduced block size and short
training time, and we see no indication of divergence or
other optimization problems. These results further support
the conclusion that our initialization can be successfully
used to train very deep Transformer models opening up
avenues for further research in this area.

It has been shown that learning rate warmup is important
for large batch training in Transformer models. The gen-

eral finding is that longer warmup is needed for larger
batch sizes (Popel & Bojar, 2018). Since T-Fixup removes
the warmup phase, we test how it performs with large
batch training. Figure 4(c) shows test BLEU scores on
the WMT’17 En-De datasets for the T-Fixup base model
as batch size is increased by a factor of 2x to 8x. In this
set-up the largest batch size at 8x has 200K tokens. For each
experiment we only change the batch size and leave all other
parameters fixed. From Figure 4(c) we see that all models
from 6 to 30 layers train without problems even on largest
batch size setting. During training we further observe that
convergence speed scales proportionally to batch size mul-
tiplier making multi-GPU training highly effective. These
results indicate that proper initialisation can also success-
fully replace warmup for large batch training. The BLEU
performance effect from increasing batch size is generally
negligible, with all models performing comparably across
different batch sizes. We suspect that this is due to the fact
that all other parameters are kept fixed, and better results
can be obtained by further tuning them.

5. Conclusion
We present an investigation into optimization challenges in
the Transformer encoder-decoder models. Specifically, we
first show that the requirement for learning rate warmup
comes from the instability in the Adam optimizer combined
with gradient vanishing through layer normalization. We
then propose a new weight initialization scheme with theo-
retical guarantees that keeps model updates bounded, and
allows to remove both warmup and layer normalization.
Experiments on public NMT benchmarks shows that we
can successfully train very deep models with over 1000
MLP/attention blocks and achieve leading results. Future
work involves further investigation into Adam and other
commonly used optimizers, as well as deriving analogous
initialization schemes for other architectures.
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