Constrained Optimization over Semirings

Kuldeep S. Meel

University of Toronto

Joint work with Arnab Bhattacharyya, Pavan Aduri, and N. V. Vinodchandran

Relevant publication: AAAI-23

Acknowledgements: Val Tannen for introducing us to this problem and the world of semirings at large

Boolean Interpretations

$F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$

SAT: Is there is a truth assignment to the variables so that F is evaluated to True.

Boolean Interpretations

$F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$

SAT: Is there is a truth assignment to the variables so that F is evaluated to True.

- Boolean Interpretation
 - $K = \{0, 1\}$
 - $\neg := \mathsf{NOT}$ function
 - $\wedge := \mathsf{AND}$ function
 - \lor := OR function

SAT: Compute $\max_{\pi} \{ \pi(F) \}$ over all interpretations $\pi : X \to K$.

X is the set of variables and $\pi(F)$ is the natural extension of π to F.

F is satisfiable if and only if $\max_{\pi} \{\pi(F)\} = 1$.

Beyond Boolean Interpretations

 $F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$

Viterbi semiring interpretation

- K = [0, 1]
- $\wedge := \mathsf{MULT}$ function
- \lor := MAX function
- $\neg x := 1 x$

Problem: Given *F*: Compute $\max_{\pi} \{\pi(F)\}$ over all interpretations $\pi : X \to K$.

Beyond Boolean Interpretations

$$F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$$

Viterbi semiring interpretation

- K = [0, 1]
- $\wedge := \mathsf{MULT}$ function
- \lor := MAX function
- $\neg x := 1 x$

Problem: Given *F*: Compute $\max_{\pi} \{\pi(F)\}$ over all interpretations $\pi : X \to K$.

For *F* above:

- max{
$$x_1x_2(1-x_1), x_1x_2(1-x_2)$$
}

-
$$\pi(x_1) = 0.5; \ \pi(x_2) = 1$$

-
$$\pi(F) = 0.5 \cdot 1 \cdot 0.5 = 0.25$$

Beyond Boolean Interpretations

$$F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$$

Viterbi semiring interpretation

- K = [0, 1]
- $\wedge := \mathsf{MULT}$ function
- \lor := MAX function
- $\neg x := 1 x$

Problem: Given *F*: Compute $\max_{\pi} \{\pi(F)\}$ over all interpretations $\pi : X \to K$.

For F above:

- max{
$$x_1x_2(1-x_1), x_1x_2(1-x_2)$$
}

-
$$\pi(x_1) = 0.5; \ \pi(x_2) = 1$$

-
$$\pi(F) = 0.5 \cdot 1 \cdot 0.5 = 0.25$$

F is satisfiable (Boolean) $\Leftrightarrow \max_{\pi} \{\pi(F)\} = 1$ (Viterbi)

Interpretation of Negation

How do we interpret $\neg : K \to K$?

 $\neg(x) = 1 - x$ is one of them.

For our upper bounds any "reasonable" interpretation of negation suffice.

$$\neg \neg (x) = x \\ \neg (0) = 1$$

Useful Semirings

- Viterbi semiring $\mathbb{V} = ([0,1], \max, \cdot, 0, 1).$

- Database provenance, where $x \in [0, 1]$ is interpreted as a *confidence score*.
- Probabilistic parsing, probabilistic CSPs, Hidden Markov Models.
- Tropical semiring $\mathbb{T} = (\mathbb{R} \cup \{\infty\}, \min, +, \infty, 0).$
 - Cost analysis and algebraic formulation for shortest path algorithms.
- Fuzzy semiring $\mathbb{F} = ([0, 1], \max, \min, 0, 1)$.
- Access control semiring $\mathbb{A}_k = ([k], \max, \min, 0, k)$
 - Security Specification. Each $i \in [k]$ is associated with a access control level with natural ordering. 0 corresponds to public access and k corresponds to no access at all.

Computational Problem: OptVal

For a given semiring K and input formula F (in negation normal form)

OptVal: Compute $\max_{\pi} \{ \pi(F) \}$ over all interpretations $\pi : X \to K$.

What is the complexity of OptVal?

Computational Problem: OptVal

For a given semiring K and input formula F (in negation normal form)

OptVal: Compute $\max_{\pi} \{ \pi(F) \}$ over all interpretations $\pi : X \to K$.

What is the complexity of OptVal?

- Long history of work focused on development of practical tools in CSP community
- (Surprisingly) No prior work from computational complexity perspective for cases other than Boolean semiring

```
Our Results (AAAI-23)
```

Fuzzy, Access Control Same as Boolean caseViterbi, Tropical $FP^{NP[log]} \leq OptVal \leq FP^{NP}$.

And the proof arguments are really simple and beautiful (I am, of course, biased!)

Define a binary search language $L_{opt} = \{ \langle F, v \rangle \mid OptVal(F) \ge v \}.$

- Perform binary search over [0, 1] by making queries to L_{opt}

Define a binary search language $L_{opt} = \{ \langle F, v \rangle \mid OptVal(F) \ge v \}.$

- Perform binary search over [0,1] by making queries to Lopt

Challenge: OptVal(F) could potentially be any real number. Do not know when to stop the binary search.

Define a binary search language $L_{opt} = \{ \langle F, v \rangle \mid OptVal(F) \ge v \}.$

- Perform binary search over [0,1] by making queries to Lopt

Challenge: OptVal(F) could potentially be any real number. Do not know when to stop the binary search.

Example: $F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$

- Consider the optimal interpretation $\hat{\pi}$ and suppose we know which literal takes the maximum value in each of the clauses under $\hat{\pi}.$

Define a binary search language $L_{opt} = \{ \langle F, v \rangle \mid OptVal(F) \ge v \}.$

- Perform binary search over [0,1] by making queries to Lopt

Challenge: OptVal(F) could potentially be any real number. Do not know when to stop the binary search.

Example: $F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$

- Consider the optimal interpretation $\hat{\pi}$ and suppose we know which literal takes the maximum value in each of the clauses under $\hat{\pi}.$
 - Say π̂(¬x₁ ∨ ¬x₂)) = π̂(¬x₂), i.e., ¬x₂ takes the maximum value in the clause (¬x₁ ∨ ¬x₂).

•
$$\hat{\pi}(F) = \hat{\pi}(x_1) \cdot \hat{\pi}(x_2) \cdot \hat{\pi}(\neg x_2) = \hat{\pi}(x_1) \cdot \hat{\pi}(x_2) \cdot (1 - \hat{\pi}(x_2))$$

Upperbound: OptVal $\in FP^{NP}$

Define a binary search language $L_{opt} = \{ \langle F, v \rangle \mid OptVal(F) \ge v \}$.

- Perform binary search over [0, 1] by making queries to L_{opt}

Challenge: OptVal(F) could potentially be any real number. Do not know when to stop the binary search.

Example: $F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$

- Consider the optimal interpretation $\hat{\pi}$ and suppose we know which literal takes the maximum value in each of the clauses under $\hat{\pi}$.
 - Say $\hat{\pi}(\neg x_1 \lor \neg x_2) = \hat{\pi}(\neg x_2)$, i.e., $\neg x_2$ takes the maximum value in the clause $(\neg x_1 \lor \neg x_2)$.

•
$$\hat{\pi}(F) = \hat{\pi}(x_1) \cdot \hat{\pi}(x_2) \cdot \hat{\pi}(\neg x_2) = \hat{\pi}(x_1) \cdot \hat{\pi}(x_2) \cdot (1 - \hat{\pi}(x_2))$$

• $\hat{\pi}(x_1) = 1$ and $\hat{\pi}(x_2) = 0.5$

•
$$\hat{\pi}(x_1) = 1$$
 and $\hat{\pi}(x_2) = 0.5$

- Let x_i and $\neg x_i$ takes maximum value in ℓ_i and k_i clauses respectively

- Observation:
$$\hat{\pi}(F) = \prod_{x_i} \hat{\pi}(x_i)^{\ell_i} (1 - \hat{\pi}(x_i))^{k_i}$$

Define a binary search language $L_{opt} = \{ \langle F, v \rangle \mid OptVal(F) \ge v \}.$

- Perform binary search over [0, 1] by making queries to Lopt

Challenge: OptVal(F) could potentially be any real number. Do not know when to stop the binary search.

Example: $F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$

- Consider the optimal interpretation $\hat{\pi}$ and suppose we know which literal takes the maximum value in each of the clauses under $\hat{\pi}.$
 - Say π̂(¬x₁ ∨ ¬x₂)) = π̂(¬x₂), i.e., ¬x₂ takes the maximum value in the clause (¬x₁ ∨ ¬x₂).

•
$$\hat{\pi}(F) = \hat{\pi}(x_1) \cdot \hat{\pi}(x_2) \cdot \hat{\pi}(\neg x_2) = \hat{\pi}(x_1) \cdot \hat{\pi}(x_2) \cdot (1 - \hat{\pi}(x_2))$$

•
$$\hat{\pi}(x_1) = 1$$
 and $\hat{\pi}(x_2) = 0.5$

- Let x_i and $\neg x_i$ takes maximum value in ℓ_i and k_i clauses respectively

- Observation:
$$\hat{\pi}(F) = \prod_{x_i} \hat{\pi}(x_i)^{\ell_i} (1 - \hat{\pi}(x_i))^{k_i} = \prod_{x_i} \left(\frac{\ell_i}{\ell_i + k_i}\right)^{\ell_i} \cdot \left(\frac{k_i}{\ell_i + k_i}\right)^{k_i}$$

Define a binary search language $L_{opt} = \{ \langle F, v \rangle \mid OptVal(F) \ge v \}.$

- Perform binary search over [0,1] by making queries to Lopt

Challenge: OptVal(F) could potentially be any real number. Do not know when to stop the binary search.

Example: $F := (x_1) \land (x_2) \land (\neg x_1 \lor \neg x_2)$

- Consider the optimal interpretation $\hat{\pi}$ and suppose we know which literal takes the maximum value in each of the clauses under $\hat{\pi}.$
 - Say π̂(¬x₁ ∨ ¬x₂)) = π̂(¬x₂), i.e., ¬x₂ takes the maximum value in the clause (¬x₁ ∨ ¬x₂).

•
$$\hat{\pi}(F) = \hat{\pi}(x_1) \cdot \hat{\pi}(x_2) \cdot \hat{\pi}(\neg x_2) = \hat{\pi}(x_1) \cdot \hat{\pi}(x_2) \cdot (1 - \hat{\pi}(x_2))$$

• $\hat{\pi}(x_1) = 1$ and $\hat{\pi}(x_1) = 0$.

•
$$\hat{\pi}(x_1) = 1$$
 and $\hat{\pi}(x_2) = 0.5$

- Let x_i and $\neg x_i$ takes maximum value in ℓ_i and k_i clauses respectively

- Observation:
$$\hat{\pi}(F) = \prod_{x_i} \hat{\pi}(x_i)^{\ell_i} (1 - \hat{\pi}(x_i))^{k_i} = \prod_{x_i} \left(\frac{\ell_i}{\ell_i + k_i}\right)^{\ell_i} \cdot \left(\frac{k_i}{\ell_i + k_i}\right)^{k_i}$$

• Lemma:
$$OptVal(F) \in C_N$$
 for $N \in 2^{poly(size(F))}$.

 \mathcal{C}_N : Farey Sequence of order *N*. Fractions of the form A/B, where $1 \le A, B \le N$ and gcd(A, B) = 1.

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then,

$$\hat{\pi}(F) \leq \frac{1}{4^{m-r}}$$

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then,

$$\hat{\pi}(F) \leq \frac{1}{4^{m-r}}$$

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then,

$$\hat{\pi}(F) \leq rac{1}{4^{m-r}}$$

Reduction $F \to F'$: $C_i \to (C_i \lor y_i) \land (\neg y_i)$ for each i

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then,

$$\hat{\pi}(F) \leq rac{1}{4^{m-r}}$$

Reduction $F \to F'$: $C_i \to (C_i \lor y_i) \land (\neg y_i)$ for each *i*

Claim: OptVal(F') = $1/4^{m-r}$

- We can give an interpretation π so that $\pi(F') = 1/4^{m-r}$.
- That is the best possible since
 - number of clauses of F' = 2m
 - maximum number of clauses that can be satisfied is m + r

Where we are and where do we go from here? - I

$\mathsf{MaxSAT} \leq ~\mathsf{OptVal}$

Speculative Thoughts

- OptVal can be expressed as sum of logs of max over real-valued variables?
- Can this be a natural problem that's more suited for continuous methods such as Neural Networks?
- So a possibility would be to start with a MaxSAT problem, generate the corresponding OptVal problem and use a continuous method to solve it and then recover the answer.

Where we are and where do we go from here? - II

 $\mathsf{FP}^{\mathsf{NP}[\mathsf{log}]} \leq \mathsf{OptVal} \leq \mathsf{FP}^{\mathsf{NP}}$

Can we close the gap?

Two possibilities

- OptVal $\in \mathsf{FP}^{\mathsf{NP}[\mathsf{log}]}$
 - Rely on the progress in MaxSAT solving to build practical tools
 - Open up questions regarding optimal encoding to MaxSAT and if specialized algorithms can outperform MaxSAT-based approaches

Where we are and where do we go from here? - II

 $\mathsf{FP}^{\mathsf{NP}[\mathsf{log}]} \leq \mathsf{OptVal} \leq \mathsf{FP}^{\mathsf{NP}}$

Can we close the gap?

Two possibilities

- OptVal $\in \mathsf{FP}^{\mathsf{NP}[\mathsf{log}]}$
 - Rely on the progress in MaxSAT solving to build practical tools
 - Open up questions regarding optimal encoding to MaxSAT and if specialized algorithms can outperform MaxSAT-based approaches
- OptVal is FP^{NP}-hard
 - Well, a natural problem that's complete for $\mathsf{FP}^{\mathsf{NP}}$
 - How do we design practical algorithms that can rely on the progress in SAT solving?
 - Binary search-based techniques didn't work well for MaxSAT.

In summary: The future is exciting either way!

These slides are available at www.cs.toronto.edu/~meel/talks.html

Backup

Lopt is in NP

- Represent the NNF formula as a formula tree F
- Proof Tree of a formula: For every OR node in F keep one of the subtrees. For every AND node keep both.
- optSemVal of a proof tree is of the form $\left(\frac{a}{a+b}\right)^a \cdot \left(\frac{b}{a+b}\right)^b$.
- optSemVal(ϕ) is the maximum over optSemVal(T) over all proof trees T.
- NP Algorithm: Guess a proof tree T and compute its optSemVal.

Algorithm

- Perform Binary search using L_{opt} till we find an interval [L, R] with $R L \le 1/N$.
- Find a member of \mathcal{F}_N that lies in the interval [L, R].
- Use NP calls to an appropriately defined NP language over Farey sequences.