Constrained Optimization over Semirings

Kuldeep S. Meel
University of Toronto
Joint work with Arnab Bhattacharyya, Pavan Aduri, and N. V. Vinodchandran
Relevant publication: AAAI-23

Acknowledgements: Val Tannen for introducing us to this problem and the world of semirings at large

Boolean Interpretations

$$
F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)
$$

SAT: Is there is a truth assignment to the variables so that F is evaluated to True.

Boolean Interpretations

$F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$
SAT: Is there is a truth assignment to the variables so that F is evaluated to True.

- Boolean Interpretation
- $K=\{0,1\}$
- ᄀ:= NOT function
- $\wedge:=$ AND function
- $V:=$ OR function

SAT: Compute $\max _{\pi}\{\pi(F)\}$ over all interpretations $\pi: X \rightarrow K$.
X is the set of variables and $\pi(F)$ is the natural extension of π to F.
F is satisfiable if and only if $\max _{\pi}\{\pi(F)\}=1$.

Beyond Boolean Interpretations

$$
F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)
$$

Viterbi semiring interpretation

- $K=[0,1]$
- $\wedge:=$ MULT function
- $\mathrm{V}:=$ MAX function
- $\neg x:=1-x$

Problem: Given F : Compute $\max _{\pi}\{\pi(F)\}$ over all interpretations $\pi: X \rightarrow K$.

Beyond Boolean Interpretations

$$
F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)
$$

Viterbi semiring interpretation

- $K=[0,1]$
- $\wedge:=$ MULT function
- $\mathrm{V}:=$ MAX function
- $\neg x:=1-x$

Problem: Given F : Compute $\max _{\pi}\{\pi(F)\}$ over all interpretations $\pi: X \rightarrow K$.

For F above:
$-\max \left\{x_{1} x_{2}\left(1-x_{1}\right), x_{1} x_{2}\left(1-x_{2}\right)\right\}$
$-\pi\left(x_{1}\right)=0.5 ; \pi\left(x_{2}\right)=1$
$-\pi(F)=0.5 \cdot 1 \cdot 0.5=0.25$

Beyond Boolean Interpretations

$$
F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)
$$

Viterbi semiring interpretation

- $K=[0,1]$
- $\wedge:=$ MULT function
- $\mathrm{V}:=$ MAX function
- $\neg x:=1-x$

Problem: Given F : Compute $\max _{\pi}\{\pi(F)\}$ over all interpretations $\pi: X \rightarrow K$.
For F above:
$-\max \left\{x_{1} x_{2}\left(1-x_{1}\right), x_{1} x_{2}\left(1-x_{2}\right)\right\}$

- $\pi\left(x_{1}\right)=0.5 ; \pi\left(x_{2}\right)=1$
- $\pi(F)=0.5 \cdot 1 \cdot 0.5=0.25$
F is satisfiable (Boolean) $\Leftrightarrow \max _{\pi}\{\pi(F)\}=1$ (Viterbi)

Interpretation of Negation

How do we interpret $\neg: K \rightarrow K$?
$\neg(x)=1-x$ is one of them.
For our upper bounds any "reasonable" interpretation of negation suffice.

$$
\begin{array}{r}
\neg \neg(x)=x \\
\neg(0)=1
\end{array}
$$

Useful Semirings

- Viterbi semiring $\mathbb{V}=([0,1], \max , \cdot, 0,1)$.
- Database provenance, where $x \in[0,1]$ is interpreted as a confidence score.
- Probabilistic parsing, probabilistic CSPs, Hidden Markov Models.
- Tropical semiring $\mathbb{T}=(\mathbb{R} \cup\{\infty\}$, min $,+, \infty, 0)$.
- Cost analysis and algebraic formulation for shortest path algorithms.
- Fuzzy semiring $\mathbb{F}=([0,1], \max , \min , 0,1)$.
- Access control semiring $\mathbb{A}_{k}=([k], \max , \min , 0, k)$
- Security Specification. Each $i \in[k]$ is associated with a access control level with natural ordering. 0 corresponds to public access and k corresponds to no access at all.

Computational Problem: OptVal

For a given semiring K and input formula F (in negation normal form)
OptVal: Compute $\max _{\pi}\{\pi(F)\}$ over all interpretations $\pi: X \rightarrow K$.
What is the complexity of OptVal?

Computational Problem: OptVal

For a given semiring K and input formula F (in negation normal form)
OptVal: Compute $\max _{\pi}\{\pi(F)\}$ over all interpretations $\pi: X \rightarrow K$.
What is the complexity of OptVal?

- Long history of work focused on development of practical tools in CSP community
- (Surprisingly) No prior work from computational complexity perspective for cases other than Boolean semiring

Our Results (AAAI-23)
Fuzzy, Access Control Same as Boolean case
Viterbi, Tropical

$$
\mathrm{FP}^{N P[\log]} \leq \mathrm{OptVal} \leq \mathrm{FP}^{N P}
$$

And the proof arguments are really simple and beautiful (I am, of course, biased!)

Upperbound: OptVal $\in \mathrm{FP}^{N P}$

Define a binary search language $L_{o p t}=\{\langle F, v\rangle \mid \operatorname{OptVal}(F) \geq v\}$.

- Perform binary search over $[0,1]$ by making queries to $L_{\text {opt }}$

Upperbound: OptVal $\in \mathrm{FP}^{N P}$

Define a binary search language $L_{o p t}=\{\langle F, v\rangle \mid \operatorname{OptVal}(F) \geq v\}$.

- Perform binary search over $[0,1]$ by making queries to $L_{o p t}$

Challenge: OptVal (F) could potentially be any real number. Do not know when to stop the binary search.

Upperbound: OptVal $\in \mathrm{FP}^{N P}$

Define a binary search language $L_{o p t}=\{\langle F, v\rangle \mid \operatorname{OptVal}(F) \geq v\}$.

- Perform binary search over $[0,1]$ by making queries to $L_{o p t}$

Challenge: OptVal (F) could potentially be any real number. Do not know when to stop the binary search.

Example: $F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$

- Consider the optimal interpretation $\hat{\pi}$ and suppose we know which literal takes the maximum value in each of the clauses under $\hat{\pi}$.

Upperbound: OptVal $\in \mathrm{FP}^{N P}$

Define a binary search language $L_{o p t}=\{\langle F, v\rangle \mid \operatorname{OptVal}(F) \geq v\}$.

- Perform binary search over $[0,1]$ by making queries to $L_{\text {opt }}$

Challenge: OptVal (F) could potentially be any real number. Do not know when to stop the binary search.

Example: $F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$

- Consider the optimal interpretation $\hat{\pi}$ and suppose we know which literal takes the maximum value in each of the clauses under $\hat{\pi}$.
- Say $\left.\hat{\pi}\left(\neg x_{1} \vee \neg x_{2}\right)\right)=\hat{\pi}\left(\neg x_{2}\right)$, i.e., $\neg x_{2}$ takes the maximum value in the clause $\left(\neg x_{1} \vee \neg x_{2}\right)$.
- $\hat{\pi}(F)=\hat{\pi}\left(x_{1}\right) \cdot \hat{\pi}\left(x_{2}\right) \cdot \hat{\pi}\left(\neg x_{2}\right)=\hat{\pi}\left(x_{1}\right) \cdot \hat{\pi}\left(x_{2}\right) \cdot\left(1-\hat{\pi}\left(x_{2}\right)\right)$

Upperbound: OptVal $\in \mathrm{FP}^{N P}$

Define a binary search language $L_{o p t}=\{\langle F, v\rangle \mid \operatorname{OptVal}(F) \geq v\}$.

- Perform binary search over $[0,1]$ by making queries to $L_{\text {opt }}$

Challenge: OptVal (F) could potentially be any real number. Do not know when to stop the binary search.

Example: $F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$

- Consider the optimal interpretation $\hat{\pi}$ and suppose we know which literal takes the maximum value in each of the clauses under $\hat{\pi}$.
- Say $\left.\hat{\pi}\left(\neg x_{1} \vee \neg x_{2}\right)\right)=\hat{\pi}\left(\neg x_{2}\right)$, i.e., $\neg x_{2}$ takes the maximum value in the clause $\left(\neg x_{1} \vee \neg x_{2}\right)$.
- $\hat{\pi}(F)=\hat{\pi}\left(x_{1}\right) \cdot \hat{\pi}\left(x_{2}\right) \cdot \hat{\pi}\left(\neg x_{2}\right)=\hat{\pi}\left(x_{1}\right) \cdot \hat{\pi}\left(x_{2}\right) \cdot\left(1-\hat{\pi}\left(x_{2}\right)\right)$
- $\hat{\pi}\left(x_{1}\right)=1$ and $\hat{\pi}\left(x_{2}\right)=0.5$
- Let x_{i} and $\neg x_{i}$ takes maximum value in ℓ_{i} and k_{i} clauses respectively
- Observation: $\hat{\pi}(F)=\prod_{x_{i}} \hat{\pi}\left(x_{i}\right)^{\ell_{i}}\left(1-\hat{\pi}\left(x_{i}\right)\right)^{k_{i}}$

Upperbound: OptVal $\in \mathrm{FP}^{N P}$

Define a binary search language $L_{o p t}=\{\langle F, v\rangle \mid \operatorname{OptVal}(F) \geq v\}$.

- Perform binary search over $[0,1]$ by making queries to $L_{\text {opt }}$

Challenge: OptVal (F) could potentially be any real number. Do not know when to stop the binary search.

Example: $F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$

- Consider the optimal interpretation $\hat{\pi}$ and suppose we know which literal takes the maximum value in each of the clauses under $\hat{\pi}$.
- Say $\left.\hat{\pi}\left(\neg x_{1} \vee \neg x_{2}\right)\right)=\hat{\pi}\left(\neg x_{2}\right)$, i.e., $\neg x_{2}$ takes the maximum value in the clause $\left(\neg x_{1} \vee \neg x_{2}\right)$.
- $\hat{\pi}(F)=\hat{\pi}\left(x_{1}\right) \cdot \hat{\pi}\left(x_{2}\right) \cdot \hat{\pi}\left(\neg x_{2}\right)=\hat{\pi}\left(x_{1}\right) \cdot \hat{\pi}\left(x_{2}\right) \cdot\left(1-\hat{\pi}\left(x_{2}\right)\right)$
- $\hat{\pi}\left(x_{1}\right)=1$ and $\hat{\pi}\left(x_{2}\right)=0.5$
- Let x_{i} and $\neg x_{i}$ takes maximum value in ℓ_{i} and k_{i} clauses respectively
- Observation: $\hat{\pi}(F)=\prod_{x_{i}} \hat{\pi}\left(x_{i}\right)^{\ell_{i}}\left(1-\hat{\pi}\left(x_{i}\right)\right)^{k_{i}}=\prod_{x_{i}}\left(\frac{\ell_{i}}{\ell_{i}+k_{i}}\right)^{\ell_{i}} \cdot\left(\frac{k_{i}}{\ell_{i}+k_{i}}\right)^{k_{i}}$

Upperbound: OptVal $\in \mathrm{FP}^{N P}$

Define a binary search language $L_{o p t}=\{\langle F, v\rangle \mid \operatorname{OptVal}(F) \geq v\}$.

- Perform binary search over $[0,1]$ by making queries to $L_{\text {opt }}$

Challenge: OptVal (F) could potentially be any real number. Do not know when to stop the binary search.

Example: $F:=\left(x_{1}\right) \wedge\left(x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)$

- Consider the optimal interpretation $\hat{\pi}$ and suppose we know which literal takes the maximum value in each of the clauses under $\hat{\pi}$.
- Say $\left.\hat{\pi}\left(\neg x_{1} \vee \neg x_{2}\right)\right)=\hat{\pi}\left(\neg x_{2}\right)$, i.e., $\neg x_{2}$ takes the maximum value in the clause $\left(\neg x_{1} \vee \neg x_{2}\right)$.
- $\hat{\pi}(F)=\hat{\pi}\left(x_{1}\right) \cdot \hat{\pi}\left(x_{2}\right) \cdot \hat{\pi}\left(\neg x_{2}\right)=\hat{\pi}\left(x_{1}\right) \cdot \hat{\pi}\left(x_{2}\right) \cdot\left(1-\hat{\pi}\left(x_{2}\right)\right)$
- $\hat{\pi}\left(x_{1}\right)=1$ and $\hat{\pi}\left(x_{2}\right)=0.5$
- Let x_{i} and $\neg x_{i}$ takes maximum value in ℓ_{i} and k_{i} clauses respectively
- Observation: $\hat{\pi}(F)=\prod_{x_{i}} \hat{\pi}\left(x_{i}\right)^{\ell_{i}}\left(1-\hat{\pi}\left(x_{i}\right)\right)^{k_{i}}=\prod_{x_{i}}\left(\frac{\ell_{i}}{\ell_{i}+k_{i}}\right)^{\ell_{i}} \cdot\left(\frac{k_{i}}{\ell_{i}+k_{i}}\right)^{k_{i}}$
- Lemma: $\operatorname{OptVal}(F) \in \mathcal{C}_{N}$ for $N \in 2^{\operatorname{poly}(\operatorname{size}(F))}$.
\mathcal{C}_{N} : Farey Sequence of order N. Fractions of the form A / B, where $1 \leq A, B \leq N$ and $\operatorname{gcd}(A, B)=1$.

Hardness for Viterbi: MaxSAT \leq OptVal

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then,

$$
\hat{\pi}(F) \leq \frac{1}{4^{m-r}}
$$

Hardness for Viterbi: MaxSAT \leq OptVal

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then,

$$
\hat{\pi}(F) \leq \frac{1}{4^{m-r}}
$$

Hardness for Viterbi: MaxSAT \leq OptVal

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then,

$$
\hat{\pi}(F) \leq \frac{1}{4^{m-r}}
$$

Reduction $F \rightarrow F^{\prime}: C_{i} \rightarrow\left(C_{i} \vee y_{i}\right) \wedge\left(\neg y_{i}\right)$ for each i

Hardness for Viterbi: MaxSAT \leq OptVal

Confidence Bounding Lemma: Let F be a CNF formula with m clauses and r the maximum number of satisfiable clauses (over the Boolean semiring). Then,

$$
\hat{\pi}(F) \leq \frac{1}{4^{m-r}}
$$

Reduction $F \rightarrow F^{\prime}: C_{i} \rightarrow\left(C_{i} \vee y_{i}\right) \wedge\left(\neg y_{i}\right)$ for each i
Claim: $\operatorname{OptVal}\left(F^{\prime}\right)=1 / 4^{m-r}$

- We can give an interpretation π so that $\pi\left(F^{\prime}\right)=1 / 4^{m-r}$.
- That is the best possible since
- number of clauses of $F^{\prime}=2 m$
- maximum number of clauses that can be satisfied is $m+r$

Where we are and where do we go from here? - I

MaxSAT \leq OptVal
Speculative Thoughts

- OptVal can be expressed as sum of logs of max over real-valued variables?
- Can this be a natural problem that's more suited for continuous methods such as Neural Networks?
- So a possibility would be to start with a MaxSAT problem, generate the corresponding OptVal problem and use a continuous method to solve it and then recover the answer.

Where we are and where do we go from here? - II

$$
\begin{gathered}
\mathrm{FP}^{N P[\log]} \leq \text { OptVal } \leq \mathrm{FP}^{N P} \\
\text { Can we close the gap? }
\end{gathered}
$$

Two possibilities

- OptVal \in FP $^{N P[\log]}$
- Rely on the progress in MaxSAT solving to build practical tools
- Open up questions regarding optimal encoding to MaxSAT and if specialized algorithms can outperform MaxSAT-based approaches

Where we are and where do we go from here? - II

$$
\mathrm{FP}^{\mathrm{NP}[\log]} \leq \mathrm{OptVal} \leq \mathrm{FP}^{\mathrm{NP}}
$$

Can we close the gap?

Two possibilities

- OptVal \in FP $^{N P[\log]}$
- Rely on the progress in MaxSAT solving to build practical tools
- Open up questions regarding optimal encoding to MaxSAT and if specialized algorithms can outperform MaxSAT-based approaches
- OptVal is $\mathrm{FP}^{\mathrm{NP}}$-hard
- Well, a natural problem that's complete for FP ${ }^{N P}$
- How do we design practical algorithms that can rely on the progress in SAT solving?
- Binary search-based techniques didn't work well for MaxSAT.

In summary: The future is exciting either way!
These slides are available at www.cs.toronto.edu/~meel/talks.html

Backup

$L_{\text {opt }}$ is in NP

- Represent the NNF formula as a formula tree F
- Proof Tree of a formula: For every OR node in F keep one of the subtrees. For every AND node keep both.
- optSemVal of a proof tree is of the form $\left(\frac{a}{a+b}\right)^{a} \cdot\left(\frac{b}{a+b}\right)^{b}$.
- optSemVal (ϕ) is the maximum over optSemVal (T) over all proof trees T.
- NP Algorithm: Guess a proof tree T and compute its optSemVal.

Algorithm

- Perform Binary search using $L_{\text {opt }}$ till we find an interval $[L, R]$ with $R-L \leq 1 / N$.
- Find a member of \mathcal{F}_{N} that lies in the interval $[L, R]$.
- Use NP calls to an appropriately defined NP language over Farey sequences.

