
Distribution Testing: The New Frontier for Formal Methods

Kuldeep S. Meel

University of Toronto

A joint adventure with Sourav Chakraborty, Arnab Bhattacharyya, Sutanu Gayen,
Priyanka Golia, Dimitrios Myrisiotis, A. Pavan, Yash Pote, Mate Soos, and N. V.
Vinodchandran

Relevant Papers: AAAI-19, FMCAD-21, CP-22, NeurIPS-21, NeurIPS-22, IJCAI-23

Summary: A new problem space with opportunities for exciting theory, algorithms, and
systems with practical impact.

Slide 1/ 73

Distribution Testing: The New Frontier for Formal Methods

Kuldeep S. Meel

University of Toronto

A joint adventure with Sourav Chakraborty, Arnab Bhattacharyya, Sutanu Gayen,
Priyanka Golia, Dimitrios Myrisiotis, A. Pavan, Yash Pote, Mate Soos, and N. V.
Vinodchandran

Relevant Papers: AAAI-19, FMCAD-21, CP-22, NeurIPS-21, NeurIPS-22, IJCAI-23

Summary: A new problem space with opportunities for exciting theory, algorithms, and
systems with practical impact.

Slide 1/ 73

A Brief (and Biased) History of Computing

Church - Turing Thesis, 1930’s: The notion of computability

von Neumann Architecture, 1945: Early hardware implementations

Scott-Rabin, 1958: Finite Automaton; the notion of non-determinism in automata

Floyd; Hoare, 1968-69 Assigning meanings to programs; {P}C{Q}

Pneulii, 1977: Introduction of Linear Temporal Logic to CS

Clarke-Emerson; Quielle and Sifakis, 1981 : Birth of Model Checking

Fundamental Aspect: Every execution of the program must satisfy the specification

• A single (or constantly many) execution suffices as witness for falsifiability

The Start of Automated Reasoning Revolution: BDDs, SAT, and Beyond SAT

Slide 2/ 73

A Brief (and Biased) History of Computing

Church - Turing Thesis, 1930’s: The notion of computability

von Neumann Architecture, 1945: Early hardware implementations

Scott-Rabin, 1958: Finite Automaton; the notion of non-determinism in automata

Floyd; Hoare, 1968-69 Assigning meanings to programs; {P}C{Q}

Pneulii, 1977: Introduction of Linear Temporal Logic to CS

Clarke-Emerson; Quielle and Sifakis, 1981 : Birth of Model Checking

Fundamental Aspect: Every execution of the program must satisfy the specification

• A single (or constantly many) execution suffices as witness for falsifiability

The Start of Automated Reasoning Revolution: BDDs, SAT, and Beyond SAT

Slide 2/ 73

A Brief (and Biased) History of Computing

Church - Turing Thesis, 1930’s: The notion of computability

von Neumann Architecture, 1945: Early hardware implementations

Scott-Rabin, 1958: Finite Automaton; the notion of non-determinism in automata

Floyd; Hoare, 1968-69 Assigning meanings to programs; {P}C{Q}

Pneulii, 1977: Introduction of Linear Temporal Logic to CS

Clarke-Emerson; Quielle and Sifakis, 1981 : Birth of Model Checking

Fundamental Aspect: Every execution of the program must satisfy the specification

• A single (or constantly many) execution suffices as witness for falsifiability

The Start of Automated Reasoning Revolution: BDDs, SAT, and Beyond SAT

Slide 2/ 73

A Brief (and Biased) History of Computing

Church - Turing Thesis, 1930’s: The notion of computability

von Neumann Architecture, 1945: Early hardware implementations

Scott-Rabin, 1958: Finite Automaton; the notion of non-determinism in automata

Floyd; Hoare, 1968-69 Assigning meanings to programs; {P}C{Q}

Pneulii, 1977: Introduction of Linear Temporal Logic to CS

Clarke-Emerson; Quielle and Sifakis, 1981 : Birth of Model Checking

Fundamental Aspect: Every execution of the program must satisfy the specification

• A single (or constantly many) execution suffices as witness for falsifiability

The Start of Automated Reasoning Revolution: BDDs, SAT, and Beyond SAT

Slide 2/ 73

Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using “and” (∧) “or”, (∨)
and “not” (¬), is there a satisfying solution (an assignment of 0’s and 1’s to the
variables that makes the expression equal 1)?
Example:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ x1 ∨ x4)

Solution: x1 = 0, x2 = 0, x3 = 1, x4 = 1

Slide 3/ 73

The Story of SAT Revolution

The Progress over the years

• Late-90s: Few hundreds of variables and clauses

• Now: Millions of variables and clauses

Theoretical Advances + Algorithmic Engineering + Software Development

Knuth, 2016: “The story of satisfiability is a tale of the triumph of software
engineering blended with rich doses of beautiful mathematics.”

Many Industrial Applications: Hardware and Software verification, Security, Planning,
Compliance, Telecom Feature Subscription, Bioinformatics, · · ·

B. Cook, 2022: Virtuous cycle in Automated Reasoning: ...application areas drives
more investment in foundational tools, while improvements in the foundational tools
drive further applications. Around and around.

Slide 4/ 73

The Story of SAT Revolution

The Progress over the years

• Late-90s: Few hundreds of variables and clauses

• Now: Millions of variables and clauses

Theoretical Advances + Algorithmic Engineering + Software Development

Knuth, 2016: “The story of satisfiability is a tale of the triumph of software
engineering blended with rich doses of beautiful mathematics.”

Many Industrial Applications: Hardware and Software verification, Security, Planning,
Compliance, Telecom Feature Subscription, Bioinformatics, · · ·

B. Cook, 2022: Virtuous cycle in Automated Reasoning: ...application areas drives
more investment in foundational tools, while improvements in the foundational tools
drive further applications. Around and around.

Slide 4/ 73

Beyond Non-determinism: Power of Randomization

Erdos, 1959: Probabilistic Method in Graph Theory

Solovay and Strassen; Rabin, 1976: Checking primality of a number

Gill, 1977: Computational Complexity of Probabilistic Turing Machines

Carter-Wegman, 1977: Strongly Universal Hash Functions

Morris, 1978: Probabilistic Counting

And then everything changed in 1980’s and world was never the same

Randomization as a Core Ingredient: Distributed Computing, Cryptography, Testing,
Streaming, and Machine Learning

Slide 5/ 73

Beyond Non-determinism: Power of Randomization

Erdos, 1959: Probabilistic Method in Graph Theory

Solovay and Strassen; Rabin, 1976: Checking primality of a number

Gill, 1977: Computational Complexity of Probabilistic Turing Machines

Carter-Wegman, 1977: Strongly Universal Hash Functions

Morris, 1978: Probabilistic Counting

And then everything changed in 1980’s and world was never the same

Randomization as a Core Ingredient: Distributed Computing, Cryptography, Testing,
Streaming, and Machine Learning

Slide 5/ 73

Beyond Non-determinism: Power of Randomization

Erdos, 1959: Probabilistic Method in Graph Theory

Solovay and Strassen; Rabin, 1976: Checking primality of a number

Gill, 1977: Computational Complexity of Probabilistic Turing Machines

Carter-Wegman, 1977: Strongly Universal Hash Functions

Morris, 1978: Probabilistic Counting

And then everything changed in 1980’s and world was never the same

Randomization as a Core Ingredient: Distributed Computing, Cryptography, Testing,
Streaming, and Machine Learning

Slide 5/ 73

With Prevalence comes the opportunity for Formal Methods

How do we test and verify randomness?

• How do we know python’s implementation of random is correct?

• How do we know constrained samplers used in testing are generating from desired
distributions?

What is different from traditional model checking

• A single (even, constants many) execution do not suffice as witness for
falsifiability.

• Simple verification problems for probabilistic systems are #P-hard, compared to
NP-hardness for (non)-deterministic programs [BGMMPV22]

Is there any hope?

Yes; We can build on the progress in the subfield of distribution testing in theoretical
CS community

Distribution Testing: A “subfield, at the junction of property testing and Statistics, is
concerned with studying properties of probability distributions.” [Canonne, 2020]

Slide 6/ 73

With Prevalence comes the opportunity for Formal Methods

How do we test and verify randomness?

• How do we know python’s implementation of random is correct?

• How do we know constrained samplers used in testing are generating from desired
distributions?

What is different from traditional model checking

• A single (even, constants many) execution do not suffice as witness for
falsifiability.

• Simple verification problems for probabilistic systems are #P-hard, compared to
NP-hardness for (non)-deterministic programs [BGMMPV22]

Is there any hope?

Yes; We can build on the progress in the subfield of distribution testing in theoretical
CS community

Distribution Testing: A “subfield, at the junction of property testing and Statistics, is
concerned with studying properties of probability distributions.” [Canonne, 2020]

Slide 6/ 73

With Prevalence comes the opportunity for Formal Methods

How do we test and verify randomness?

• How do we know python’s implementation of random is correct?

• How do we know constrained samplers used in testing are generating from desired
distributions?

What is different from traditional model checking

• A single (even, constants many) execution do not suffice as witness for
falsifiability.

• Simple verification problems for probabilistic systems are #P-hard, compared to
NP-hardness for (non)-deterministic programs [BGMMPV22]

Is there any hope?

Yes; We can build on the progress in the subfield of distribution testing in theoretical
CS community

Distribution Testing: A “subfield, at the junction of property testing and Statistics, is
concerned with studying properties of probability distributions.” [Canonne, 2020]

Slide 6/ 73

With Prevalence comes the opportunity for Formal Methods

How do we test and verify randomness?

• How do we know python’s implementation of random is correct?

• How do we know constrained samplers used in testing are generating from desired
distributions?

What is different from traditional model checking

• A single (even, constants many) execution do not suffice as witness for
falsifiability.

• Simple verification problems for probabilistic systems are #P-hard, compared to
NP-hardness for (non)-deterministic programs [BGMMPV22]

Is there any hope?

Yes; We can build on the progress in the subfield of distribution testing in theoretical
CS community

Distribution Testing: A “subfield, at the junction of property testing and Statistics, is
concerned with studying properties of probability distributions.” [Canonne, 2020]

Slide 6/ 73

Outline

Q1 What do distributions look like in the real world?

Q2 What properties matter to the practitioners?

Q3 Theory and Practice of Distirbution Testing

• Entropy Estimation [Part I]
• Complexity of Distance Estimation [Part II]
• Greybox Testing: Constrained Samplers [Part III]

Q4 Can distribution testing influence the design of systems ? [Part IV]

Slide 7/ 73

Q1: Distributions in Real World

Generative Probabilistic Models

Slide 8/ 73

Q1: Distributions in Real World: II

Constrained Random Simulation: Test Vector Generation

• Dominant methodology to test hardware systems

• Use a formula φ to encode the verification scenarios

• A Constrained Sampler A takes φ as input and returns σ ∈ Sol(φ), and ideally
ensures

Pr[σ ← A(φ)] =
1

|Sol(φ)|

Slide 9/ 73

Constrained Samplers

• Even finding just a single satisfying assignment is NP-hard

• A well-studied problem by theoreticians and practitioners alike for nearly 40 years

• Only in 2010’s, we could have samplers with theoretical guarantees and “
reasonable” performance

• Well, not really reasonable from practical perspective

• Design of practical samplers based on MCMC, random walk, local search etc.

Goal: Develop sound procedures to distinguish samplers (if possible).

Slide 10/ 73

Outline

Q1 What do distributions look like in the real world?

Q2 What properties matter to the practitioners?

Q3 How to develop practical scalable testers for distributions?

Q4 Can distribution testing influence the design of systems ?

Slide 10/ 73

Q2: Properties that Matter

(Approximate) Equivalence Checking

White-box Setting

• Is a given probabilitic generative model closer to a desired model?

• Consider a probablistic program P and say a compiler transforms P into Q:
• Is Q close to P?

1 va r x = sample (RandomInteger ({n : 2∗∗n})) ;
2 r e t u r n x ;

Listing: Program 1

1 va r eps = 0 . 3 ;
2 va r t e s t = sample (B e r n o u l l i ({p : (1 − eps) / 2})) ;
3 i f (t e s t == 1) {
4 va r x = sample (RandomInteger ({n : 2∗∗(n−1)})) ;
5 } e l s e {
6 va r y = sample (RandomInteger ({n : 2∗∗(n−1)})) ;
7 va r x = y + 2∗∗(n−1) ;
8 }
9 r e t u r n x ;

Listing: Program 2, which is close to Program 1

Slide 11/ 73

Q2: Properties that Matter

Grey-box Setting

• (Fast) Sampler A and a reference (but, often slow) sampler U
• Reference sampler U is certified to produce samples according to desired

distribution but is slow.

• Is the distribution generated by A, denoted by Aφ, close to that of Uφ?

Slide 12/ 73

How to Measure Equivalence

Consider two distribution P and Q over {0, 1}n.

Two Notions of Distance

• d∞ distance: maxσ∈{0,1}n |P(σ)−Q(σ)|
• The most commonly seen behavior where a developer wants to approximate
P with another distribution Q

• Almost-uniform sampling in the context of constrained random simulation

• Total Variation Distance (dTV) or L1 distance: 1
2

∑
σ∈{0,1}n |P(σ)−Q(σ)|

• Consider any arbitrary program A that uses samples from a distribution:
there is a probability distribution over output of A.

• Consider a Bad event over the output of A: such as not catching a bug.
• Let’s say A samples from P.
• Folklore: If we were to replace P with Q then the probability of Bad event

would increase/decrease at most by dTV (P,Q).

Therefore, measure closeness with respect to d∞ and farness with respect to dTV

• Checker should return Accept if two distributions are close in d∞-distance and
return Reject if two distributions are far in dTV .

Slide 13/ 73

How to Measure Equivalence

Consider two distribution P and Q over {0, 1}n.

Two Notions of Distance

• d∞ distance: maxσ∈{0,1}n |P(σ)−Q(σ)|
• The most commonly seen behavior where a developer wants to approximate
P with another distribution Q

• Almost-uniform sampling in the context of constrained random simulation

• Total Variation Distance (dTV) or L1 distance: 1
2

∑
σ∈{0,1}n |P(σ)−Q(σ)|

• Consider any arbitrary program A that uses samples from a distribution:
there is a probability distribution over output of A.

• Consider a Bad event over the output of A: such as not catching a bug.
• Let’s say A samples from P.
• Folklore: If we were to replace P with Q then the probability of Bad event

would increase/decrease at most by dTV (P,Q).

Therefore, measure closeness with respect to d∞ and farness with respect to dTV

• Checker should return Accept if two distributions are close in d∞-distance and
return Reject if two distributions are far in dTV .

Slide 13/ 73

How to Measure Equivalence

Consider two distribution P and Q over {0, 1}n.

Two Notions of Distance

• d∞ distance: maxσ∈{0,1}n |P(σ)−Q(σ)|
• The most commonly seen behavior where a developer wants to approximate
P with another distribution Q

• Almost-uniform sampling in the context of constrained random simulation

• Total Variation Distance (dTV) or L1 distance: 1
2

∑
σ∈{0,1}n |P(σ)−Q(σ)|

• Consider any arbitrary program A that uses samples from a distribution:
there is a probability distribution over output of A.

• Consider a Bad event over the output of A: such as not catching a bug.
• Let’s say A samples from P.
• Folklore: If we were to replace P with Q then the probability of Bad event

would increase/decrease at most by dTV (P,Q).

Therefore, measure closeness with respect to d∞ and farness with respect to dTV

• Checker should return Accept if two distributions are close in d∞-distance and
return Reject if two distributions are far in dTV .

Slide 13/ 73

Outline

Theory and Practice of Distirbution Testing

Probabilistic Generative Models

• Complexity of Distance Estimation for Probabilistic Generative Models [Topic I]

Constrained Samplers

• Greybox Testing: Constrained Samplers [Topic II]

• Can distribution testing influence the design of systems ? [Topic III]

Slide 14/ 73

Probability Basics (I)

• A random process: Tossing a coin

• p = 0.4 (probability of Heads)

• A random variable: assign a numerical value for outcome of random process

• X = +1 if Heads and 0 if Tails

• Expectation µ = E[X]

• E[X] = 1 · p + 0 · (1− p) = p

• Variance σ2[X] = E[(X − µ)2] = E[X 2]− µ2

• σ2[X] = p − p2

• Two variables X and Y are independent, if Pr[X |Y] = Pr[X]

Slide 15/ 73

Probability Basics (I)

• A random process: Tossing a coin

• p = 0.4 (probability of Heads)

• A random variable: assign a numerical value for outcome of random process

• X = +1 if Heads and 0 if Tails

• Expectation µ = E[X]

• E[X] = 1 · p + 0 · (1− p) = p

• Variance σ2[X] = E[(X − µ)2] = E[X 2]− µ2

• σ2[X] = p − p2

• Two variables X and Y are independent, if Pr[X |Y] = Pr[X]

Slide 15/ 73

Probability Basics (I)

• A random process: Tossing a coin

• p = 0.4 (probability of Heads)

• A random variable: assign a numerical value for outcome of random process

• X = +1 if Heads and 0 if Tails

• Expectation µ = E[X]

• E[X] = 1 · p + 0 · (1− p) = p

• Variance σ2[X] = E[(X − µ)2] = E[X 2]− µ2

• σ2[X] = p − p2

• Two variables X and Y are independent, if Pr[X |Y] = Pr[X]

Slide 15/ 73

Probability Basics (II)

Hoeffding Bound Let X1,X2, · · ·Xn be independent and identically distributed
variables such that p = E[Xi] and let X = (

∑
i Xi)/n. Then

µ = E[X] = p

Pr[|X − µ| ≥ βµ] ≤ e−β2µ/3

ε− δ approximation A random variable Z is a (ε, δ)-approximation of a quantity k if
the following holds:

Pr[Z ∈ (1± ε)k] ≥ 1− δ

Problem Suppose we are given a coin and we want to estimate it’s bias (i.e., the
probability of heads). How many samples (i.e., tosses) do we need?

Zero-One Estimator Let X be a random variable with µ = E[X], then

O
(

1
ε2µ

log(1/δ)
)
samples are sufficient to estimate µ within (ε, δ)-factor.

Slide 16/ 73

Probability Basics (II)

Hoeffding Bound Let X1,X2, · · ·Xn be independent and identically distributed
variables such that p = E[Xi] and let X = (

∑
i Xi)/n. Then

µ = E[X] = p

Pr[|X − µ| ≥ βµ] ≤ e−β2µ/3

ε− δ approximation A random variable Z is a (ε, δ)-approximation of a quantity k if
the following holds:

Pr[Z ∈ (1± ε)k] ≥ 1− δ

Problem Suppose we are given a coin and we want to estimate it’s bias (i.e., the
probability of heads). How many samples (i.e., tosses) do we need?

Zero-One Estimator Let X be a random variable with µ = E[X], then

O
(

1
ε2µ

log(1/δ)
)
samples are sufficient to estimate µ within (ε, δ)-factor.

Slide 16/ 73

Probability Basics (II)

Hoeffding Bound Let X1,X2, · · ·Xn be independent and identically distributed
variables such that p = E[Xi] and let X = (

∑
i Xi)/n. Then

µ = E[X] = p

Pr[|X − µ| ≥ βµ] ≤ e−β2µ/3

ε− δ approximation A random variable Z is a (ε, δ)-approximation of a quantity k if
the following holds:

Pr[Z ∈ (1± ε)k] ≥ 1− δ

Problem Suppose we are given a coin and we want to estimate it’s bias (i.e., the
probability of heads). How many samples (i.e., tosses) do we need?

Zero-One Estimator Let X be a random variable with µ = E[X], then

O
(

1
ε2µ

log(1/δ)
)
samples are sufficient to estimate µ within (ε, δ)-factor.

Slide 16/ 73

Probability Basics (II)

Hoeffding Bound Let X1,X2, · · ·Xn be independent and identically distributed
variables such that p = E[Xi] and let X = (

∑
i Xi)/n. Then

µ = E[X] = p

Pr[|X − µ| ≥ βµ] ≤ e−β2µ/3

ε− δ approximation A random variable Z is a (ε, δ)-approximation of a quantity k if
the following holds:

Pr[Z ∈ (1± ε)k] ≥ 1− δ

Problem Suppose we are given a coin and we want to estimate it’s bias (i.e., the
probability of heads). How many samples (i.e., tosses) do we need?

Zero-One Estimator Let X be a random variable with µ = E[X], then

O
(

1
ε2µ

log(1/δ)
)
samples are sufficient to estimate µ within (ε, δ)-factor.

Slide 16/ 73

Probability Basics (III): Couplings

• Given P and Q on a common domain, a coupling C is a distribution on pairs
(X ,Y) such that X distributed as P and Y distributed as Q.

Example

• Suppose P = Bernoulli(2/3) and Q = Bernoulli(1/3). dTV (P,Q)

= 1/3

• If X ∼ P and Y ∼ Q independently, then Pr[X ̸= Y] = 2
3
· 2
3
+ 1

3
· 1
3
= 5

9

• If X ∼ P and Y = 1− X , then Pr[X ̸= Y] = 1

• X ∼ P and Y = Bernoulli(1/2) if X = 1 else Y = 0, then
Pr[X ̸= Y] = 1

2
· 2
3
= 1

3

Slide 17/ 73

Probability Basics (III): Couplings

• Given P and Q on a common domain, a coupling C is a distribution on pairs
(X ,Y) such that X distributed as P and Y distributed as Q.

Example

• Suppose P = Bernoulli(2/3) and Q = Bernoulli(1/3). dTV (P,Q) = 1/3

• If X ∼ P and Y ∼ Q independently, then Pr[X ̸= Y] = 2
3
· 2
3
+ 1

3
· 1
3
= 5

9

• If X ∼ P and Y = 1− X , then Pr[X ̸= Y] = 1

• X ∼ P and Y = Bernoulli(1/2) if X = 1 else Y = 0, then
Pr[X ̸= Y] = 1

2
· 2
3
= 1

3

Slide 17/ 73

Outline

Theory and Practice of Distirbution Testing

Probabilistic Generative Models

• Complexity of Distance Estimation for Probabilistic Generative Models

Constrained Samplers

• Greybox Testing: Constrained Samplers

• Can distribution testing influence the design of systems ?

Slide 18/ 73

Examples of Distributions

Bayesian Networks

Smoker (S)

Cough (C)

Asthma (A)

Product Distributions

Figure: A network with no dependencies

Slide 19/ 73

TV Distance Computation

Consider P and Q as distributions on {0, 1}n.

dTV (P,Q) =
1

2
||P − Q||1 =

∑
σ

|P(σ)− Q(σ)|

How hard is to compute TV Distance?

Theorem (BGMMPV-23)

TV Distance computation between two product distribution is #P-hard

• Given two circuits, checking their equivalence is just NP-hard

• #P-hard contains entire polynomial hierarchy

Slide 20/ 73

Technical Overview

#SubsetProd: Given integers a1, . . . an and T , find

∣∣∣∣∣∣
S ⊆ [n] :

∏
i∈S

ai = T

∣∣∣∣∣∣

#PMFEquals: Given p1, . . . pn, v ∈ [0, 1] where p1, . . . pn are the parameters of a
product distribution P, find

|{x ∈ {0, 1}n : P(x) = v}|

#SubsetProd ≤ #PMFEquals ≤ dTV

Slide 21/ 73

#PMFEquals ≤ dTV

#PMFEquals: Given p1, . . . pn, v ∈ [0, 1] where p1, . . . pn are the parameters of a
product distribution P, find

|{x ∈ {0, 1}n : P(x) = v}|

For simplicity, assume v ≤ 2−n

Define distributions P̂ and Q̂ on n + 1 bits

• p̂i = pi for i ≤ n and p̂n+1 = 1

• q̂i = 1/2 for i ≤ n and q̂n+1 = v2n

Define Distributions P′ and Q′ on n + 2 bits

• p′i = pi for i ≤ n, p′n+1 = 1 and p′n+2 = 1
2
+ β

• q′i = qi for i ≤ n, q′n+1 = 1 and q′n+2 = 1
2
+ β

where β is very small.
Claim:

|{x : P(x) = v}| =
dTV (P

′,Q′)− dTV (P̂, Q̂)

2βv

Slide 22/ 73

#PMFEquals ≤ dTV

#PMFEquals: Given p1, . . . pn, v ∈ [0, 1] where p1, . . . pn are the parameters of a
product distribution P, find

|{x ∈ {0, 1}n : P(x) = v}|

For simplicity, assume v ≤ 2−n

Define distributions P̂ and Q̂ on n + 1 bits

• p̂i = pi for i ≤ n and p̂n+1 = 1

• q̂i = 1/2 for i ≤ n and q̂n+1 = v2n

Define Distributions P′ and Q′ on n + 2 bits

• p′i = pi for i ≤ n, p′n+1 = 1 and p′n+2 = 1
2
+ β

• q′i = qi for i ≤ n, q′n+1 = 1 and q′n+2 = 1
2
+ β

where β is very small.
Claim:

|{x : P(x) = v}| =
dTV (P

′,Q′)− dTV (P̂, Q̂)

2βv

Slide 22/ 73

#PMFEquals ≤ dTV

#PMFEquals: Given p1, . . . pn, v ∈ [0, 1] where p1, . . . pn are the parameters of a
product distribution P, find

|{x ∈ {0, 1}n : P(x) = v}|

For simplicity, assume v ≤ 2−n

Define distributions P̂ and Q̂ on n + 1 bits

• p̂i = pi for i ≤ n and p̂n+1 = 1

• q̂i = 1/2 for i ≤ n and q̂n+1 = v2n

Define Distributions P′ and Q′ on n + 2 bits

• p′i = pi for i ≤ n, p′n+1 = 1 and p′n+2 = 1
2
+ β

• q′i = qi for i ≤ n, q′n+1 = 1 and q′n+2 = 1
2
+ β

where β is very small.

Claim:

|{x : P(x) = v}| =
dTV (P

′,Q′)− dTV (P̂, Q̂)

2βv

Slide 22/ 73

#PMFEquals ≤ dTV

#PMFEquals: Given p1, . . . pn, v ∈ [0, 1] where p1, . . . pn are the parameters of a
product distribution P, find

|{x ∈ {0, 1}n : P(x) = v}|

For simplicity, assume v ≤ 2−n

Define distributions P̂ and Q̂ on n + 1 bits

• p̂i = pi for i ≤ n and p̂n+1 = 1

• q̂i = 1/2 for i ≤ n and q̂n+1 = v2n

Define Distributions P′ and Q′ on n + 2 bits

• p′i = pi for i ≤ n, p′n+1 = 1 and p′n+2 = 1
2
+ β

• q′i = qi for i ≤ n, q′n+1 = 1 and q′n+2 = 1
2
+ β

where β is very small.
Claim:

|{x : P(x) = v}| =
dTV (P

′,Q′)− dTV (P̂, Q̂)

2βv

Slide 22/ 73

#PMFEquals ≤ dTV
Define distributions P̂ and Q̂ on n + 1 bits

• p̂i = pi for i ≤ n and p̂n+1 = 1

• q̂i = 1/2 for i ≤ n and q̂n+1 = v2n

dTV (P̂, Q̂) =
∑

x :P(x)>v

P(x)− v

Define Distributions P′ and Q′ on n + 2 bits

• p′i = pi for i ≤ n, p′n+1 = 1 and p′n+2 = 1
2
+ β

• q′i = qi for i ≤ n, q′n+1 = 1 and q′n+2 = 1
2
− β

where β is very small.

dTV (P
′,Q′) = 2βv · |{x : P(x) = v}|+

∑
x :P(x)>v

P(x)− v

|{x : P(x) = v}| =
dTV (P

′,Q′)− dTV (P̂, Q̂)

2βv

Slide 23/ 73

#PMFEquals ≤ dTV
Define distributions P̂ and Q̂ on n + 1 bits

• p̂i = pi for i ≤ n and p̂n+1 = 1

• q̂i = 1/2 for i ≤ n and q̂n+1 = v2n

dTV (P̂, Q̂) =
∑

x :P(x)>v

P(x)− v

Define Distributions P′ and Q′ on n + 2 bits

• p′i = pi for i ≤ n, p′n+1 = 1 and p′n+2 = 1
2
+ β

• q′i = qi for i ≤ n, q′n+1 = 1 and q′n+2 = 1
2
− β

where β is very small.

dTV (P
′,Q′) = 2βv · |{x : P(x) = v}|+

∑
x :P(x)>v

P(x)− v

|{x : P(x) = v}| =
dTV (P

′,Q′)− dTV (P̂, Q̂)

2βv

Slide 23/ 73

#PMFEquals ≤ dTV
Define distributions P̂ and Q̂ on n + 1 bits

• p̂i = pi for i ≤ n and p̂n+1 = 1

• q̂i = 1/2 for i ≤ n and q̂n+1 = v2n

dTV (P̂, Q̂) =
∑

x :P(x)>v

P(x)− v

Define Distributions P′ and Q′ on n + 2 bits

• p′i = pi for i ≤ n, p′n+1 = 1 and p′n+2 = 1
2
+ β

• q′i = qi for i ≤ n, q′n+1 = 1 and q′n+2 = 1
2
− β

where β is very small.

dTV (P
′,Q′) = 2βv · |{x : P(x) = v}|+

∑
x :P(x)>v

P(x)− v

|{x : P(x) = v}| =
dTV (P

′,Q′)− dTV (P̂, Q̂)

2βv

Slide 23/ 73

What about Approximation?

Theorem: The (ε, δ)-approximation of TV distance between two product distributions

P and Q can be accomoplished in O(n
2

ε2
log(1/δ)) time.

• Algorithm boils down to a simple but clever Monte Carlo estimator

• Based on dual characterization of TV distance in terms of couplings.

Slide 24/ 73

Couplings

• Given P and Q on a common domain, a coupling C is a distribution on pairs
(X ,Y) such that X distributed as P and Y distributed as Q.

Example

• Suppose P = Bernoulli(2/3) and Q = Bernoulli(1/3). dTV (P,Q)

= 1/3

• If X ∼ P and Y ∼ Q independently, then Pr[X ̸= Y] = 2
3
· 2
3
+ 1

3
· 1
3
= 5

9

• If X ∼ P and Y = 1− X , then Pr[X ̸= Y] = 1

• X ∼ P and Y = Bernoulli(1/2) if X = 1 else Y = 0, then
Pr[X ̸= Y] = 1

2
· 2
3
= 1

3

• An optimal coupling O satisifes:

Pr
(X ,Y)∼O

[X ̸= Y] = dTV (P,Q)

• In an optimal coupling O, for any w ,

Pr
O
[X = Y = w] = min(P(w),Q(w))

Slide 25/ 73

Couplings

• Given P and Q on a common domain, a coupling C is a distribution on pairs
(X ,Y) such that X distributed as P and Y distributed as Q.

Example

• Suppose P = Bernoulli(2/3) and Q = Bernoulli(1/3). dTV (P,Q) = 1/3

• If X ∼ P and Y ∼ Q independently, then Pr[X ̸= Y] = 2
3
· 2
3
+ 1

3
· 1
3
= 5

9

• If X ∼ P and Y = 1− X , then Pr[X ̸= Y] = 1

• X ∼ P and Y = Bernoulli(1/2) if X = 1 else Y = 0, then
Pr[X ̸= Y] = 1

2
· 2
3
= 1

3

• An optimal coupling O satisifes:

Pr
(X ,Y)∼O

[X ̸= Y] = dTV (P,Q)

• In an optimal coupling O, for any w ,

Pr
O
[X = Y = w] = min(P(w),Q(w))

Slide 25/ 73

Coupling between Product Distributions

• Consider P and Q product distributions on {0, 1}n. Coupling between them is a
distribution on ({0, 1}n)2

• Let Oi be optimal coupling between i-th marginals, Pi and Qi . Then,
C = O1 ⊗ O2 ⊗ . . .⊗ On is a local coupling

Example:

• Suppose P = Bernoulli(2/3)⊗ Bernoulli(2/3) and
Q = Bernoulli(1/2)⊗ Bernoulli(1/3).

• dTV (P,Q)

= 1/3

• If (X ,Y) form a local coupling, then Pr[X ̸= Y] = 5
9

• Local coupling may not be an optimal coupling

• But, it’s easy to sample from local coupling

Slide 26/ 73

Coupling between Product Distributions

• Consider P and Q product distributions on {0, 1}n. Coupling between them is a
distribution on ({0, 1}n)2

• Let Oi be optimal coupling between i-th marginals, Pi and Qi . Then,
C = O1 ⊗ O2 ⊗ . . .⊗ On is a local coupling

Example:

• Suppose P = Bernoulli(2/3)⊗ Bernoulli(2/3) and
Q = Bernoulli(1/2)⊗ Bernoulli(1/3).

• dTV (P,Q) = 1/3

• If (X ,Y) form a local coupling, then Pr[X ̸= Y] = 5
9

• Local coupling may not be an optimal coupling

• But, it’s easy to sample from local coupling

Slide 26/ 73

The Power of Local Coupling

Observation If C is local coupling, then
PrC [X ̸= Y] ≤

∑
i PrC (Xi ̸= Yi) ≤

∑
i dTV (Pi ,Qi).

Key Lemma For Product distributions P and Q, we have

max
i

dTV (Pi ,Qi) ≤ dTV (P,Q) ≤
∑
i

dTV (Pi ,Qi)

Let α = dTV (P,Q)
PrC [X ̸=Y]

= PrO [X ̸=Y]
PrC [X ̸=Y]

We have

1

n
≤ α ≤ 1

Key Idea The denominator PrC [X ̸= Y] is easy to compute.

Pr
C
[X ̸= Y] = 1− Pr

C
(X = Y) = 1−

∏
i

(1− dTV (Pi ,Qi))

Slide 27/ 73

The Power of Local Coupling

Observation If C is local coupling, then
PrC [X ̸= Y] ≤

∑
i PrC (Xi ̸= Yi) ≤

∑
i dTV (Pi ,Qi).

Key Lemma For Product distributions P and Q, we have

max
i

dTV (Pi ,Qi) ≤ dTV (P,Q) ≤
∑
i

dTV (Pi ,Qi)

Let α = dTV (P,Q)
PrC [X ̸=Y]

= PrO [X ̸=Y]
PrC [X ̸=Y]

We have

1

n
≤ α ≤ 1

Key Idea The denominator PrC [X ̸= Y] is easy to compute.

Pr
C
[X ̸= Y] = 1− Pr

C
(X = Y) = 1−

∏
i

(1− dTV (Pi ,Qi))

Slide 27/ 73

The Power of Local Coupling

Observation If C is local coupling, then
PrC [X ̸= Y] ≤

∑
i PrC (Xi ̸= Yi) ≤

∑
i dTV (Pi ,Qi).

Key Lemma For Product distributions P and Q, we have

max
i

dTV (Pi ,Qi) ≤ dTV (P,Q) ≤
∑
i

dTV (Pi ,Qi)

Let α = dTV (P,Q)
PrC [X ̸=Y]

= PrO [X ̸=Y]
PrC [X ̸=Y]

We have

1

n
≤ α ≤ 1

Key Idea The denominator PrC [X ̸= Y] is easy to compute.

Pr
C
[X ̸= Y] = 1− Pr

C
(X = Y) = 1−

∏
i

(1− dTV (Pi ,Qi))

Slide 27/ 73

The Power of Local Coupling

Observation If C is local coupling, then
PrC [X ̸= Y] ≤

∑
i PrC (Xi ̸= Yi) ≤

∑
i dTV (Pi ,Qi).

Key Lemma For Product distributions P and Q, we have

max
i

dTV (Pi ,Qi) ≤ dTV (P,Q) ≤
∑
i

dTV (Pi ,Qi)

Let α = dTV (P,Q)
PrC [X ̸=Y]

= PrO [X ̸=Y]
PrC [X ̸=Y]

We have

1

n
≤ α ≤ 1

Key Idea The denominator PrC [X ̸= Y] is easy to compute.

Pr
C
[X ̸= Y] = 1− Pr

C
(X = Y) = 1−

∏
i

(1− dTV (Pi ,Qi))

Slide 27/ 73

Estimator for 𝜶

Define 𝑓 𝑤 = 𝑃 𝑤 −min(𝑃 𝑤 , 𝑄 𝑤).

Define 𝑔 𝑤 = 𝑃 𝑤 −∏)min 𝑃) 𝑤) , 𝑄) 𝑤) .

Define 𝜋 to be distribution with mass function
proportional to 𝑔.

Note that 0 ≤ 𝑓 𝑤 ≤ 𝑔(𝑤) for all 𝑤.

𝛼 =
Pr
'
𝑋 ≠ 𝑌

Pr
(
𝑋 ≠ 𝑌

• ∑: 𝑓 𝑤 = Pr
8
[𝑋 ≠ 𝑌].

• ∑:𝑔 𝑤 = Pr
9
[𝑋 ≠ 𝑌].

• Therefore,

𝛼 =
∑: 𝑓 𝑤
∑:𝑔 𝑤

= 𝔼;
𝑓 𝑤
𝑔 𝑤

.

• Sampling from 𝜋 reduces to computing ∑:𝑔(𝑤) which we know
how to do efficiently.

Define 𝑓 𝑤 = 𝑃 𝑤 −min(𝑃 𝑤 ,𝑄 𝑤).

Define 𝑔 𝑤 = 𝑃 𝑤 −∏6min 𝑃6 𝑤6 , 𝑄6 𝑤6 .

Define 𝜋 to be distribution with mass function proportional to 𝑔.

𝛼 =
Pr
'
𝑋 ≠ 𝑌

Pr
(
𝑋 ≠ 𝑌

Outline

Theory and Practice of Distirbution Testing

Probabilistic Generative Models

• Complexity of Distance Estimation for Probabilistic Generative Models [✓]

Constrained Samplers

• Greybox Testing: Constrained Samplers

• Can distribution testing influence the design of systems ?

Slide 28/ 73

Problem Setting

• A Boolean formula φ

• Reference Sampler U
• With rigorous theoretical guarantees but often slower

• Sampler Under Test: A sampler A that claims to be close to uniform sampler for
formulas in benchmark set

• Superior runtime performance but often no theoretical analysis

• Closeness and farness parameters: ε and η

Task: Determine whether distributions Aφ and Uφ are ε-close or η-far

Slide 29/ 73

Limitations of Black-Box Testing

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
a
b
il
it
y

Figure: Uφ: Uniform Distribution

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
a
b
il
it
y

Figure: Aφ: 1/2-far from uniform

SAMP: Allows you to draw samples from a distribution

• If <
√
|Sol(φ)|/100 samples are drawn then with high probability you see only

distinct samples from either distribution.

Theorem The above bound is optimal. [BFRSW 98; Pan 08]

Greybox Testing: Inspired by Distribution Testing Literature

COND (P,T)

Pr[σ ← COND(P,T)] =

P(σ)∑

ρ∈T
P(ρ)

σ ∈ T

0 otherwise

When T = {0, 1}n, then COND(P,T) = SAMP

Slide 30/ 73

Limitations of Black-Box Testing

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
a
b
il
it
y

Figure: Uφ: Uniform Distribution

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
a
b
il
it
y

Figure: Aφ: 1/2-far from uniform

SAMP: Allows you to draw samples from a distribution

• If <
√
|Sol(φ)|/100 samples are drawn then with high probability you see only

distinct samples from either distribution.

Theorem The above bound is optimal. [BFRSW 98; Pan 08]

Greybox Testing: Inspired by Distribution Testing Literature

COND (P,T)

Pr[σ ← COND(P,T)] =

P(σ)∑

ρ∈T
P(ρ)

σ ∈ T

0 otherwise

When T = {0, 1}n, then COND(P,T) = SAMP

Slide 30/ 73

Limitations of Black-Box Testing

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
a
b
il
it
y

Figure: Uφ: Uniform Distribution

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
a
b
il
it
y

Figure: Aφ: 1/2-far from uniform

SAMP: Allows you to draw samples from a distribution

• If <
√
|Sol(φ)|/100 samples are drawn then with high probability you see only

distinct samples from either distribution.

Theorem The above bound is optimal. [BFRSW 98; Pan 08]

Greybox Testing: Inspired by Distribution Testing Literature

COND (P,T)

Pr[σ ← COND(P,T)] =

P(σ)∑

ρ∈T
P(ρ)

σ ∈ T

0 otherwise

When T = {0, 1}n, then COND(P,T) = SAMP

Slide 30/ 73

The Power of COND model

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
a
b
il
it
y

Figure: Uφ: Uniform Distribution

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
a
b
il
it
y

Figure: Aφ: 1/2-far from uniform

An algorithm for testing uniformity using conditional sampling:

• Sample σ1, σ2 from Uφ. Let T = {σ1, σ2}.

• In the case of the “far” distribution, with constant probability, Aφ(σ1)≪ Aφ(σ2)

• We will be able to distinguish the far distribution from the uniform distribution
using constant number of samples from COND(Aφ,T).

• The constant depend on the farness parameter.

Slide 31/ 73

The Power of COND model

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
a
b
il
it
y

Figure: Uφ: Uniform Distribution

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
a
b
il
it
y

Figure: Aφ: 1/2-far from uniform

An algorithm for testing uniformity using conditional sampling:

• Sample σ1, σ2 from Uφ. Let T = {σ1, σ2}.

• In the case of the “far” distribution, with constant probability, Aφ(σ1)≪ Aφ(σ2)

• We will be able to distinguish the far distribution from the uniform distribution
using constant number of samples from COND(Aφ,T).

• The constant depend on the farness parameter.

Slide 31/ 73

What about other distributions?

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
a
b
il
it
y

Figure: Uφ: Uniform Distribution

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

P
ro
b
a
b
il
it
y

Figure: Aφ: Far Distribution

Previous algorithm fails in this case:

• Draw two elements σ1 and σ2 uniformly at random from the domain. Let
T = {σ1, σ2}.

• In the case of the “far” distribution, with probability almost 1, both the two
elements will have probability same, namely ϵ.

• Probability that we will be able to distinguish the far distribution from the
uniform distribution is very low.

Slide 32/ 73

What about other distributions?

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
a
b
il
it
y

Figure: Uφ: Uniform Distribution

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

P
ro
b
a
b
il
it
y

Figure: Aφ: Far Distribution

Previous algorithm fails in this case:

• Draw two elements σ1 and σ2 uniformly at random from the domain. Let
T = {σ1, σ2}.

• In the case of the “far” distribution, with probability almost 1, both the two
elements will have probability same, namely ϵ.

• Probability that we will be able to distinguish the far distribution from the
uniform distribution is very low.

Slide 32/ 73

Testing Uniformity Using Conditional Sampling

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
a
b
il
it
y

Figure: Uφ: Uniform
Distribution

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

P
ro
b
a
b
il
it
y

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
a
b
il
it
y

An algorithm for testing uniformity using conditional sampling:

• Sample σ1 from Uφ and σ2 from Aφ. Let T = {σ1, σ2}.

• In the case of the “far” distribution, with constant probability, Aφ(σ1)≪ Aφ(σ2)

• We will be able to distinguish the far distribution from the uniform distribution
using constant number of samples from COND(Aφ,T).

• The constant depend on the farness parameter.

Slide 33/ 73

Testing Uniformity Using Conditional Sampling

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
a
b
il
it
y

Figure: Uφ: Uniform
Distribution

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

P
ro
b
a
b
il
it
y

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
a
b
il
it
y

An algorithm for testing uniformity using conditional sampling:

• Sample σ1 from Uφ and σ2 from Aφ. Let T = {σ1, σ2}.

• In the case of the “far” distribution, with constant probability, Aφ(σ1)≪ Aφ(σ2)

• We will be able to distinguish the far distribution from the uniform distribution
using constant number of samples from COND(Aφ,T).

• The constant depend on the farness parameter.

Slide 33/ 73

From Theory to Practice: Realizing COND Model

Challenge: How do we ask sampler for Conditional samples over T = {σ1, σ2}.

• Construct φ̂ = φ ∧ (X = σ1 ∨ X = σ2)

Almost all the constrained samplers just enumerate all the solutions when the number
of solutions is small

• Need way to construct formulas whose solution space is large but every solution
can be mapped to either σ1 or σ2.

Slide 34/ 73

From Theory to Practice: Realizing COND Model

Challenge: How do we ask sampler for Conditional samples over T = {σ1, σ2}.

• Construct φ̂ = φ ∧ (X = σ1 ∨ X = σ2)

Almost all the constrained samplers just enumerate all the solutions when the number
of solutions is small

• Need way to construct formulas whose solution space is large but every solution
can be mapped to either σ1 or σ2.

Slide 34/ 73

From Theory to Practice: Realizing COND Model

Challenge: How do we ask sampler for Conditional samples over T = {σ1, σ2}.

• Construct φ̂ = φ ∧ (X = σ1 ∨ X = σ2)

Almost all the constrained samplers just enumerate all the solutions when the number
of solutions is small

• Need way to construct formulas whose solution space is large but every solution
can be mapped to either σ1 or σ2.

Slide 34/ 73

Kernel

Input: A Boolean formula φ, two assignments σ1 and σ2, and desired number of
solutions τ
Output: Formula φ̂

• τ = |Sol(φ̂)|
• z ∈ Sol(φ̂) =⇒ z↓X ∈ {σ1, σ2}
• |{z ∈ Sol(φ̂) | z↓X = σ1}| = |{z ∈ Sol(φ̂) | z↓X ∩ σ2}|
• φ and φ̂ has similar structure

Non-adversarial Sampler Assumption: The distribution of the projection of samples
obtained from Aφ̂ to variables of φ is same as COND(Aφ, {σ1, σ2}).

Implications:

• If A is a uniform sampler for every Boolean formula, it satisfies non-adversarial
sampler assumption

• If A is not a uniform sampler, it may not necessarily satisfy non-adversarial
sampler assumption

Non-adversarial assumption allows us to use the theory of COND query model

Slide 35/ 73

Kernel

Input: A Boolean formula φ, two assignments σ1 and σ2, and desired number of
solutions τ
Output: Formula φ̂

• τ = |Sol(φ̂)|
• z ∈ Sol(φ̂) =⇒ z↓X ∈ {σ1, σ2}
• |{z ∈ Sol(φ̂) | z↓X = σ1}| = |{z ∈ Sol(φ̂) | z↓X ∩ σ2}|
• φ and φ̂ has similar structure

Non-adversarial Sampler Assumption: The distribution of the projection of samples
obtained from Aφ̂ to variables of φ is same as COND(Aφ, {σ1, σ2}).

Implications:

• If A is a uniform sampler for every Boolean formula, it satisfies non-adversarial
sampler assumption

• If A is not a uniform sampler, it may not necessarily satisfy non-adversarial
sampler assumption

Non-adversarial assumption allows us to use the theory of COND query model

Slide 35/ 73

Kernel

Input: A Boolean formula φ, two assignments σ1 and σ2, and desired number of
solutions τ
Output: Formula φ̂

• τ = |Sol(φ̂)|
• z ∈ Sol(φ̂) =⇒ z↓X ∈ {σ1, σ2}
• |{z ∈ Sol(φ̂) | z↓X = σ1}| = |{z ∈ Sol(φ̂) | z↓X ∩ σ2}|
• φ and φ̂ has similar structure

Non-adversarial Sampler Assumption: The distribution of the projection of samples
obtained from Aφ̂ to variables of φ is same as COND(Aφ, {σ1, σ2}).

Implications:

• If A is a uniform sampler for every Boolean formula, it satisfies non-adversarial
sampler assumption

• If A is not a uniform sampler, it may not necessarily satisfy non-adversarial
sampler assumption

Non-adversarial assumption allows us to use the theory of COND query model

Slide 35/ 73

Barbarik

Input: A sampler under test A, a reference uniform sampler U , a tolerance parameter
ε > 0, an intolerance parmaeter η > ε, a guarantee parameter δ and a CNF formula φ

Output: ACCEPT or REJECT with the following guarantees:

• if the generator A is ε-close (in d∞), i.e., d∞(A,U) ≤ ε then Barbarik
ACCEPTS with probability at least (1− δ).

• If the generator A is η-far in (dTV), i.e., dTV (A,U) > η and if non-adversarial
sampler assumption holds then Barbarik REJECTS with probability at least 1− δ.

Observe: Complexity independent of |Sol(φ)| in contrast to black box’s approach’s

dependence on
√
|Sol(φ)|

Slide 36/ 73

Barbarik

Input: A sampler under test A, a reference uniform sampler U , a tolerance parameter
ε > 0, an intolerance parmaeter η > ε, a guarantee parameter δ and a CNF formula φ

Output: ACCEPT or REJECT with the following guarantees:

• if the generator A is ε-close (in d∞), i.e., d∞(A,U) ≤ ε then Barbarik
ACCEPTS with probability at least (1− δ).

• If the generator A is η-far in (dTV), i.e., dTV (A,U) > η and if non-adversarial
sampler assumption holds then Barbarik REJECTS with probability at least 1− δ.

Observe: Complexity independent of |Sol(φ)| in contrast to black box’s approach’s

dependence on
√
|Sol(φ)|

Slide 36/ 73

Empirical Evaluation

Experimental Evaluation over three state of the art (almost-)uniform samplers

• UniGen3: Theoretical Guarantees of almost-uniformity

• SearchTreeSampler: Very weak guarantees

• QuickSampler: No Guarantees

The study (in 2018) that proposed Quicksampler could only perform unsound
statistical tests, and therefore, could not distinguish the three samplers

Slide 37/ 73

Results-I

Instances #Solutions UniGen3 SearchTreeSampler

Output #Samples Output #Samples

71 1.14 × 259 A 1729750 R 250

blasted case49 1.00 × 261 A 1729750 R 250

blasted case50 1.00 × 262 A 1729750 R 250

scenarios aig insertion1 1.06 × 265 A 1729750 R 250

scenarios aig insertion2 1.06 × 265 A 1729750 R 250

36 1.00 × 272 A 1729750 R 250

30 1.73 × 272 A 1729750 R 250

110 1.09 × 276 A 1729750 R 250

scenarios tree insert insert 1.32 × 276 A 1729750 R 250

107 1.52 × 276 A 1729750 R 250

blasted case211 1.00 × 280 A 1729750 R 250

blasted case210 1.00 × 280 A 1729750 R 250

blasted case212 1.00 × 288 A 1729750 R 250

blasted case209 1.00 × 288 A 1729750 R 250

54 1.15 × 290 A 1729750 R 250

Slide 38/ 73

Results-II

Instances #Solutions UniGen3 QuickSampler

Output #Samples Output #Samples

71 1.14 × 259 A 1729750 R 250

blasted case49 1.00 × 261 A 1729750 R 250

blasted case50 1.00 × 262 A 1729750 R 250

scenarios aig insertion1 1.06 × 265 A 1729750 R 250

scenarios aig insertion2 1.06 × 265 A 1729750 R 250

36 1.00 × 272 A 1729750 R 250

30 1.73 × 272 A 1729750 R 250

110 1.09 × 276 A 1729750 R 250

scenarios tree insert insert 1.32 × 276 A 1729750 R 250

107 1.52 × 276 A 1729750 R 250

blasted case211 1.00 × 280 A 1729750 R 250

blasted case210 1.00 × 280 A 1729750 R 250

blasted case212 1.00 × 288 A 1729750 R 250

blasted case209 1.00 × 288 A 1729750 R 250

54 1.15 × 290 A 1729750 R 250

Slide 39/ 73

Recap: Outline

Q1 What do distributions look like in the real world?

Q2 What properties matter to the practitioners?

Q3 Theory and Practice of Distirbution Testing

• Complexity of Distance Estimation
• Greybox Testing: Constrained Samplers

Q4 Can distribution testing influence the design of systems ?

Slide 40/ 73

Q1: Distributions in Real World: II

Constrained Random Simulation: Test Vector Generation

• Dominant methodology to test hardware systems

• Use a formula φ to encode the verification scenarios

• A Constrained Sampler A takes φ as input and returns σ ∈ Sol(φ), and ideally
ensures

Pr[σ ← A(φ)] =
1

|Sol(φ)|

Slide 41/ 73

Probabilistic Programs

• Typical programs augmented with ability to sample and condition

• X ← Sample(N , 100, 10)

• Sample from Gaussian with µ = 100 and σ2 = 10

• Observe(X < 10)

• The compiler must ensure that the value of X is less than 10.
• Allows conditioning of the distributions

Semantics: A probabilistic program P describes distribution

Who cares about Probabilistic Programs?

Facebook (HackPPL), Google(Tensorflow-probability), Uber (Pyro)
“ Probabilistic programming aims to make (probabilistic) modeling more accessible to
developers” (Facebook, 2016)

Slide 42/ 73

Q2: Properties that Matter

Grey-box Setting

• (Fast) Sampler A and a reference (but, often slow) sampler U
• Reference sampler U is certified to produce samples according to desired

distribution but is slow.

• Is the distribution generated by A, denoted by Aφ, close to that of Uφ?

Slide 43/ 73

How to Measure Equivalence

Consider two distribution P and Q over {0, 1}n.

Two Notions of Distance

• d∞ distance: maxσ∈{0,1}n |P(σ)−Q(σ)|
• The most commonly seen behavior where a developer wants to approximate
P with another distribution Q

• Almost-uniform sampling in the context of constrained random simulation

• Total Variation Distance (dTV) or L1 distance: 1
2

∑
σ∈{0,1}n |P(σ)−Q(σ)|

• Consider any arbitrary program A that uses samples from a distribution:
there is a probability distribution over output of A.

• Consider a Bad event over the output of A: such as not catching a bug.
• Let’s say A samples from P.
• Folklore: If we were to replace P with Q then the probability of Bad event

would increase/decrease at most by dTV (P,Q).

Therefore, measure closeness with respect to d∞ and farness with respect to dTV

• Checker should return Accept if two distributions are close in d∞-distance and
return Reject if two distributions are far in dTV .

Slide 44/ 73

How to Measure Equivalence

Consider two distribution P and Q over {0, 1}n.

Two Notions of Distance

• d∞ distance: maxσ∈{0,1}n |P(σ)−Q(σ)|
• The most commonly seen behavior where a developer wants to approximate
P with another distribution Q

• Almost-uniform sampling in the context of constrained random simulation

• Total Variation Distance (dTV) or L1 distance: 1
2

∑
σ∈{0,1}n |P(σ)−Q(σ)|

• Consider any arbitrary program A that uses samples from a distribution:
there is a probability distribution over output of A.

• Consider a Bad event over the output of A: such as not catching a bug.
• Let’s say A samples from P.
• Folklore: If we were to replace P with Q then the probability of Bad event

would increase/decrease at most by dTV (P,Q).

Therefore, measure closeness with respect to d∞ and farness with respect to dTV

• Checker should return Accept if two distributions are close in d∞-distance and
return Reject if two distributions are far in dTV .

Slide 44/ 73

How to Measure Equivalence

Consider two distribution P and Q over {0, 1}n.

Two Notions of Distance

• d∞ distance: maxσ∈{0,1}n |P(σ)−Q(σ)|
• The most commonly seen behavior where a developer wants to approximate
P with another distribution Q

• Almost-uniform sampling in the context of constrained random simulation

• Total Variation Distance (dTV) or L1 distance: 1
2

∑
σ∈{0,1}n |P(σ)−Q(σ)|

• Consider any arbitrary program A that uses samples from a distribution:
there is a probability distribution over output of A.

• Consider a Bad event over the output of A: such as not catching a bug.
• Let’s say A samples from P.
• Folklore: If we were to replace P with Q then the probability of Bad event

would increase/decrease at most by dTV (P,Q).

Therefore, measure closeness with respect to d∞ and farness with respect to dTV

• Checker should return Accept if two distributions are close in d∞-distance and
return Reject if two distributions are far in dTV .

Slide 44/ 73

Recap: Outline

Theory and Practice of Distirbution Testing

Probabilistic Generative Models

• Complexity of Distance Estimation for Probabilistic Generative Models

Constrained Samplers

• Greybox Testing: Constrained Samplers

• Can distribution testing influence the design of systems ?

• Constrained Samplers
• Binomial Sampler in Python

Slide 45/ 73

Product Distributions

• Represented by list of probabilities: {p1, p2, . . . pn}
• P(x) =

∏
xi=1

pi
∏
xi=0

(1− pi)

Theorem: Given two product distributions P and Q, computation of dTV (P,Q) is
#P-hard.

1 program P
2 X [1] = B e r n o u l l i (p1) ;
3 X [2] = B e r n o u l l i (p2) ;
4
5 X[n] = B e r n o u l l i (pn) ;
6 r e t u rn X;
7

1 program Q
2 Y [1] = B e r n o u l l i (q1) ;
3 Y [2] = B e r n o u l l i (q2) ;
4
5 Y[n] = B e r n o u l l i (qn) ;
6 r e t u rn Y
7

Slide 46/ 73

Product Distributions

• Represented by list of probabilities: {p1, p2, . . . pn}
• P(x) =

∏
xi=1

pi
∏
xi=0

(1− pi)

Theorem: Given two product distributions P and Q, computation of dTV (P,Q) is
#P-hard.

1 program P
2 X [1] = B e r n o u l l i (p1) ;
3 X [2] = B e r n o u l l i (p2) ;
4
5 X[n] = B e r n o u l l i (pn) ;
6 r e t u rn X;
7

1 program Q
2 Y [1] = B e r n o u l l i (q1) ;
3 Y [2] = B e r n o u l l i (q2) ;
4
5 Y[n] = B e r n o u l l i (qn) ;
6 r e t u rn Y
7

Slide 46/ 73

Product Distributions

• Represented by list of probabilities: {p1, p2, . . . pn}
• P(x) =

∏
xi=1

pi
∏
xi=0

(1− pi)

Theorem: Given two product distributions P and Q, computation of dTV (P,Q) is
#P-hard.

1 program P
2 X [1] = B e r n o u l l i (p1) ;
3 X [2] = B e r n o u l l i (p2) ;
4
5 X[n] = B e r n o u l l i (pn) ;
6 r e t u r n X;
7

1 program Q
2 Y [1] = B e r n o u l l i (q1) ;
3 Y [2] = B e r n o u l l i (q2) ;
4
5 Y[n] = B e r n o u l l i (qn) ;
6 r e t u r n Y
7

Slide 46/ 73

Testing Uniformity Using Conditional Sampling

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
a
b
il
it
y

Figure: Uφ: Uniform
Distribution

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

P
ro
b
a
b
il
it
y

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
a
b
il
it
y

An algorithm for testing uniformity using conditional sampling:

• Sample σ1 from Uφ and σ2 from Aφ. Let T = {σ1, σ2}.

• In the case of the “far” distribution, with constant probability, Aφ(σ1)≪ Aφ(σ2)

• We will be able to distinguish the far distribution from the uniform distribution
using constant number of samples from COND(Aφ,T).

• The constant depend on the farness parameter.

Slide 47/ 73

Testing Uniformity Using Conditional Sampling

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
a
b
il
it
y

Figure: Uφ: Uniform
Distribution

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

0.1
|S|

P
ro
b
a
b
il
it
y

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
a
b
il
it
y

An algorithm for testing uniformity using conditional sampling:

• Sample σ1 from Uφ and σ2 from Aφ. Let T = {σ1, σ2}.

• In the case of the “far” distribution, with constant probability, Aφ(σ1)≪ Aφ(σ2)

• We will be able to distinguish the far distribution from the uniform distribution
using constant number of samples from COND(Aφ,T).

• The constant depend on the farness parameter.

Slide 47/ 73

Barbarik

Input: A sampler under test A, a reference uniform sampler U , a tolerance parameter
ε > 0, an intolerance parmaeter η > ε, a guarantee parameter δ and a CNF formula φ

Output: ACCEPT or REJECT with the following guarantees:

• if the generator A is ε-close (in d∞), i.e., d∞(A,U) ≤ ε then Barbarik
ACCEPTS with probability at least (1− δ).

• If the generator A is η-far in (dTV), i.e., dTV (A,U) > η and if non-adversarial
sampler assumption holds then Barbarik REJECTS with probability at least 1− δ.

Observe: Complexity independent of |Sol(φ)| in contrast to black box’s approach’s

dependence on
√
|Sol(φ)|

Slide 48/ 73

Barbarik

Input: A sampler under test A, a reference uniform sampler U , a tolerance parameter
ε > 0, an intolerance parmaeter η > ε, a guarantee parameter δ and a CNF formula φ

Output: ACCEPT or REJECT with the following guarantees:

• if the generator A is ε-close (in d∞), i.e., d∞(A,U) ≤ ε then Barbarik
ACCEPTS with probability at least (1− δ).

• If the generator A is η-far in (dTV), i.e., dTV (A,U) > η and if non-adversarial
sampler assumption holds then Barbarik REJECTS with probability at least 1− δ.

Observe: Complexity independent of |Sol(φ)| in contrast to black box’s approach’s

dependence on
√
|Sol(φ)|

Slide 48/ 73

Results-I

Instances #Solutions UniGen3 SearchTreeSampler

Output #Samples Output #Samples

71 1.14 × 259 A 1729750 R 250

blasted case49 1.00 × 261 A 1729750 R 250

blasted case50 1.00 × 262 A 1729750 R 250

scenarios aig insertion1 1.06 × 265 A 1729750 R 250

scenarios aig insertion2 1.06 × 265 A 1729750 R 250

36 1.00 × 272 A 1729750 R 250

30 1.73 × 272 A 1729750 R 250

110 1.09 × 276 A 1729750 R 250

scenarios tree insert insert 1.32 × 276 A 1729750 R 250

107 1.52 × 276 A 1729750 R 250

blasted case211 1.00 × 280 A 1729750 R 250

blasted case210 1.00 × 280 A 1729750 R 250

blasted case212 1.00 × 288 A 1729750 R 250

blasted case209 1.00 × 288 A 1729750 R 250

54 1.15 × 290 A 1729750 R 250

Slide 49/ 73

Results-II

Instances #Solutions UniGen3 QuickSampler

Output #Samples Output #Samples

71 1.14 × 259 A 1729750 R 250

blasted case49 1.00 × 261 A 1729750 R 250

blasted case50 1.00 × 262 A 1729750 R 250

scenarios aig insertion1 1.06 × 265 A 1729750 R 250

scenarios aig insertion2 1.06 × 265 A 1729750 R 250

36 1.00 × 272 A 1729750 R 250

30 1.73 × 272 A 1729750 R 250

110 1.09 × 276 A 1729750 R 250

scenarios tree insert insert 1.32 × 276 A 1729750 R 250

107 1.52 × 276 A 1729750 R 250

blasted case211 1.00 × 280 A 1729750 R 250

blasted case210 1.00 × 280 A 1729750 R 250

blasted case212 1.00 × 288 A 1729750 R 250

blasted case209 1.00 × 288 A 1729750 R 250

54 1.15 × 290 A 1729750 R 250

Slide 50/ 73

Barbarik for Probabilistic Programs

• Conditioning is just inserting Observe statements!

• Input: A program under test A, a reference program generating uniform
distribution U , a tolerance parameter ε > 0, an intolerance parmaeter η > ε, a
guarantee parameter δ

Output: ACCEPT or REJECT with the following guarantees:

• if the program A specifies ε-additive uniform distribution then Barbarik
ACCEPTS with probability at least (1− δ).

• if A is η-far from a uniform generator holds then Barbarik REJECTS with
probability at least 1− δ.

• Preliminary experiments in progress

Slide 51/ 73

Outline

Theory and Practice of Distirbution Testing

Probabilistic Generative Models

• Complexity of Distance Estimation for Probabilistic Generative Models [✓]

Constrained Samplers

• Greybox Testing: Constrained Samplers [✓]

• Can distribution testing influence the design of systems ?
• Constrained Samplers
• Binomial Sampler in Python

Slide 52/ 73

Can distribution testing influence the design of systems ?

Wishlist

• Sampler should be at least as fast as STS and QuickSampler.

• Sampler should by accepted by Barbarik.

• Sampler should have impact on downstream (real world) applications.

Slide 53/ 73

CMSGen

• Exploits the flexibility CryptoMiniSat.

• Pick polarities and branch on variables at random.

• To explore the search space as evenly as possible.
• To have samples over all the solution space.

• Turn off all pre and inprocessing.

• Processing techniques: bounded variable elimination, local search, or
symmetry breaking, and many more.

• Can change solution space of instances.

• Restart at static intervals.

• Helps to generate samples which are very hard to find.

Slide 54/ 73

CMSGen

• Exploits the flexibility CryptoMiniSat.

• Pick polarities and branch on variables at random.

• To explore the search space as evenly as possible.
• To have samples over all the solution space.

• Turn off all pre and inprocessing.

• Processing techniques: bounded variable elimination, local search, or
symmetry breaking, and many more.

• Can change solution space of instances.

• Restart at static intervals.

• Helps to generate samples which are very hard to find.

Slide 54/ 73

Power of Distribution Testing-Driven Development

• Test-Driven Development of CMSGen.

• Parameters of CMSGen are decided with the help of Barbarik

• Iterative process.
• Based on feedback from Barbarik, change the parameters.

• Uniform-like-sampler.

• Lack of theoretical analysis

• We have very little idea about why SAT solvers work?
• Much less about what happens when you tweak them to make them samplers

Slide 55/ 73

Runtime Performance

0 10 20 30 40 50 60 70
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

CMSGen
STS
QuickSampler

QuickSampler STS CMSGen
33 37 52

Slide 56/ 73

Testing of Samplers

• Samplers without guarantees (Uniform-like Samplers):

• STS (Ermon, Gomes, Sabharwal, Selman,2012)

• QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)

• Sampler with guarantees:

• UniGen3 (Chakraborty, Meel, and Vardi 2013, 2014,2015)

QuickSampler STS UniGen3

ACCEPTs 0 14 50
REJECTs 50 36 0

Slide 57/ 73

Testing of Samplers

• Samplers without guarantees (Uniform-like Samplers):

• STS [EGSS12]

• QuickSampler [DLBS18]

• CMSGen

• Sampler with guarantees:

• UniGen3 [CMV13, CMV14, SGM20]

QuickSampler STS UniGen3 CMSGen

ACCEPTs 0 14 50 50
REJECTs 50 36 0 0

Slide 57/ 73

Outline

Wishlist

• Sampler should be at least as fast as STS and QuickSampler. ✓

• Sampler should by accepted by Barbarik. ✓

• Sampler should have impact on downstream (real world) applications.

Slide 57/ 73

Application I: Functional Synthesis

Holy Grail of Programming: The user states the problem, the computer solves it
(Freuder, 1996)

x1

x2

· · ·

xn

Inputs X

y1

y2

· · ·

ym

Outputs Y

Specification: Relation φ(X ,Y)

Slide 58/ 73

Application I: Functional Synthesis

Holy Grail of Programming: The user states the problem, the computer solves it
(Freuder, 1996)

x1

x2

· · ·

xn

Inputs X

y1

y2

· · ·

ym

Outputs Y

Specification: Relation φ(X ,Y)

int i = 0
while(i < n)
{

if (xi < xi+1) {
yi = xi}

else {
yi = xi+1 }

i = i+1
}

Slide 58/ 73

Application I: Functional Synthesis

Holy Grail of Programming: The user states the problem, the computer solves it
(Freuder, 1996)

x1

x2

· · ·

xn

Inputs X

y1

y2

· · ·

ym

Outputs Y

Specification: Relation φ(X ,Y)

x1
x2

x3
x4

x5
x6

y2

y1

Slide 58/ 73

Application I: Functional Synthesis

Holy Grail of Programming: The user states the problem, the computer solves it
(Freuder, 1996)

x1

x2

· · ·

xn

Inputs X

y1

y2

· · ·

ym

Outputs Y

Specification: Relation φ(X ,Y)

y1 := f1(x1, . . . , xn)
y2 := f2(x1, . . . , xn)
· · ·
ym := fm(x1, . . . , xn)

Slide 58/ 73

Application I: Functional Synthesis

State of the art approach: Manthan

Sampling + Machine Learning + Counter-example guided repair

0 50 100 150 200 250 300 350 400
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

CMSGen
QuickSampler
CryptoMiniSAT
STS
UniGen3

Slide 59/ 73

Application I: Functional Synthesis

State of the art approach: Manthan

Sampling + Machine Learning + Counter-example guided repair

0 50 100 150 200 250 300 350 400
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

CMSGen
QuickSampler
CryptoMiniSAT
STS
UniGen3

Slide 59/ 73

Application II: Combinatorial Testing

• A powerful paradigm for testing configurable system.

• Challenge: To generate test suites that maximizes t-wise coverage.

t-wise coverage: =
of t-sized combinations in test suite

all possible valid t-sized combinations

• To generate the test suites use constraint samplers.

• Experimental Evaluations:

• Generate 1000 samples (test cases).
• 110 Benchmarks, Timeout: 3600 seconds
• 2-wise coverage t = 2.

Slide 60/ 73

Application II: Combinatorial Testing

• A powerful paradigm for testing configurable system.

• Challenge: To generate test suites that maximizes t-wise coverage.

t-wise coverage: =
of t-sized combinations in test suite

all possible valid t-sized combinations

• To generate the test suites use constraint samplers.

• Experimental Evaluations:

• Generate 1000 samples (test cases).
• 110 Benchmarks, Timeout: 3600 seconds
• 2-wise coverage t = 2.

Slide 60/ 73

Combinatorial Testing: The Power of CMSGen

Higher is better

1 20 40 60 80 100 120
Benchmarks

30

40

50

60

70

80

90

100
Co

ve
ra

ge
 %

CMSGen STS QuickSampler

QuickSampler STS CMSGen
Avg. Coverage 51.5% 80.15% ∼ 100%

Slide 61/ 73

Outline

Can distribution testing influence the design of systems?

Wishlist

• Sampler should be at least as fast as STS and QuickSampler. ✓

• Sampler should by accepted by Barbarik. ✓

• Sampler should have impact on downstream (real world) applications. ✓

Slide 61/ 73

Outline

Theory and Practice of Distirbution Testing

Probabilistic Generative Models

• Complexity of Distance Estimation for Probabilistic Generative Models [✓]

Constrained Samplers

• Greybox Testing: Constrained Samplers [✓]

• Can distribution testing influence the design of systems ?
• Constrained Samplers [✓]
• Binomial Sampler in Python

Slide 62/ 73

Binomial Distribution in Python

Figure: Code snippet (Numpy version: 1.26.1 and Python version 3.9.6)

Slide 63/ 73

Inverse Transform Sampling

Ĥ−1(u) =

(
2a

(1/2− |u|)
+ b

)
u + c, ĥ−1(u) =

1

ĥ(u)
=

a

(1/2− |u|)2
+ b

α = (2.83 + 5.1/b)
√

np(1− p)

Just Implement all operations with arbitrary precision arithmetic

• Factorials need approximation, for runtime efficiency

• But approximation introduces errors

Slide 64/ 73

Inverse Transform Sampling

Ĥ−1(u) =

(
2a

(1/2− |u|)
+ b

)
u + c, ĥ−1(u) =

1

ĥ(u)
=

a

(1/2− |u|)2
+ b

α = (2.83 + 5.1/b)
√

np(1− p)

Just Implement all operations with arbitrary precision arithmetic

• Factorials need approximation, for runtime efficiency

• But approximation introduces errors

Slide 64/ 73

Inverse Transform Sampling

Ĥ−1(u) =

(
2a

(1/2− |u|)
+ b

)
u + c, ĥ−1(u) =

1

ĥ(u)
=

a

(1/2− |u|)2
+ b

α = (2.83 + 5.1/b)
√

np(1− p)

Just Implement all operations with arbitrary precision arithmetic

• Factorials need approximation, for runtime efficiency

• But approximation introduces errors

Slide 64/ 73

Le Cam’s Theorem

Le Cam’s Theorem:

∞∑
k=0

∣∣∣∣Pr[Bn,p = k]−
λke−λ

k!

∣∣∣∣ < 2np2

where λ = np. In other words,

dTV (Bn,p ,Pois(np)) ≤ np2

For certain range of parameters (n and p), sampling from Poisson distribution is closer
in total variation distance and is more efficient

Slide 65/ 73

Proposal for New Interface

Sample from Bn,p

• Find the closest distribution from which we should sample to balance total
variation distance and runtime

• Report the total variation distance (i.e., error)

Not merely return a sample but also return total variation distance

Slide 66/ 73

Runtime Performance Improvement

Figure: Comparison of the time taken by smartBinom and Baseline across 350,000 calls to (n, p)
instances.

Slide 67/ 73

Quality of Error

Figure: Upper bound estimation of the cumulative error reported by smartBinom and Baseline on
350,000 calls to (n, p) instances.

Figure: Performance comparison of smartBinom against the Baseline sampler.

Slide 68/ 73

Union of Sets

Slide 69/ 73

Experimental Results I: Runtime

Slide 70/ 73

Experimental Results I: Quality

Slide 71/ 73

Conclusion

Q1 What do distributions look like in the real world?

Ans Probability distributions are first-class objects in modern computing

Q2 What properties matter to the practitioners?

Ans Equivalence

Q3 How to develop practical scalable testers for distributions?

Ans Greybox access, which can be modeled via Conditional Sampling

Q4 Can distribution testing influence the design of systems ?

Ans Yes. It can allow us to design state of the art samplers via a different
approach. And such samplers dramatically improve downstream applications.

Slide 72/ 73

Where do we go from here?

We have just started!

• Scalable testers for distributions beyond uniform

• Scalable samplers for SMT/CSP via Test-Driven Development

• Developing the notion of counterexample for testing distributions

• How do we certify the correctness of distribution testers?

CMSGen (MIT License): https://github.com/meelgroup/cmsgen

Barbarik (MIT License): https://github.com/meelgroup/barbarik

These slides are available at https://www.cs.toronto.edu/~meel/talks.html

Slide 73/ 73

https://github.com/meelgroup/cmsgen
https://github.com/meelgroup/barbarik
https://www.cs.toronto.edu/~meel/talks.html

