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Abstract

The quantification of system reliability is fundamental to the assessment of a system’s
safety and resilience, and has been of interest to decision-makers. Since quantifying the
system reliability is shown to be computationally intractable, researchers aim to find ap-
proximations. Existing approaches to approximate reliability either suffer from poor scal-
ability or lack of correctness guarantees. Answer Set Programming (ASP) is a powerful
tool for knowledge representation that can specify complex combinatorial problems. In
recent years, the new applications of ASP have propelled the emergence of well-engineered
ASP systems. This paper proposes a new ASP counting based framework, RelNet-ASP,
to approximate or estimate the reliability of a system or network. The framework reduces
the problem of reliability estimation to an approximate model counting problem on ASP
programs, offering formal guarantees of the estimated reliability. The experimental eval-
uation demonstrates that RelNet-ASP outperforms state-of-the-art techniques in terms of
both runtime performance and accuracy.

1 Introduction

Modern societies rely on complex inter-connected networks to ensure the supply of essential
services such as power, telecommunication, food, water, and transportation. Consequently, the
analysis of the reliability of these networks is of critical importance. Broadly, the problem of
network reliability is to determine the probability that a network would behave as per intended
specifications in the presence of unreliable components [38].

In this paper, we focus on the (s, t)-reliability problem: Given a graph G = (V,E) wherein
each edge has a probability function W of being active, for two nodes s and t, what is the
probability that s and t are connected 1 (denoted as r(G, s, t,W)). The problem of network
reliability is a fundamental problem in the field of engineering. From the perspective of computer
science, the seminal work of Valiant showed the #P-completeness of network reliability problem
even under the case when every edge fails with an identical probability of 1

2 [44]. Given the
computational intractability of #P, the exact methods are limited to networks of small size or
with certain bounded properties, such as treewidth and diameter [23, 6], making it necessary to

1The techniques proposed in this paper naturally extends to the case wherein nodes also behave stochastically.
Furthermore, techniques also extend to K-terminal reliability problem wherein instead of a single source and
target node, we have a set of source and target nodes.
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develop approximate techniques for network reliability computation. Approximate techniques
have received much attention in recent years. In particular, there has been a growing interest
in probably approximately correct (PAC) methods for network reliability estimation [27] wherein
the estimate computed by the underlying techniques is within (1 + ε)-factor of the ground
truth with a confidence of at least 1− δ (defined formally in Section 2), wherein the tolerance
parameter (ε) and confidence parameter (δ) are specified by the user.

Monte Carlo methods have been proposed to attain PAC guarantees [18]; the high-level
idea is to construct a random variable whose expectation is equal to r(G, s, t,W). One such
indicator variable Y that achieves the desired objective is randomly sampling a subgraph and
then checking if s and t are connected. The standard probability arguments show that the

number of samples depends on the relative variance of Y (
σ2
Y

µ2
Y
), where σ2

Y and µY are the

variance and mean of the random variable Y , respectively. Since we have σ2
Y ̸= µY , the

number of samples required is often high when µY is close to 0, also known as rare event
situations. Several efforts have been made to make Monte Carlo techniques scalable in rare
event situations [43, 7, 20]. Another related line of work has focused on the all-terminal variant
of the problem [33], where we are interested in determining the probability if a pair of nodes
are connected; techniques developed in this context do not translate to (s, t)-reliability (or the
case of K−terminal reliability when K is not the order of magnitude of |E|).

In another line of work, Paredes et al. [12] proposed a counting-based framework,
RelNet, which aims to estimate network unreliability, which seeks to compute an estimate
1−r(G, s, t,W). Unfortunately, an approximation of network unreliability 1−r(G, s, t,W) does
not translate to an approximation of network reliability r(G, s, t,W), for (ε, δ)-guarantee. To
summarize, the design of scalable techniques for network reliability estimation remains a major
challenge.

The primary contribution of this paper is a framework, called RelNet-ASP, that reduces the
problem of network reliability to that of Answer Set Programming (ASP)-counting; ASP [37] is a
declarative programming paradigm that has its root in logic programming and non-monotonic
reasoning. An ASP program consists of logical rules defined over propositional atoms and
ASP counting seeks to count the number of solutions of an ASP program. Our investigations
are motivated by the recent surge of interest in the development of ASP counters [31]. Our
empirical evaluation demonstrates that RelNet-ASP significantly outperforms prior state-of-the-
art approaches when accounting for accuracy and runtime performance. In particular, RelNet
achieved a TAP score2 of 2262, while the nearest scalable estimator achieved a TAP score of
2853.

The remainder of the paper is organized as follows: Section 2 presents background knowledge
and notations, and Section 3 outlines prior works in network reliability estimation. Section 4
presents our approach to reduce network reliability estimation to the ASP counting problem.
Section 5 presents the proofs of theorems supporting our framework. Section 6 presents our
experiment evaluation. Finally, section 7 concludes the paper.

2 Background

Before going to the technical description, we introduce some background about propositional
satisfiability, graph theory, ASP, and weighted to unweighted model counting.

2The TAP score [2] is a performance metric assessing both accuracy and efficiency; the lower the better.
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Propositional Satisfiability. A propositional atom v takes either value 0 (false, resp.) or
1 (true resp.). A literal ℓ is either an atom (positive literal) or its negation (negated literal).
A clause C =

∨
i ℓi is a disjunction of literals. A conjunctive normal form (CNF) formula

ϕ =
∨

j Cj is a conjuction of clauses. We denote the set of propositional atoms in ϕ using
notation atoms(ϕ).

An assignment is a mapping τ : X → {0, 1}, where X ⊆ atoms(ϕ). For an atom v ∈ X, we
define τ(¬v) = 1− τ(v). An assignment τ satisfies ϕ if τ evaluates ϕ to be true.

Two clauses Ci and Ci′ are logically equivalent, denoted as Ci ↔ Ci′ , if Ci and Ci′ have the
same truth value for all assignments over atoms(Ci ∧Ci′). The logical relation between clauses
Ci and Ci′ is known as equivalence and for notational convenience, we denote an equivalence
Ci ↔ Ci′ as a tuple of Ci and Ci′ . Given an equivalence Ci ↔ Ci′ , if Ci (Ci′ resp.) consists of
only one literal, then the atoms of Ci′ (Ci resp.) define the truth value of Ci (Ci′ resp.).

Graph Theory. Let G = (V,E) be a graph, where V = Node(G) is the set of the nodes, and
E = Edge(G) is the set of edges. Each edge in e ∈ E is represented as a tuple e = (a, b), where
nodes a, b ∈ Node(G) are two endpoints of e. If there is an edge (a, b) ∈ E, then node a (b resp.)
is adjacent to node b (a resp.). A graph G′ is a subgraph of G, denoted as G′ = (V ′, E′), if
V ′ ⊆ V and E′ ⊆ E. Given two arbitrary nodes s, t ∈ Node(G′), if there exists a set of edges in
G′ that connects nodes s and t or there is a path in G′ with nodes s and t, then G′ is referred to
as (s, t)-connected subgraph where nodes s and t are the source and target nodes, respectively.
The nodes s and t are also called terminal nodes. We use the notation Subgraph(G, s, t) to
denote all (s, t)-connected subgraphs of G.

In this work, our graphs are probabilistic and the probabilities are assigned to the edges.
The probability of edge e is represented by W(e), which determines the likelihood that edge
e is active and the likelihood of edge e failing is represented by 1 − W(e). A graph is un-
weighted if ∀e ∈ Edge(G),W(e) = 1/2; otherwise, the graph is weighted. Given a subgraph
G′, Pr(G′) is defined as

∏
ei∈Edge(G′) W(ei) ×

∏
ei∈Edge(G)\Edge(G′)(1 − W(ei)), i.e., the proba-

bility of a subgraph G′ is calculated as the product of the probabilities of its edges that are
active and the complement of the probabilities of its edges that are inactive. The reliabil-
ity of graph G w.r.t. source node s, target node t, and probability over edges W, is defined
as r(G, u, v,W) =

∑
G′∈Subgraph(G,s,t) Pr(G

′), i.e., the reliability of a graph G, with respect to
source node s, target node t and edge probability W, is defined as the sum of the probabilities
of all (s, t)-connected subgraphs of G.

We introduce two well known operations on graphs. The removal of edge e on a graph
G = (V,E), denoted as G \ e, which is defined as (V,E \ {e}), i.e., deleting the edge e from
graph G. The contraction of edge e = (a, b) on a graph G = (V,E), denoted as G/e, which is
defined as (V ′, E′), where the node set V ′ = V \ {a, b} ∪ {c}, the new node c is not present in
V and the edge set E′ = E ∪ {(d, c)|d ̸∈ {a, b} and node d is either adjacent to a or b} \ {e′ ∈
E| one of the endpoints of e′ is either a or b}, i.e., contraction of edge e merges two endpoints
of e into a newly introduced node.

Answer Set Programming. An answer set program P expresses a set of logical relationships
between a set of propositional atoms. The set of atoms of program P is denoted as atoms(P ).
A normal (logic) program P is a set of rules that are expressions of the following form:

Rule r: a← b1, . . . , bm, not c1, . . . , not cn (1)

In rule r, not denotes default negation or Clark’s negation, indicating failure to prove [10].
In rule r (Equation (1)), atom ‘a’ is called the head of r, denoted Head(r) and atom set
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{b1, . . . , bm, c1, . . . , cn} is called the body of r, denoted Body(r). More specifically, the atom
sets {b1, . . . , bm} is positive body atoms of r, denoted Body(r)+ and {c1, . . . , cn} is negative body
atoms of r, denoted Body(r)−. While the body of a rule is a set of atoms, we use Body(r) to
denote the conjunction b1 ∧ . . . bm ∧ ¬c1 ∧ . . .¬cn in the following discussion, and we use the
notation Rule(.) to express a rule.

In ASP, an interpretation M ⊆ atoms(P ) lists the true atoms, i.e., an atom a is true (resp.
false) if and only if a ∈ M (resp. a ̸∈ M). An interpretation M satisfies Body(r), denoted
as M |= Body(r), if and only if Body(r)+ ⊆ M and Body(r)− ∩ M = ∅, where notation
not is interpreted classically, i.e., I |= not ci if I ̸|= ci. Thus, a rule (like Equation (1))
interprets that if atoms in Body(r)+ hold by some rules in P but not atoms in Body(r)−,
then Head(r) also holds. So, an interpretation M satisfies a rule r, denoted as M |= r, if
(M |= Body(r))→ (M |= Head(r)). An interpretation M is a model of P , denoted as M |= P , if
∀r∈Rules(P )M |= r. Given an interpretationM , theGelfond-Lifschitz (GL) reduct of a program P
is defined as PM = {Head(r)← Body(r)+|r ∈ Rules(P ),Body(r)− ∩M = ∅}. An interpretation
M is an answer set of P if M is the minimal model of PM . The answer sets of program P is
denoted as AS(P ).

The ASP counting problem is to find the number of answer sets |AS(P )| of a given program
P . Given a program P , the PAC-style ASP counting involves estimating a count c such that

Pr( |AS(P )|
1+ε ≤ c ≤ (1+ ε)× |AS(P )|) ≥ 1− δ, where ε, δ ∈ [0, 1]. Similarly, the PAC-style network

reliability estimation involves estimating r̂ such that Pr( r
1+ε ≤ r̂ ≤ (1 + ε)× r) ≥ 1− δ, where

r is the ground truth.

We use some notations from faceted answer set navigation [3]. The faceted answer set
navigation shows that for a given atom a ∈ atoms(P ) and f ∈ {a, not a} AS(P ∪ Rule(←
f)) = {τ ∈ AS(P )|τ |= Rule(← f)}, i.e., adding an integrity constraint to a program P
filters out answer sets of P that do not satisfy the integrity constraint. More specifically,
AS(P ∪ Rule(← a)) = {τ ∈ AS(P )|a ̸∈ τ} and AS(P ∪ Rule(← not a)) = {τ ∈ AS(P )|a ∈ τ}.

Clark’s completion [10] or program completion procedure provides a preliminary translation
of a normal program P into a propositional formula Comp(P ). For each atom a ∈ atoms(P ),
we compute Comp(P ) as follows:

1. If there exist rules r1, . . . , rk ∈ Rules(P ) such that Head(r1) = . . . = Head(rk) = a, then
include a propositional formula (a↔ (Body(r1) ∨ . . . ∨ Body(rk))) to Comp(P ).

2. Otherwise, add ¬a to Comp(P ).

Finally, Comp(P ) is the conjunction of all propositional formulas considered above. Note that
Comp(P ) is not syntactically equivalent to P . It is well established that an answer set of P
satisfies Comp(P ) but not vice versa [36].

However, Comp(P ) is syntactically equivalent to P for a restricted class of normal programs.
To characterize the restricted class of program, we define the positive dependency graph, denoted
DG(P ), of a program P as follows: the vertices of DG(P ) are atoms(P ) and there exists an edge
from b to a if there exists a rule r ∈ Rules(P ) such that a = Head(r) and b ∈ Body(r)+ [32]. A
program P is tight if there is no cycle in DG(P ). Otherwise, program P is non-tight. The tight
program is the restricted class of normal program having a one-to-one correspondence between
answer sets of P and the models of Comp(P ) [36].

A set of atoms L ⊆ atoms(P ) forms a loop in P if for two arbitrary atoms x, y ∈ L, there is
a path from x to y in DG(P ) and all atoms (nodes) on the path are in L. Specifically, a rule
r is an external supporting rule of a loop L in P if Head(r) ∈ L and Body(r)+ ∩ L = ∅ and
ExtRule(L) denotes the set of external supporting rules of loop L. Lin and Zhao [36] showed

273



ASP Counting Based Network Reliability Estimator Kabir and Meel

that the atoms on a loop must be supported by atoms external to the loop. Thus, the loop
formula LF(L,P ) [35] of a loop L is defined as follows:

LF(L,P ) =
( ∧
a∈L

a
)
→

∨
r∈ExtRule(L)

Body(r)

Finally, the loop formula LF(P ) of program P is defined as the conjunction of loop formulas for
all loops L in P .

Weighted to Unweighted Model Counting. The chain formula [9] is a restricted class of
propositional formulas and has been found to be useful for reducing weighted model counting
to unweighted model counting. Let we are interested in computing chain formula corresponding
to the weight of m

2k
(obtained after possible reduction), where m > 0 is a natural number, and

k < 2m is a positive odd number. Let c1, . . . , cm be the binary representation of k, where cm be
the least significant bit. Then we can formulate the chain formula ϕk,m over m propositional
atoms b1, . . . , bm using the following notation:

ϕk,m(b1, . . . , bm) = (b1C1(b2C2 . . . (bm−1Cm−1bm) . . .))

where Ci = ∨, if ci = 1, otherwise Ci = ∧. Chakraborty et al. [9] showed that the size of ϕk,m

is linear with m and chain formula ϕk,m has k satisfying assignments.
Although the chain formula is not expressed in CNF, it can be transformed into a CNF

formula by introducing a new set of Boolean atoms and equivalences. This transformation
is known as the Tseitin transformation and can be expressed in the CNF formula without
exponential increase [42].

The transformation to a chain formula ϕk,m(b1, . . . , bm) works as follows: the encoding
first introduces an equivalence and a new atom for the innermost simple Boolean expression
of ϕk,m; the simple Boolean expression is (bm−1Cm−1bm), and the equivalence is tm−1 ↔
(bm−1Cm−1bm), where tm−1 is a new propositional atom. Then the transformation introduces
another equivalence and a new atom for the second innermost simple Boolean expression of
ϕk,m (if any), namely, the equivalence is tm−2 ↔ (bm−2Cm−2(bm−1Cm−1bm)). However, a
truth value of the Boolean expression (bm−1Cm−1bm) defines the truth value of tm−1. Thus,
the new equivalence can be written as tm−2 ↔ (bm−2Cm−2tm−1). The transformation continues
in this way until the transformation encounters the simple Boolean expression b1C1t2. Thus, the
transformation generates a total ofm−2 propositional atoms (t2, . . . , tm−1) and derives a total of
m− 1 equivalences. For simplification, we introduce one additional equivalence, t1 ↔ (b1C1t2),
to the set of equivalences. Given a chain formula ϕk,m, let denote the transformation using the
notation T(ϕk,m).

The transformation introduces a new set of propositional atoms, which are logically defined
by the original set of atoms {b1, . . . , bm}. As a result, an assignment over the atom set of
{b1, . . . , bm} uniquely defines the truth value of {t1, . . . , tm−1}. For arbitrary assignment over
atom set of {b1, . . . , bm}, the truth values of ti−1 and bi−1Ci−1Oi are same, for i ∈ [1,m − 1],
where Oi is the other operand of Ci except bi−1. It follows that if an assignment τ over
{b1, . . . , bm} satisfies ϕk,m, then τ evaluates t1 to be true. Thus, ϕk,m and T(ϕk,m) ∧ {t1 ↔ 1}
have the same number of satisfying assignments. As a result, T(ϕk,m)∧ {t1 ↔ 1} preserves the
number of satisfying assignments of the original chain formula ϕk,m.

Example 1. Construct the chain formula for k = 5 and m = 3.
The binary representation of 5 using 3 bits is 101. Therefore, we have ϕk,m(b1, b2, b3) = (b1 ∨
(b2 ∧ b3)), T(ϕk,m) = {t1 ↔ (b1 ∨ t2), t2 ↔ (b2 ∧ b3)}. Finally, T(ϕk,m) ∧ {t1 ↔ 1} has 5
satisfying assignments.
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3 Related Work

Valiant [44] initiated the complexity study of the network reliability problem and showed that
the problem is #P-complete. The exact techniques are often based on the enumeration of cut
sets/ path sets to account for disjoint events [1] or the usage of recursive or online decompositions
of disjoint events [40, 43].

Monte Carlo (MC) techniques are often employed to design approximate techniques; a
straightforward design of MC techniques struggles to scale due to rare event situations. To ad-
dress the aforementioned limitation, researchers have proposed variations of MC, including mul-
tilevel splitting [21], generalized splitting [5], permutation MC-based Lomonosov’s Turnip [20],
splitting sequential MC [43], subset simulation [48], among others. The stopping rule algo-
rithm [11] is an approximation algorithm offering PAC guarantees based on Sequential analysis.
Dagum et al. [11] proposed a new algorithm based on the stopping rule algorithm by improv-
ing its sample size. The gamma Bernoulli approximation scheme [25] can calculate network
reliability with PAC guarantees and improve the running time of [11] by utilizing the central
limit theorem and achieving a lower order on the running time. Subsequently, Huber [26] pro-
posed a two-stage algorithm that combines the gamma Bernoulli approximation scheme and
the algorithm of [11] to improve the sample size further.

Advanced sampling techniques, e.g., line sampling and variance reduction method [8], em-
ploying graphical models, offer guarantee-less approaches to quantify network reliability. An-
other line of research involves statistical learning theories with numerical simulation, which
offers techniques for network reliability estimation [28]. Furthermore, specialized techniques
borrowed from data mining, such as hierarchical and unsupervised spectral clustering, com-
bined with sampling, provide valuable insights into reliability and risk assessment [47, 22, 14].

Another related line of work has focused on the problem of network unreliability, i.e., to
estimate 1− r(G, s, t,W). Paredes et al. [12] proposed a CNF model counting-based PAC-style
framework for network unreliability estimation. It is worth remarking that PAC-approximation
of 1 − r(G, s, t,W) can not be used to derive PAC-approximation of r(G, s, t,W). Akin to
CNF-based techniques, the network reliability can be computed via plausibility reasoning [16]
on ASP; however, this technique performs well particularly on lower treewidth encodings and
most encodings do not offer a lower treewidth [24].

ASP Counters The complexity study shows that ASP counting is #·co-NP-complete [16],
while the complexity drops to #P for normal programs. Various techniques exist for ASP
counting, including unfounded set detection in propositional model counters [4], dynamic pro-
gramming on tree decomposition [15], and cycle breaking from positive dependency graphs [13].
Another line of work combines hashing-based techniques with ASP solving to yield PAC-style
ASP counting [31].

4 Approach

We now discuss our primary contribution: RelNet-ASP, an ASP counting based approach to
network reliability estimation. RelNet-ASP takes in a graph G = (V,E), a probability function
over edges W, terminal nodes s and t, and computes an estimate of r(G, s, t,W).

Figure 1 provides a high-level overview of RelNet-ASP. The RelNet-ASP consists of three
phases, which we discuss below:

• (Phase 1) Given a graph G and terminal nodes(s and t), RelNet-ASP generates an ASP
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Figure 1: The architecture of RelNet-ASP.

program PG,s,t such that the answer sets of PG,s,t correspond one-to-one to the (s, t)-
connected subgraphs of G.

• (Phase 2) We encode the arbitrary edge probabilities W into ASP rules by relying on the
notion of chain formulas; the notation Che denotes the resulting ASP rules for arbitrary
edge e ∈ E.

• (Phase 3) RelNet-ASP relies on a state-of-the-art ASP counter to compute (exact/approx-
imate) estimate of |AS(PG,s,t ∧

∧
e∈E Che)|, which is normalized to return the desired

estimate of r(G, s, t,W).

In the remainder of the section, we discuss the above phases in detail:

4.1 Generate ASP Program (Phase 1)

We assume that the input graph G is unweighted, i.e., each edge has the identical probability
of 1

2 . RelNet-ASP generates a program PG,s,t such that |AS(PG,s,t)| = |Subgraph(G, s, t)|. In
program PG,s,t, capital letters (e.g., X,Y ) denote arbitrary objects and small letters denote
specific objects (e.g., s, t). The program PG,s,t uses a set of atoms to represent the nodes and
edges of the graph, the activity of an edge, as well as the reachability of a node from the source
node s. These atoms may include:

• node(X) and edge(X,Y) represent that X is a node and (X,Y) is an edge in the input
graph, respectively

• source(X) and target(Y) represent X and Y are the source and target nodes, respectively

• in(X,Y) represents that edge(X,Y) is active

• reached(X) represents that node X is reachable from the source node s

Using these atoms described above, the program PG,s,t uses a set of rules to represent the
structure of the graph, the activity of edges, and the reachability of nodes from node s.

The encoding of Listing 1 presents PG,s,t. In the encoding, the atoms in(X,Y) act as
choice variables3 of ASP [19]. The node s is the source node and the program starts graph
traversal starting from node s. The atom reached(s) is true initially, i.e., the source node s is

3In unweighted case, the atom in(X,Y) is assigned to true (i.e., edge (X,Y) is active) with probability of 0.5.
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1 % t r a n s i t i v e d e f i n i t i o n o f r e a c h a b i l i t y
2 r eached (X) ← s ou r c e (X) .
3 r eached (Y) ← i n (X,Y) , r eached (X) .
4 r eached (X) ← i n (X,Y) , r eached (Y) .
5 % ta r g e t node must be r e a c h ab l e
6 ← t a r g e t (X) , not r eached (X) .

Listing 1: Program PG,s,t

reachable from the s. Then the program transitively determines the reachable nodes from node
s (Listing 1, lines 3 and 4). These rules state that if one of the endpoints of an active edge is
reachable from s, then the other endpoint of the active edge is reachable from s. Finally, the
program adds a constraint that target node t must be reachable from node s (Listing 1, line 6).
The constraint ensures that only the connected subgraphs that include a path from the source
node s to the target node t are considered as a part of the answer sets.

K-terminal Reliability The ASP program Listing 1 can be used if there are k terminal
nodes, where k > 2. In this case, we consider one of the terminal nodes as the source node and
the remaining k−1 nodes as target nodes. The constraint in line 6 of program 1 would validate
that all k − 1 target nodes will be reachable from the source node. The constraint would be
represented by a rule that states that ∀t, t is a target, and the atom reached(t) must be true.

4.2 Chain formula in ASP (Phase 2)

In this subsection, RelNet-ASP encodes arbitrary edge probabilities relying on the concept of
chain formula. Finally, RelNet-ASP generates an ASP program for a given chain formula such
that the number of answer sets of the program is proportional to the corresponding weight of
the chain formula.

From Chain Formula to ASP Recall that the chain formula is discussed in Section 2
and a chain formula ϕk,m can be viewed as a set of equivalences T(ϕk,m). Given a chain
formula, Algorithm 1 of RelNet-ASP derives an ASP program Ch. For each equivalence of
T(ϕk,m), Algorithm 1 introduces at most two ASP rules. Recall from the chain formula
definition, for each equivalence (a, b) ∈ T(ϕk,m), the part b is either a conjunction or disjunction
of two atoms. For each equivalence of form: (a, p ∨ q) ∈ T(ϕk,m), Algorithm 1 introduces two
rules: Rule(a← p) and Rule(a← q) to Ch. For each equivalence of form: (a, p ∧ q) ∈ T(ϕk,m),
Algorithm 1 introduces one rule: Rule(a← p, q) to Ch.

There are two interesting characteristics of the Ch program. First, program Ch is a tight
program. More specifically, the positive dependency graph of Ch has directed edges from bi to
ti and from ti+1 to ti, where i ∈ [1,m − 2]. It follows that the positive dependency graph of
Ch is acyclic; thus, the rules of Ch form a tight logic program. Second, as per the construction
of Algorithm 1, the Clark completion of Ch corresponds to T(ϕk,m). As ϕk,m has k satisfying
assignments, T(ϕk,m)∧{t1 ↔ 1} has exactly k solutions. Conversely, Rewrite(ϕk,m,m, e)∧{t1 ↔
0} has exactly 2m − k solutions. As Ch is a tight program, the answer sets of Ch correspond to
the satisfying assignments of T(ϕk,m). It follows that Ch∧Rule(← not t1) has exactly k answer
sets, whereas Ch ∧ Rule(← t1) has 2

m − k answer sets.
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Algorithm 1 ChainASP(ϕk,m)

Input: ϕk,m

Output: ASP program Ch

1: for each (a, b) ∈ T(ϕk,m) do
2: if b is of form p ∨ q then
3: Ch.add(Rule(a← p))
4: Ch.add(Rule(a← q))
5: else if b is of form p ∧ q then
6: Ch.add(Rule(a← p, q))

7: return Ch

Encoding edge probabilities in RelNet-ASP RelNet-ASP employs the chain formula con-
cept in ASP (as outlined in Algorithm 1) to encode arbitrary edge probabilities. More specifi-
cally, RelNet-ASP constructs an ASP program Che, for an edge e ∈ Edge(G). If an edge e = (a, b)
has a probability W(e) = k

2m , RelNet-ASP uses Algorithm 1 to generate an ASP program Che,

which deals with the edge probability k
2m by introducing k new answer sets when in(a,b) is true,

i.e., edge(a,b) is active and 2m − k new answer sets when in(a,b) is false, i.e., edge(a,b) is not
active.

Example 2. Consider an edge e such that W(e) = 5
23 . Recall from Example 1: ϕk,m(b1, b2, b3) =

(b1 ∨ (b2 ∧ b3)). T(ϕk,m) is the conjunction of the equivalences: {t2 ↔ (b2 ∧ b3), t1 ↔ (b1 ∨ t2)}.
From T(ϕk,m), the program Che consists of the following rules: {Rule(t2 ← b2, b3),Rule(t1 ←
b1),Rule(t1 ← t2)}. Finally, Che ∧ Rule(← not t1) has 5 answer sets and Che ∧ Rule(← t1) has
3 answer sets.

4.3 From Reliability Estimation to ASP counting (Phase 3)

Algorithm 2 of RelNet-ASP reduces the network reliability estimation problem to an ASP
counting problem. The algorithm takes in a weighted graph G and terminal nodes s and t, and
generates a chain formula augmented ASP program Q. Initially, Q equals to PG,s,t and num is
0. For each edge e = (X,Y ) ∈ Edge(G) where W(e) = k

2m , the algorithm invokes Algorithm 1,
which outputs an ASP program Che (Algorithm 2, Line 5). Then the algorithm adds a new
rule: Rule(in(X,Y)← te1) to Che, augments Q with Che, and increments num by m (Algorithm 2,
Line 7 and 8). The program Q considers the probability of each of the edges; more specifically,
Q is the conjunction of PG,s,t and

∧
e∈Edge(G) Che. Finally, the algorithm returns the tuple (Q,

num). If Algorithm 2 returns (Q, num), then network reliability r(G, s, t,W) is |AS(Q)| divided
by 2num. As the network reliability r(G, s, t,W) is a constant factor of |AS(Q)|, an ASP counter
with (ε, δ) guarantees offers (ε, δ) guarantees on network reliability estimation.

5 Theoretical Analysis

In this section, we establish the correctness of our scheme. To this end, Lemma 1 establishes
the correctness of Phase 1. Finally, we combine Lemma 1 and Lemma 2 to prove the main
theorem of the paper (Theorem 1).

Lemma 1. Given a unweighted graph G, source and target nodes s and t, respectively,
|Subgraph(G, s, t)| = |AS(PG,s,t)|.
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Algorithm 2 ProcessProb(G, s, t,W)

Input: G, s, t,W
Output: Chain formula augmented ASP program

1: Q ← PG,s,t

2: num← 0
3: for each e = (X,Y ) ∈ Edge(G) do
4: compute k,m such that W(e) = k

2m

5: Che ← ChainASP(ϕk,m)
6: Che.add(Rule(in(X,Y)← te1))
7: Q.add(Che)
8: num← num+m

9: return (Q, num)

Proof. As the probability of a graph is associated with its edges, we represent a subgraph using
the set of active edges it contains. We use the notation τ↓in to refer the set of in(X,Y ) atoms
such that in(X,Y ) ∈ τ or the set of active edges under answer set τ . We use the shortforms
in/2 and reached/1 to refer to the set of active edges and reachable nodes from the source node
s, respectively. More specifically, an arbitrary set of in/2 atoms {in(X,Y )|(X,Y ) ∈ Edge(G)}
refers to a subgraph of G where the corresponding edges edge(X,Y ) are active. We consider
the following statements to proof the lemma.

S1 If τ ∈ AS(PG,s,t), then τ corresponds to a (s, t)-connected subgraph of G

S2 If τ1, τ2 ∈ AS(PG,s,t) and τ1↓in = τ2↓in, then τ1 = τ2

S3 Each subgraph has a unique set of active edges.

S4 Each (s, t)-connected subgraph of G corresponds to a unique answer set of PG,s,t

Proof of S1. For an answer set τ ∈ AS(PG,s,t), we construct a unique (s, t)-connected subgraph
G′ of the input graph G. Let G′ be the subgraph of G such that Node(G′) = Node(G) and
(X,Y ) ∈ Edge(G′) if and only if in(X,Y ) ∈ τ . More specifically, according to Listing 1,
reached(s) ∈ τ and reached(t) ∈ τ . For a node X ∈ Node(G), if reached(X) ∈ τ , then node X is
reachable in subgraph G′ from source node s because Listing 1 computes the reachable nodes
from source node s transitively and the active edges of G′ are same as the corresponding active
edges of answer set τ . Thus, the subgraph G′ is (s, t)-connected.

Proof of S2. Proof by contradiction. Assume that there are two answer sets τ1 and τ2 such
that τ1↓in = τ2↓in and τ1 ̸= τ2. Without loss of generality, assume that reached(i1) ∈ τ1 \ τ2.
Let’s say xk = reached(i1) (initially k = 1). There is a rule rk such that Head(rk) = reached(i1),
τ1 |= Body(rk) = in(i1, i2), reached(i2) and xk+1 = reached(i2) ̸∈ τ2 because if reached(i2) ∈ τ2
then reached(i1) ∈ τ2. Note that the same conclusion reached(i2) ∈ τ2 holds if Body(rk) =
in(i2, i1), reached(i2). Similarly, for xk+1, there is another rule rk+1. Thus, the atom set of {xi}
is an infinite sequence of reached/1 atoms. If each of xi is distinct, then it contradicts that
τ1 \ τ2 has at most |atoms(P )| atoms. Otherwise, xi = xj for some i < j, which follows that
there is an unfounded set between the atom set of {xi, . . . , xj}, which is a contradiction because
no answer set contains an unfounded set. Thus, there is no such xk atom.
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Proof of S3. The statement follows from the definition of subgraph.

Proof of S4. We can prove this using construction. Recall that each subgraph is a set of
in(X,Y ) atoms. For each (s, t)-connected subgraph G′, we construct a unique assignment τ
over atoms(PG,s,t) and show that τ maps to a unique answer set of PG,s,t.

Given an (s, t)-connected subgraph G′, initially we have τ = {in(X,Y )|(X,Y ) ∈
Edge(G′)} ∪ {source(s), target(t)}. We start graph traversal on G′ from source node s and
τ = τ ∪ {reached(s)}. We determine the reachable nodes from node s transitively, i.e., if one
of the endpoints of an edge e of G′ is reachable from node s, then the other endpoint of e is
also reachable from node s. If a node X ∈ Node(G′) is reachable from source node s, then
we append reached(X) to τ . Upon finishing the graph traversal on G′, we get all reachable
nodes from source node s under subgraph G′. Note that the subgraph G′ is (s, t)-connected,
so reached(t) ∈ τ .

The assignment τ satisfies all rules of PG,s,t because we traverse G′ transitively. The as-
signment τ satisfies the Clark completion of PG,s,t. Now there are two cases to consider: either
τ satisfies LF(PG,s,t) or τ does not satisfy the loop formula LF(PG,s,t, L), where L is one of
the loops of DG(PG,s,t). We show that τ is an answer set of PG,s,t by proving that τ satis-
fies LF(PG,s,t). For the purpose of contradiction, assume that there is a loop L in DG(PG,s,t)
such that τ ̸|= LF(PG,s,t, L). It is easy to verify that loop L consists of reached/1 atoms. Let
L = {reached(i1), . . . reached(ik)}. Therefore, τ |=

∧
a∈L a and τ ̸|=

∨
r∈ExtRule(L) Body(r). But

the condition contradicts to our graph traversal technique because we traverse the subgraph G′

transitively. So, there is no such loop L, which follows that τ is an answer set of PG,s,t.

To summarize, each (s, t) corresponds to a unique answer set of PG,s,t and each answer set
of PG,s,t corresponds to a unique (s, t)-connected subgraph. Thus, Lemma 1 is proved.
The following lemma is useful to prove Theorem 1.

Lemma 2. Given a graph G, terminal nodes s, t, edge probabilities W, if Algorithm 2 returns
(QG,s,t,W, num) and e = (a, b) ∈ Edge(G) is a weighted edge with W(e) = k

2m , then

|AS(QG,s,t,W)| = k × |AS(QG/e,s,t,W \ Che)|+ (2m − k)× |AS(QG\e,s,t,W \ Che)|

Proof. There is exactly one rule r = Rule(in(a, b) ← te1) ∈ Q such that Head(r) = in(a, b). If
M is an answer set of QG,s,t,W, from Clark completion semantics, we have that te1 ∈M implies
in(a,b) ∈M . Similarly, if te1 does not belong to an answer set M , then in(a,b) does not belong
to M .

atoms(Che) ∩ atoms(QG,s,t,W \ Che) = {in(a, b)}. Following the above discussion on atoms
in(a, b) and te1, we can write the following equation on the number of answer sets of QG,s,t,W:

|AS(QG,s,t,W)| = |AS(Che ∧ Rule(← te1))| × |AS(QG,s,t,W \ Che ∧ Rule(← in(a, b)))|
+ |AS(Che ∧ Rule(← not te1))| × |AS(QG,s,t,W \ Che ∧ Rule(← not in(a, b)))|

Note that the set minus operation considers a program as a set of rules and removes the
corresponding rules from a program. QG,s,t,W∧Rule(← in(a, b)) implies that in(a, b) is false, i.e.,
edge (a, b) is removed from the input graphG. On the other hand, QG,s,t,W∧Rule(← not in(a, b))
implies that in(a, b) is true, i.e., edge (a, b) is active in the input graph G, which is known as
edge contraction in graph theory. Thus, we have the following equation:

|AS(QG,s,t,W)| = (2m − k)× |AS(QG\e,s,t,W \ Che)|+ k × |AS(QG/e,s,t,W \ Che)|
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We are now ready to state the main theorem of the paper.

Theorem 1. Given a graph G, terminal nodes s, t, edge probabilities W, if Algorithm 2 returns

(QG,s,t,W, num), then r(G, s, t,W) =
|AS(QG,s,t,W)|

2num .

Proof. We use induction on the number of edges |Edge(G)|.
Base case: The theorem holds for |Edge(G)| = 0 because if there is no edge then there is
no (s,t)-connected subgraph. If there is no edge, then |AS(QG,s,t,W)| = |AS(PG,s,t)| = 0. So,
r(G, s, t,W) is 0. For |Edge(G)| = 1, assume that e1 = (a, b) ∈ Edge(G) and W(e1) = k

2m .
There are two cases to consider: (i) nodes s and t are the two endpoints of e1 and (ii) otherwise.
The case (ii) is trivial because the reliability is zero. In case (i), the two endpoints a and b are
reachable when edge e1 is active, i.e., in(a,b) is true; and according to the Clark completion, we
have that te11 is true. It follows that |AS(QG,s,t,W)| = k and the network reliability is calculated

as r(G, s, t,W) =
|AS(QG,s,t,W)|

2m = k
2m .

Induction step: Assume that the theorem is true for |Edge(G)| ≤ i (induction hypothesis).
We proof that the theorem holds for |Edge(G)| = i+1. Assume that ei+1 = (a, b) ∈ Edge(G) and
W(ei+1) =

k
2m . We use the following equation to compute the reliability of graph r(G, s, t,W):

r(G, s, t,W) = W(edge ek+1 fails)× r(G \ ek+1, s, t,W)

+W(edge ek+1 active)× r(G/ek+1, s, t,W)

=
(
1− k

2m
)
× r(G \ ek+1, s, t,W) +

k

2m
× r(G/ek+1, s, t,W)

=
1

2m
×
(
k × r(G/ek+1, s, t,W) + (2m − k)× r(G \ ek+1, s, t,W)

)
Both of the graphs G \ ek+1 and G/ek+1 have at most i edges. So, we can apply induction
hypothesis on both of them.

r(G, s, t,W) =
1

2m
×
(
k ×
|AS(QG/ek+1,s,t,W)|

2num−m
+ (2m − k)×

|AS(QG\ek+1,s,t,W)|
2num−m

)
=

1

2num
×
(
k × |AS(QG/ek+1,s,t,W)|+ (2m − k)× |AS(QG\ek+1,s,t,W)|

)

Now we can apply Lemma 2.

r(G, s, t,W) =
1

2num
× (|AS(QG,s,t,W)|)

6 Experimental Results

We implemented a prototype of RelNet-ASP that is configured to use different ASP coun-
ters: lp2sat+#CNF, aspmc+#CNF, and ApproxASP ApproxASP provides (ε, δ)-guarantees.
Another approach for ASP counting is based on translation to CNF. To this end, we have in-
corporated two standard translations from ASP to CNF: (i) lp2sat4 and (ii) aspmc [13], and the
resulting CNF formulas are fed to exact (SharpSAT-TD [34]) and approximate (ApproxMC [41])
CNF counters.

4We refer to the standard translations [29, 30] for counting answer sets by CNF counters.
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Baseline. We compare the performance of RelNet-ASP with the prior state-of-the-art tools
for network reliability estimation. As exact methods for reliability estimation, we considered
state space partition (SSP) [38], provan and ball (Cut) [39], a decomposition method based on
the binary decision diagram (BDD) [23], and ProbLog [17]. ProbLog computes the marginal
probability of a query given a probabilistic logic program. In experiment, we ran ProbLog with
Sentinal Decision Diagram as the underlying knowledge compilation tool. These methods were
chosen as they are widely used in the literature and have been proven to be effective in estimating
network reliability. In addition to these exact methods, we also compared RelNet-ASP with
several approximate methods. In particular, we compared DKLR [11] and GBAS [25], and
2-stage DKLR [26] (Huber22). In line with prior studies, we set ε = 0.8 and δ = 0.2 for all
techniques that provide (ε, δ)-guarantees.

Instances. We conducted experiments on a set of real-world graph networks. We extracted
these graph networks from power grids [46] and online social networks [45]. The dataset com-
prised 710 undirected graph networks, with a maximum of 1000 nodes and 1500 edges. In line
with the previous research on network reliability estimation [12], we assumed that each edge
had a probability of 1

8 . For each graph network, we randomly chose two nodes as terminal
nodes to estimate network reliability.

Objective. The objective of the experimental evaluation was to assess the performance of
RelNet-ASP in terms of runtime and accuracy. We compare the performance of RelNet-ASP
against several state-of-the-art techniques to compute network reliability: these techniques
vary in the accuracy of their estimates. It is crucial to use a metric that captures both accuracy
and runtime performance. Therefore, we used the Time Accuracy Penalty (TAP) score [2] as
the metric for comparison.

The Time Accuracy Penalty (TAP) score utilizes a reliable dataset, which is a set of instances
with known ground truth5. To compute the ground truth, we applied exact network reliability
methods with a memory capacity of 16 GB and a time limit of 10000 seconds to each instance.
Finally, we could construct a reliable dataset consisting of 171 instances. Our adapted κ-TAP
score follows the definition of TAP score; for a given tool and an instance, the κ-TAP score is
defined as follows:

κ-TAP(t, i) =


2× T , for timeout or memout or error

t+ T × R
κ , for R < κ

2× T − (T − t)× exp(κ−R) for R ≥ κ

where κ = 1 + ε, t is the time to estimate reliability, T = 3600 is the timeout (in seconds),
R = max( r̂r ,

r
r̂ ) is the relative error, and r and r̂ are ground truth and estimated reliability,

respectively. We use the term TAP to refer κ-TAP score in the following discussion.
The experimental results demonstrate that RelNet-ASP, with ApproxASP as the underlying

ASP counter, outperforms existing reliability estimators in terms of both runtime and accuracy
metrics. Current estimators typically prioritize either higher accuracy or runtime efficiency, but
RelNet-ASP strikes a balance between the two, rendering it a promising technique for network
reliability estimation.

5The TAP score of [2] relies on conjectured value of Z. However, our experimental setup has no reliable
algorithm. Thus, we rely on instances having known ground truth.
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(a) Number of solved instances; the higher the better.

(b) TAP score; the lower the better.

Figure 2: The performance comparison of RelNet-ASP with other network reliability estimators.

Environmental Settings. All experiments were carried out on a high-performance computer
cluster, where each node consists of an 2xE5-2690v3 CPU running with 2x12 real cores and
96GB of RAM. The runtime was limited to 3600 seconds and the memory limit was to limited
to 4GB.

6.1 Performance Analysis of RelNet-ASP

Table 1 compares the performance of RelNet-ASP with baseline techniques. We compare the
performance of the techniques in terms of three metrics: the number of solved instances, ob-
served tolerance, and TAP score. The observed tolerance is defined as max( rr̂ −1, r̂

r −1), where
r and r̂ are the ground truth and estimated reliability, respectively. For better visualization,
the performance comparison is shown in bar plots in Figure 2.

From Table 1, it is clear that while GBAS is able to count for more instances but the runtime
performance comes at the cost of accuracy – this observation is consistent in the previous anal-
ysis of Monte Carlo methods. On the other hand, ProbLog achieves the lowest TAP score, but
its scalability is limited due to the complexity of exact counting. However, among approximate
methods, RelNet-ASP achieves the lowest TAP score. Therefore, RelNet-ASP achieves a good
balance between the two when considering both runtime performance and accuracy.

Table 2 illustrates the performance of RelNet-ASP w.r.t. different underlying ASP counters.
The table demonstrates that ApproxASP outperforms other underlying approximate answer
set counters in terms of performance. Furthermore, RelNet-ASP, in conjunction with exact
answer set counters (e.g., lp2sat+SharpSAT-TD and aspmc+SharpSAT-TD), is able to output
the ground truth of network reliability, indicating the validity of RelNet-ASP as an estimator
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Exact methods Approximate methods

ProbLog SSP Cut BDD GBAS DKLR Huber22 RelNet-ASP

Solved (710) 164 100 38 92 635 460 567 587

Tolerance (avg) 0 0 0 0 0.423 0.078 0.132 0.036

TAP (avg) 428 3133 5583 3442 3198 2972 2853 2262

Table 1: The performance of RelNet-ASP compared to different reliability estimators.

for network reliability.

RelNet-ASP

aspmc lp2sat

SharpSAT-TD ApproxMC SharpSAT-TD ApproxMC ApproxASP

Solved (710) 91 214 78 474 587

Tolerance (avg) 0 0.065 0 0.076 0.036

TAP (avg) 3630 2568 3982 2452 2262

Table 2: The performance of RelNet-ASP w.r.t. different underlying ASP counters.

7 Conclusion

The study has introduced a novel approach for estimating network reliability by combining ASP
counting and theories derived from weighted model counting. The proposed tool, RelNet-ASP,
leverages the expressive modeling capabilities of ASP and takes advantage of the latest advance-
ments in ASP counting techniques. RelNet-ASP offers a fresh approach to weighted answer set
counting. The experimental evaluation demonstrates the scalability of RelNet-ASP in terms of
accuracy and efficiency, outperforming existing tools for network reliability estimation. These
findings underscore the potential of ASP as a powerful formalism for reliability analysis.
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