
On Almost-Uniform Generation of SAT Solutions:
The power of 3-wise independent hashing

Remi Delannoy and Kuldeep S. Meel
School of Computing, National University of Singapore, Singapore

Abstract
Given a Boolean formula 𝜑 and a distribution parameter 𝜀,
the problem of almost-uniform generation seeks to design
a randomized generator such that every solution of 𝜑 is
output with probability within (1+𝜀)-factor of 1

|𝑠𝑜𝑙 (𝜑) | where
𝑠𝑜𝑙 (𝜑) is the set of all the solutions of 𝜑 . The prior state of
the art scheme due to Jerrum, Valiant, and Vazirani, makes
O(𝑛2 log𝑛+𝑛 log𝑛 log 𝜀−1) calls to a SAT oracle and employs
2−wise independent hash functions.

In this work, we design a new randomized algorithm that
makes O(𝜀−1 + log𝑛 log 𝜀−1) calls to a SAT oracle and em-
ploys 3−wise independent hash functions. The widely used
2−wise independent hashing is tabulation hashing proposed
by Carter and Wegman. Since this classical scheme is also
3−wise independent, we observe that practical implementa-
tion of our technique does not incur additional overhead. We
demonstrate that theoretical improvements translate to prac-
tice; in particular, we conduct a comprehensive study over
562 benchmarks and demonstrate that while JVV would time
out for 544 out of 562 instances, our proposed scheme can
handle all the 562 instances. To the best of our knowledge,
this is the first almost-uniform generation scheme that
can handle practical instances from real-world applications.
We also present a nuanced analysis focusing on the both the
size of SAT queries as well as the number of queries.
ACM Reference Format:
Remi Delannoy and Kuldeep S. Meel. 2022. On Almost-Uniform
Generation of SAT Solutions: The power of 3-wise independent
hashing. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction
Let 𝜑 denote a Boolean formula in conjunctive normal form
(CNF), and let 𝑋 be the set of variables appearing in 𝐹 . Let

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

𝑛 = |𝑋 |. A truth assignment 𝜎 maps variables in 𝑋 to 0 or 1.
A satisfying assignment or witness of 𝐹 is an assignment that
makes 𝜑 evaluate to true. We denote the set of all witnesses
of 𝜑 by 𝑠𝑜𝑙 (𝜑). We use Pr [X] to denote the probability of
event X. In this paper, we consider the following problem:

Almost-Uniform Generation for Boolean Formulas
Input Formula 𝜑 and parameter 𝜀
Output 𝑦 ∈ 𝑠𝑜𝑙 (𝜑) ∪ {⊥}. Let Ret be the event that 𝜎 ∈

𝑠𝑜𝑙 (𝜑) is output. Then,
1

(1 + 𝜀) |𝑠𝑜𝑙 (𝜑) | ≤ Pr[𝜎 is output | Ret] ≤ 1 + 𝜀
|𝑠𝑜𝑙 (𝜑) |

For some constant 𝑐, Pr[Ret] > 𝑐

The problem of almost-uniform generation was first con-
sidered by Jerrum, Valiant, and Vazirani [10] who showed
that almost-uniform generation can be achieved in prob-
abilistic polynomial time given access to an approximate
counter, which in turn employs a SAT oracle. In particular,
the JVV algorithm1 makes O(𝑛2 log𝑛 +𝑛 log𝑛 log 𝜀−1)) calls
to a SAT oracle (defined formally in Section 2) and uses 2-
wise independent hash functions. The work of Jerrum et
al. also considered the stricter notion of uniform genera-
tion (wherein 𝜀 = 0) and showed that uniform generation
can be accomplished in probabilistic polynomial time given
access to Σ𝑃2 oracle. Subsequently, Bellare, Goldreich, and
Petrank [2] showed that uniform generation can be achieved
in probabilistic polynomial time given access to NP oracle.
In particular, their proposed procedure, henceforth referred
to as BGP, makes O(𝑛2 log𝑛) calls to SAT oracle but requires
𝑛−wise independent hash functions. One can express 𝑡−wise
independent hash functions with polynomial of degree 𝑡 over
𝐺𝐹 (2𝑛). The high degree of polynomials make computations
over them expensive and therefore, one would ideally like to
work with polynomials of as small degree as possible. There-
fore, from theoretical perspective, one wonders whether we
can design algorithmic procedure for almost-uniform genera-
tion that makes fewer queries to SAT oracle and requires hash
functions with smaller independence.
The need for efficient algorithms is exacerbated by the

wide ranging applications of uniform sampling in diverse
domains such as pathogen transmission inference in bioinfor-
matics [17], constrained-random simulation for bug discov-
ery for software and hardware [15], probabilistic inference
1We use initials of the authors to refer to the procedure proposed in their
work

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Remi Delannoy and Kuldeep S. Meel

for graphical models [5], and the like. In all such applications,
the practical implementation of uniform generators replace
SAT oracle with a state of the art SAT solver. Therefore, one
would ideally like to make as fewer calls to a SAT oracle (a
SAT solver in practice) as possible and use hash functions
with as small independence as possible.

1.1 Our Results
The key contribution of this work is to establish the following
two theorems:

Theorem 1.1. Given access to SAT oracle, for all 𝜀 > 0, there
exists a probabilistic polynomial time almost-uniform genera-
tion procedure for Boolean Formulas that makes O(𝜀−1+ log𝑛 ·
log 𝜀−1) queries to SAT oracle and uses 3−wise independent
hashing.

If given access to only 2−wise independent hash family,
we obtain the following:

Theorem 1.2. Given access to SAT oracle, for all 𝜀 > 12, there
exists a probabilistic polynomial time almost-uniform gener-
ation procedure for Boolean Formulas that makes O(log𝑛 ·
log

(1
𝜀−1

)
) queries to SAT oracle and uses 2−wise independent

hashing.

To put our results in the context of existing work, we
summarize our results along with existing results in Table 3.

In typical use cases of uniform sampling, 𝜀 is set to a small
constant. Therefore, from practical perspective, for a fixed
𝜀, we improve the complexity of almost-uniform generation
from O(𝑛2 log𝑛) to O(log𝑛) while requiring 3−wise inde-
pendence instead of 2−wise independence.

It is worth noting that the standard construction of 𝑡−wise
independent hash function is a random 𝑡 − 1 degree poly-
nomial in a large enough prime field. But thankfully, for
small constant independence, more efficient constructions
are known. In particular, the tabulation-based hashing dat-
ing back to Carter and Wegman [4] is known to be 3−wise
(and hence, 2-wise) independent [12]. Formally, a random
hash function belonging to tabulation-based hashing ℎ :
{0, 1}𝑛 ↦→ {0, 1}𝑚 can be constructed as ℎ(𝑋) = A𝑋 + b
where A is a𝑚 × 𝑛 matrix while b is𝑚 × 1 0-1 vector and
each entry of A and b is either 0 or 1 with equal proba-
bility (i.e., 1/2). Tabulation-based scheme is shown to be
significantly faster than alternative construction using de-
gree 2-polynomials [16]. The availability of hash functions
that can be described using linear function over GF(2) plays
a consequential role in practical implementation of the tech-
niques.

It is worth emphasizing that we consider a salient strength
of this paper is the simplicity of the algorithm including
usage of simple data structures. Furthermore, the associ-
ated analysis takes a different route in comparison to prior
2It is perhaps worth remarking that 𝜀 > 1 is not a typo and the problem is
not trivial for the case when 𝜀 > 1

work [2, 8, 10]. In particular, in our view, we offer a much
simpler and intuitive analysis methodology in comparison
to prior work. Another important contribution of our work
is a nuanced complexity analysis, presented in Section 6,
that seeks to capture both time and space complexity of
SAT queries; such an analysis is inspired from the practical
behavior of SAT solvers.
To illustrate the practical impact of improvement due to

our results 3, we implemented the three samplers wherein
we employed the state of the art SAT solver, CryptoMiniSAT,
to perform SAT calls. Our empirical evaluation over 562
benchmarks show that while our algorithm can successfully
sample within one hour for all such instances, the algorithms
BGP timed out on all the instances and JVV timed out on
544 out of 562 instances.

The rest of the paper is organized as follows: In Section 2,
we introduce the basic notations and preliminaries. In Sec-
tion 3, we present background overview of inner workings of
JVV and BGP to put our contribution in context. We present
the primary technical contribution of this paper in Section 4.
In Section 5, we discuss how our proposed scheme can be
extended to handle arbitrary NP relations. In Section 7, we
provide empirical evidence to demonstrate that the theo-
retical improvements lead to significant improvements in
practice. We finally conclude in Section 8.

2 Preliminaries
In this section, we will state basic notations and preliminar-
ies.

2.1 Boolean Formulas
Let 𝜑 denote a Boolean formula in conjunctive normal form
(CNF), and let 𝑋 be the set of variables appearing in 𝜑 . Let
𝑛 = |𝑋 |. A satisfying assignment or witness of 𝜑 is an assign-
ment that makes 𝜑 evaluate to true. We denote the set of all
witnesses of 𝜑 by 𝑠𝑜𝑙 (𝜑).

SAT Oracle
In this work, we assume access to a SAT oracle that takes
in a formula 𝜑 and returns a satisfying assignment 𝜎 if 𝜑
is satisfiable and ⊥ is 𝜑 is unsatisfiable. The model of SAT
oracle captures the behavior of the modern SAT solvers.
Since the problem of satisfiability is self-reducible, one can
easily show that the our model of SAT oracle can be linearly
(in 𝑛) simulated via the model of NP decision oracle, which
returns Yes or No.

BSAT Procedure
In this work, we use the gadget of BSAT, which was intro-
duced by Bellare et al in [2]. Formally, give a formula 𝜑 and

3We are aware that a typical LICS paper may not expect experiments but
wish to demonstrate that improvements in theory also translate to signifi-
cant impact in practice.

On Almost-Uniform Generation of SAT Solutions Conference’17, July 2017, Washington, DC, USA

SAT Queries Indep. Notes
BGP [2] O(𝑛2 log𝑛) n 𝜀 = 0
CMV [8] O(1

(𝜀−1.71)2 + log𝑛) 3 𝜀 > 1.71
JVV [10] O(𝑛2 log𝑛 + 𝑛 log𝑛 log 𝜀−1) 2 𝜀 > 0

Theorem 1.1 O(𝜀−1 + log𝑛 · log 𝜀−1) 3 𝜀 > 0
Theorem 1.2 O(log𝑛 · log(1

𝜀−1)) 2 𝜀 > 1
Table 1. Almost-uniform generators along with the number of queries and the independence of hash functions where 𝑛 = |𝑋 |

threshold 𝑡 , BSAT returns a set of solutions 𝑊 such that
|𝑊 | =𝑚𝑖𝑛(𝑡, |𝑠𝑜𝑙 (𝜑) |). The following proposition character-
izes the complexity of BSAT.

Proposition 1. BSAT can be implemented in polynomial
time given access to a SAT oracle and makes O(𝑡) calls to SAT
oracle.

Proof. The following procedure suffices:
1: counter← 0
2: while counter ≤ 𝑡 do
3: 𝜎 ← SAT(𝜑)
4: if 𝜎 ≠ ⊥ then
5: counter← counter+1
6: 𝜑 ← 𝜑 ∧ (𝑋 ≠ 𝜎)
7: else
8: break
9: return counter

□

2.2 Approximate Model Counting
A problem closely related to almost-uniform generation is
that of approximate model counting. Given a CNF formula
𝜑 , a tolerance 𝜃 > 0 and a confidence parameter 𝛿 ∈ (0, 1], a
probabilistic approximate model counter ApproxCount(·, ·, ·)
ensures that

Pr[|𝑠𝑜𝑙 (𝜑) |1 + 𝜃 ≤ ApproxCount(𝜑, 𝜃, 𝛿) ≤ (1 + 𝜃) |𝑠𝑜𝑙 (𝜑) |]

≥ 1 − 𝛿.

We will employ ApproxCount as a gadget and the follow-
ing theorem establishes the runtime complexity.

Proposition 2. [3, 21] Given a CNF formula 𝜑 over 𝑛 vari-
ables, tolerance 𝜃 > 0 and a confidence parameter 𝛿 ∈ (0, 1],
there exists a probabilistic approximate model counter that
runs in probabilistic polynomial time given access to a SAT
oracle and makes O(log(𝑛/𝜃) log(1/𝛿)) calls to SAT oracle.

Proof. Wewill use the procedure ApproxMC as a subroutine;
the following claim captures the complexity of ApproxMC
as stated in Theorem 4 of [9]:

Claim 1. Given a CNF formula 𝜑 over 𝑛 variables, tolerance
𝜃 > 0 and a confidence parameter 𝛿 ∈ (0, 1], ApproxMC runs
in probabilistic polynomial time given access to a SAT oracle

and makes O(log(𝑛) · 1
𝜃 2 · log(1/𝛿)) calls to SAT oracle, and

returns an estimate 𝑐 such that

Pr
[
|𝑠𝑜𝑙 (𝜑) |
1 + 𝜃

≤ 𝑐 ≤ (1 + 𝜃) |𝑠𝑜𝑙 (𝜑) |
]
≥ 1 − 𝛿

Given a formula 𝜑 over 𝑛 variables. We first construct
another formula 𝜓 such that 𝜓 is essentially 𝑡 copies of 𝜑
where 𝑡 > log 1

1+𝜃 . Formally, let 𝜑 be defined on the set of
variables 𝑋 (1) such that 𝑛 = |𝑋 (1) |. We now create another
(𝑡 − 1) sets of fresh variables, denoted by 𝑋 (2) , . . . 𝑋 (𝑡) , such
that each of these sets have 𝑛 variables. Formally, |𝑋 (1) | =
|𝑋 (2) | = . . . |𝑋 (𝑡) | = 𝑛. We can now define𝜓 as follows:

𝜓 := 𝜑 (𝑋 (1)) ∧ 𝜑 (𝑋 (1) ↦→ 𝑋 (2)) · · · ∧ 𝜑 (𝑋 (1) ↦→ 𝑋 (𝑡))

Where 𝑋 (1) ↦→ 𝑋 (𝑖) means that we substitute the vari-
ables of the set 𝑋 (1) by the variables of the set 𝑋 (𝑖) in the
formula. Note that |𝑠𝑜𝑙 (𝜓) | = |𝑠𝑜𝑙 (𝜑) |𝑡 . Next, we compute
an estimate initEst = ApproxMC(𝜓, 1, 𝛿). Now our estimate
of the |𝑠𝑜𝑙 (𝜑) | is simply (initEst)1/𝑡 . Note that the number
of calls to SAT oracle is O(log(𝑛/𝜃) log(1/𝛿)). It is probably
worth emphasizing that the trick of creating multiple copies
is fairly standard, and is indeed used in Figure 1 of [3] as
well.

□

2.3 𝑘-wise Independent Hashing
Let 𝑛,𝑚 ∈ N and H(𝑛,𝑚) ⊆ {ℎ : {0, 1}𝑛 → {0, 1}𝑚} be a
family of hash functions mapping {0, 1}𝑛 to {0, 1}𝑚 . We use
ℎ

𝑅←− H(𝑛,𝑚) to denote the probability space obtained by
choosing a function ℎ uniformly at random fromH(𝑛,𝑚).

Definition 1. A family of hash functionsH(𝑛,𝑚) is 𝑘−wise
independent if for all distinct 𝑦1, 𝑦2, · · ·𝑦𝑘 ∈ {0, 1}𝑛 and

∀𝛼1, 𝛼2, · · ·𝛼𝑘 ∈ {0, 1}𝑚, ℎ
𝑅←− H(𝑛,𝑚),

Pr[(ℎ(𝑥1) = 𝛼1) ∧ · · · ∧ (ℎ(𝑥𝑘) = 𝛼𝑘)] =
(
1
2𝑚

)𝑘
We are interested in the set of elements of 𝑠𝑜𝑙 (𝜑) mapped

to cell 𝛼 byℎ, denotedCell⟨𝜑,ℎ,𝛼 ⟩ and its cardinality. Formally,
Cell⟨𝜑,ℎ,𝛼 ⟩ = {𝑦 | 𝑦 ∈ 𝑠𝑜𝑙 (𝜑) and ℎ(𝑦) = 𝛼}. In our work, we
will be interested in a fixed 𝛼 and for simplicity, we will fix
𝛼 = 0. We will use shorthand Cnt⟨𝜑,ℎ⟩ to denote |Cell⟨𝜑,ℎ,0⟩ |.

Typically, higher the value of 𝑘 , stronger one can obtain
concentration bounds on the random variable Cnt⟨𝜑,ℎ⟩ . In

Conference’17, July 2017, Washington, DC, USA Remi Delannoy and Kuldeep S. Meel

particular, the concentration bounds of the following form
are typically obtain:

Pr
[��Cnt⟨𝜑,ℎ⟩ − E[Cnt⟨𝜑,ℎ⟩]�� ≥ 𝛽E[Cnt⟨𝜑,ℎ⟩

]
≤ 𝑓 (E[|Cnt⟨𝜑,ℎ⟩], 𝑘, 𝛽)

The standard concentration bounds lead to 𝑓 (E[|Cnt⟨𝜑,ℎ⟩ |],
𝑘, 𝛽) such that 𝑓 is monotonically decreasing in𝑘, 𝛽, E[|Cnt⟨𝜑,ℎ⟩ |].

The following proposition concerning 2-wise and 3-wise
hash functions is important in our analysis

Proposition 3. Given a 2-wise independent hash family𝐻 (𝑛,𝑚),
for ℎ

𝑅←− 𝐻 (𝑛,𝑚),∀𝜎 ∈ 𝑠𝑜𝑙 (𝜑),∀𝛼 ∈ {0, 1}𝑚

1. E[Cnt⟨𝜑,ℎ⟩] = |𝑠𝑜𝑙 (𝜑) |
2𝑚

2. E
[
Cnt⟨𝜑,ℎ⟩

�� ℎ(𝜎) = 0
]
= 1 + |𝑠𝑜𝑙 (𝜑) |−12𝑚

3. 𝑉𝑎𝑟
[
Cnt⟨𝜑,ℎ⟩

]
=
|𝑠𝑜𝑙 (𝜑) |

2𝑚 − |𝑠𝑜𝑙 (𝜑) |22𝑚 ≤ E[Cnt⟨𝜑,ℎ⟩]
4. If𝐻 (𝑛,𝑚) is also a 3-wise independent hash family, then
𝑉𝑎𝑟 [Cnt⟨𝜑,ℎ⟩ | ℎ(𝜎) = 𝛼] = |𝑠𝑜𝑙 (𝜑) |−1

2𝑚 − |𝑠𝑜𝑙 (𝜑) |−122𝑚 ≤
E[Cnt⟨𝜑,ℎ⟩ | ℎ(𝜎) = 0]

Proof. ∀𝜔 ∈ 𝑠𝑜𝑙 (𝜑), let 𝛾𝜔,𝛼 be the indicator variable of the
event ℎ(𝜔) = 𝛼 .

𝛾𝜔,𝛼 =

{
1 if ℎ(𝜔) = 𝛼

0 otherwise

Since Cnt⟨𝜑,ℎ⟩ =
∑

𝜔 ∈𝑠𝑜𝑙 (𝜑) 𝛾𝜔,𝛼 , therefore,

E[Cnt⟨𝜑,ℎ⟩] =
∑

𝜔 ∈𝑠𝑜𝑙 (𝜑)
E[𝛾𝜔,𝛼] =

∑
𝜔 ∈𝑠𝑜𝑙 (𝜑)

Pr[ℎ(𝜔) = 𝛼]

=
|𝑠𝑜𝑙 (𝜑)
2𝑚

Given ℎ(𝜎) = 𝛼 , we have 𝛾𝜎,𝛼 = 1. Therefore,

E[[Cnt⟨𝜑,ℎ⟩ | ℎ(𝜎) = 𝛼] = 1 + |𝑠𝑜𝑙 (𝜑) | − 12𝑚
The variance is 𝑉𝑎𝑟 [Cnt⟨𝜑,ℎ⟩] =

∑
𝜔 ∈𝑠𝑜𝑙 (𝜑) 𝑉𝑎𝑟 [𝛾𝜔,𝛼] +∑

𝜔≠𝜔′ 𝐶𝑜𝑣 [𝛾𝜔,𝛼 , 𝛾𝜔′,𝛼]. We have 𝑉𝑎𝑟 [𝛾𝜔,𝛼] = 1
2𝑚 (1 −

1
2𝑚).

Then, let us compute the covariance
𝐶𝑜𝑣 [𝛾𝜔,𝛼 , 𝛾𝜔′,𝛼] = Pr[ℎ(𝜔) = 𝛼 ∧ ℎ(𝜔 ′) = 𝛼] − Pr[ℎ(𝜔) =
𝛼] Pr[ℎ(𝜔 ′) = 𝛼]
= 1

22𝑚 −
1
2𝑚

1
2𝑚 = 0. Thus, we have𝑉𝑎𝑟 [Cnt⟨𝜑,ℎ⟩] = |𝑠𝑜𝑙 (𝜑) |

2𝑚 −
|𝑠𝑜𝑙 (𝜑) |
22𝑚
Also, observe that if 𝐻 (𝑛,𝑚) is 3-wise independent hash

family, then,
𝑉𝑎𝑟 [Cnt⟨𝜑,ℎ⟩ | ℎ(𝜎) = 𝛼] = ∑

𝜔 ∈𝑠𝑜𝑙 (𝜑)\{𝜎 }𝑉𝑎𝑟 [𝛾𝜔,𝛼]+∑
𝜔≠𝜔′ 𝐶𝑜𝑣 [𝛾𝜔,𝛼 , 𝛾𝜔′,𝛼 | 𝛾𝜎,𝛼 = 1]. The conditional covari-

ance becomes
𝐶𝑜𝑣 [𝛾𝜔,𝛼 , 𝛾𝜔′,𝛼 |𝛾𝜎,𝛼 = 1]
=

Pr[ℎ (𝜔)=𝛼,ℎ (𝜔′)=𝛼,ℎ (𝜎)=𝛼]
Pr[ℎ (𝜎)=𝛼] − Pr[ℎ (𝜔)=𝛼,ℎ (𝜎)=𝛼]

Pr[ℎ (𝜎)=𝛼]
Pr[ℎ (𝜔′)=𝛼,ℎ (𝜎)=𝛼]

Pr[ℎ (𝜎)=𝛼]
= 2𝑚

23𝑚 −
2𝑚
22𝑚

2𝑚
22𝑚 = 1

22𝑚 −
1

22𝑚 = 0
Thuswe have𝑉𝑎𝑟 [Cnt⟨𝜑,ℎ⟩ |ℎ(𝜎) = 𝛼] = |𝑠𝑜𝑙 (𝜑) |−1

2𝑚 − |𝑠𝑜𝑙 (𝜑) |−122𝑚
□

The standard construction of 𝑘−wise independent hash
families consists of a degree 𝑘 − 1 polynomially over a large
enough prime field or 𝐺𝐹 (2𝑛). But thankfully, for small con-
stant independence, efficient constructions are known. In
particular, the tabulation-based hashing proposed by Carter
and Wegman [4] is known to be 3−wise (and hence, 2-wise)
independent [12]. Formally, the tabulation-based scheme can
be defined as follows:

Proposition 4. Let 𝐻 be the set of all functions of the form
ℎ(𝑋) = A𝑋 + b where A ∈ 𝐺𝐹 (2)𝑚×𝑛 and 𝑏 ∈ 𝐺𝐹 (2)𝑚 . Note
that a uniformly random ℎ ∈ 𝐻 can be constructed by setting
each entry inA and b to 0 or 1 independently with probability 1

2
each. Then 𝐻 is 3-wise independent, i.e., all distinct 𝑦1, 𝑦2, 𝑦3 ∈
{0, 1}𝑛 and ∀𝛼1, 𝛼2, 𝛼3 ∈ {0, 1}𝑚, ℎ

𝑅←− H(𝑛,𝑚),

Pr[(ℎ(𝑥1) = 𝛼1) ∧ (ℎ(𝑥2) = 𝛼2) ∧ (ℎ(𝑥3) = 𝛼3)] =
1

23𝑚
Tabulation-based scheme is shown to be significantly faster

than alternative construction using degree 2-polynomials [16].

3 Background
To put our contributions in context, we review the prior
approaches to (almost-)uniform generation due to Bellare,
Goldreich, and Petrank (referred to as BGP approach) and
Jerrum, Valiant, and Vazirani (referred to as JVV approach).

JVV approach is based on the observation that for a fixed
ordering of variables, say 𝑥1 ≻ 𝑥2.... ≻ 𝑥𝑛 , we can set 𝑥1 to 0
with probability |𝑠𝑜𝑙 (𝜑∧(𝑥1=0)) ||𝑠𝑜𝑙 (𝜑) | . Then, once we have set 𝑥1 to
𝑣1, we can set𝑥2 to 0with probability |𝑠𝑜𝑙 (𝜑∧𝑥1=𝑣1∧(𝑥2=0)) ||𝑠𝑜𝑙 (𝜑∧(𝑥1=𝑣1)) | , and
accordingly we can set rest of the variables. It is easy to see
that if we have access to an exact counter, then the scheme
would give rise to an exact counter, the above scheme would
lead to a uniform generator. Interestingly, the careful analysis
due to Jerrum et al’s also demonstrated that given access to
a probabilistic approximate model counter the above process
would lead to almost uniform generator wherein each call to
counter is called with 𝜃 = 1/𝑛 and 𝛿 = 𝜀

2𝑛+2 (2𝑛+1) . There are
two shortcomings of the above approach: (1) the procedure
invokes a counter 2𝑛 times, and (2) each of the invokations
of approximate counter employ very small values of 𝜃 and 𝛿 .
The BGP approach seeks to circumvent multiple invoka-

tions of counter and instead seeks to directly employ the hash-
ing paradigm. The key idea is to use a 𝑘−wise independent
hash familyH(𝑛,𝑚) such that for a randomly chosen ℎ ∈ H
and for an appropriately chosen𝑚, it is the case that all the
cells are small, wherein a cell 𝛼 is small if it has less than
2𝑛2 solutions, i.e., a cell 𝛼 is small if |Cell⟨𝐹,ℎ,𝛼 ⟩ | < thresh for
some appropriately chosen thresh. The key underpinning
observation is that one can use a NP oracle to check if all
the cells are small. If it is the case that all the cells are small,
then one can randomly choose one of the cells, enumerate
all the solutions in the cell using an NP oracle. Now if we
were to just randomly sample a solution in a cell, then we

On Almost-Uniform Generation of SAT Solutions Conference’17, July 2017, Washington, DC, USA

may not achieve uniformity as while all the cells are small
but it is not necessarily the case that all cells have equal
number of solutions. Bellare et al. observed that we could
just randomly pick a number between 1 and thresh, if the
chosen number is less than the size of the cell, we pick an
element from the cell uniformly at random else output ⊥.
One possible threat to this idea is what if most of the cells
have very few solutions (e.g., a small constant number of
solutions)? In such a case, we would be outputting ⊥ with
probability close to 1. Thankfully, Bellare et al also observed
that for the appropriately chosen value of𝑚, it is also the
case that with probability 0.9, all cells are non-trivial, i.e.,
|Cell⟨𝐹,ℎ,𝛼 ⟩ | > thresh

4 , and small, i.e., |Cell⟨𝐹,ℎ,𝛼 ⟩ | < thresh. It
is perhaps worth noting that thresh is set to 2𝑛2.

The primary shortcoming of BGP approach is its reliance
on 𝑛

log𝑛wise independent hashing. The BGP paper worked
with 𝑛−wise independent hash functions but one can show
that 𝑛

log𝑛 -wise independence suffices thanks to the concen-
trations bounds for limited independence due to Schmidt,
Siegel, and Srinivasan [18]. The crucial aspect of the analysis
of BGP is to compute the probability that for a random choice
of ℎ, for all 𝛼 , thresh/4 ≤ |Cell⟨𝐹,ℎ,𝛼 ⟩ | < thresh. We use 𝑛

log𝑛 -
independence of hash functions to ensure that for a given
cell 𝛼 , the probability of thresh/4 ≤ |Cell⟨𝐹,ℎ,𝛼 ⟩ | < thresh is
bounded by 1 − 2𝑛+𝑐 for some constant 𝑐 . Applying union
bounds allow us to lower bound the probability that all the
cells are non-trivial and small. The theoretical analysis frame-
work of BGP can not be extended to handle hash functions
with constant independence. It is perhaps worth emphasiz-
ing that BGP guarantees uniformity while our objective is
to design an almost-uniform generator.

To summarize, JVV approach reduces the problem of almost-
uniform generation to linear number of invocations of a
probabilistic approximate counter with 𝛿 = O(2−𝑛𝑛−1𝜀) and
𝜃 = 1/𝑛. As noted above, there exist approximate counters
that employ 2-wise independent hashing. On the other hand,
BGP approach directly attempts to employ hashing-based
paradigm but requires 𝑛−wise independent hash functions.
In this work, we seek to design an approach that seeks to
achieve the best of both the worlds: we seek to call approx-
imate counter only once and then seek to directly employ
hashing-based paradigm with 3−wise independence instead
of 𝑛

log𝑛 -wise independence as needed in BGP.
In addition BGP and JVV approaches, another attempt in

similar spirit owes to Chakraborty, Meel, and Vardi [6, 8]
who sought to blend the usage of approximate counting and
3-wise hashing; their proposed scheme could only provide
guarantees of uniformity for 𝜀 > 1.71.

4 Almost-Uniform Generation
In our desired algorithm, we seek to employ hash fami-
lies with constant independence (in particular, 3−wise and
2−wise). As a first step, we need to determine the appropriate

value of 𝑚. To this end, we seek to rely on close relation-
ship of counting and sampling, and invoke a probabilistic
approximate counter to compute an estimate of |𝑠𝑜𝑙 (𝜑) |, and
compute the𝑚 based on the returned estimate by the counter.
We will invoke the counter with a constant 𝜃 and 𝛿 ≤ 𝜀/4
(Recall, JVV employs 𝜃 = 1/𝑛 and 𝛿 = O(2−𝑛𝑛−1𝜀)). Given
our usage of hash functions with constant independence, we
can not ensure that size of all the cells would be below a pre-
defined threshold and therefore, we seek to randomly pick a
cell 𝛼 , and check if its size is below a threshold. If the size
of the cell is indeed below the threshold, we appropriately
pick a solution. We now first present the algorithm formally,
then perform the theoretical analysis, and close this section
with interesting observations.

4.1 Algorithm

Algorithm 1 UniSamp(𝜑, 𝜀)
1: pivot← max(200, 2

𝜀
) ⊲ desired expected size of a cell

2: thresh← 2 + ⌈4pivot⌉
3: 𝑊 ← BSAT(𝜑, thresh + 1)
4: if |𝑊 | ≤ thresh then
5: Choose 𝑘 uniformly at random in J1, |𝑊 |K
6: return𝑊 [𝑘]
7: 𝛿 ← min(0.1, 𝜀4)
8: 𝐶 ← ApproxCount(𝜑,

√
2 − 1, 𝛿)

9: 𝑚 ← ⌊log2 (𝐶
pivot) +

1
2 ⌋

10: Choose ℎ at random from 𝐻 (𝑛,𝑚)
11: 𝑊 ← BSAT(𝐹 ∧ ℎ(𝜎) = 0, thresh + 1)
12: if |𝑊 | ≤ thresh then
13: Choose 𝑘 uniformly at random in J1, threshK
14: if |𝑊 | ≥ 𝑘 then return𝑊 [𝑘]
15: return ⊥

We present the pseudo-code of the desired algorithm,
called UniSamp, in Algorithm 1. We describe the algorithm
using the hash family 𝐻 (𝑛,𝑚) whose independence proper-
ties will be spelled out in the following sections. UniSamp
first invokesBSAT to check if𝜑 has less than thresh solutions
(line 3). In such a case the strategy is to simply enumerate the
solutions and pick one of the solutions uniformly at random.
Otherwise, we invoke an approximate counter to determine
the value of𝑚 (lines 8– 9). Once we have determined the
appropriate value of𝑚, we pick a hash function randomly
from 𝐻 (𝑛,𝑚) and simply enumerate the solutions of 𝐹 that
map to ℎ−1 (0).

4.2 Analysis when 𝐻 (𝑛,𝑚) is 3-wise independent
The primary objective of this section is to establish the fol-
lowing theorem:
Theorem 1.1. Given access to SAT oracle, for all 𝜀 > 0, there
exists a probabilistic polynomial time almost-uniform genera-
tion procedure for Boolean Formulas that makes O(𝜀−1+ log𝑛 ·

Conference’17, July 2017, Washington, DC, USA Remi Delannoy and Kuldeep S. Meel

log 𝜀−1) queries to SAT oracle and uses 3−wise independent
hashing.

Proof. We prove the above theorem by demonstrating that
UniSampwith 3-wise independent hash family𝐻 (𝑛,𝑚) gives
rise to almost-uniform sampling (Lemma 3) and succeeds i.e.,
does not return ⊥, with probability at least 0.05 (Lemma 4).
The Lemma 5 establishes the complexity of UniSamp with
respect to the number of queries to SAT oracles. As noted in
Introduction, our analysis takes a different route compared
to that of JVV [10], BGP [2], and CMV [8]. □

We first begin with list of shorthands for clarity of exposi-
tion:

1. Ret : The algorithm UniSamp doesn’t return ⊥
2. AcCnt : The count 𝐶 returned by ApproxCount satis-

fies |𝑠𝑜𝑙 (𝜑) |√
2 ≤ 𝐶 ≤

√
2|𝑠𝑜𝑙 (𝜑) |

3. Cnt⟨𝜑,ℎ⟩ = |Cell⟨𝜑,ℎ,0⟩ |
4. for 𝜎 ∈ 𝑠𝑜𝑙 (𝜑), 𝑂𝜎 : The algorithm UniSamp outputs

𝜎

We begin by observing that if |𝑠𝑜𝑙 (𝜑) | ≤ thresh then it is
immediate that the output distribution is uniform.

Therefore, we focus on the case |𝑠𝑜𝑙 (𝜑) | > thresh. First
observe from line 14, we have ∀𝜎 ∈ 𝑠𝑜𝑙 (𝜑),

Pr[𝑂𝜎] =
1

thresh
× Pr[ℎ(𝜎) = 0 ∧ Cnt⟨𝜑,ℎ⟩ ≤ thresh]

Lemma 1. ∀𝜎 ∈ 𝑠𝑜𝑙 (𝜑),
Pr[𝑂𝜎 |Ret] =

Pr[Cnt⟨𝜑,ℎ⟩≤thresh |ℎ (𝜎)=0]∑
𝜔∈𝑠𝑜𝑙 (𝜑) Pr[Cnt⟨𝜑,ℎ⟩≤thresh |ℎ (𝜔)=0]

Proof. Let 𝜎 ∈ 𝑠𝑜𝑙 (𝜑)

Pr[𝑂𝜎 |Ret] =
Pr[𝑂𝜎 ∧ Ret]

Pr[Ret] =
Pr[𝑂𝜎]
Pr[Ret]

=
1/thresh × Pr[ℎ(𝜎) = 0 ∧ Cnt⟨𝜑,ℎ⟩ ≤ thresh]

1/thresh ×∑𝜔 ∈𝑠𝑜𝑙 (𝜑) Pr[ℎ(𝜔) = 0 ∧ Cnt⟨𝜑,ℎ⟩ ≤ thresh]

=
Pr[Cnt⟨𝜑,ℎ⟩ ≤ thresh | ℎ(𝜎) = 0]∑

𝜔 ∈𝑠𝑜𝑙 (𝜑) Pr[Cnt⟨𝜑,ℎ⟩ ≤ thresh | ℎ(𝜔) = 0]
□

The last equality comes from the fact that ∀𝜎 ∈ 𝑠𝑜𝑙 (𝜑),
Pr[ℎ(𝜎) = 0] = 1/2𝑚 .

Lemma 2. ∀𝜎 ∈ 𝑠𝑜𝑙 (𝜑), Pr[Cnt⟨𝜑,ℎ⟩ ≤ thresh|ℎ(𝜎) = 0 ∧
AcCnt] ≥ 1 − 1

2pivot

Proof. From Proposition 3, we have
E[Cnt⟨𝜑,ℎ⟩ | ℎ(𝜎) = 0] = 1 + |𝑠𝑜𝑙 (𝜑) |−12𝑚 and 𝑉𝑎𝑟 [Cnt⟨𝜑,ℎ⟩ |

ℎ(𝜎) = 0] = |𝑠𝑜𝑙 (𝜑) |−1
2𝑚 .

From the definition of𝑚 line 10, we have 𝐶√
2pivot ≤ 2𝑚 ≤

√
2𝐶

pivot , and if we have an approximate count, then, we also

have |𝑠𝑜𝑙 (𝜑) |√
2 ≤ 𝐶 ≤

√
2|𝑠𝑜𝑙 (𝜑) |. Thus,

E[Cnt⟨𝜑,ℎ⟩ |ℎ(𝜎) = 0 ∧ AcCnt] ≤ 1 + 2 · pivot
𝑉𝑎𝑟 [Cnt⟨𝜑,ℎ⟩ |ℎ(𝜎) = 0 ∧ AcCnt] ≤ 2 · pivot.

Remember that thresh ≥ 2 + 4pivot. Therefore,
Pr

[
Cnt⟨𝜑,ℎ⟩ > thresh|ℎ(𝜎) = 0 ∧ AcCnt

]
≤ Pr

[
|Cnt⟨𝜑,h⟩ − E[Cnt⟨𝜑,h⟩] | ≥ 1 + 2pivot|h(𝜎) = 0 ∧ AcCnt

]
.

Applying Chebyshev inequality we get
Pr

[
|Cnt⟨𝜑,h⟩ − E[Cnt⟨𝜑,h⟩] | ≥ 1 + 2pivot|h(𝜎) = 0 ∧ AcCnt

]
≤
𝑉𝑎𝑟 [Cnt⟨𝜑,ℎ⟩ |ℎ(𝜎) = 0 ∧ AcCnt]

(1 + 2pivot)2 ≤ 1
2pivot

□

Remark 4.1. Note that application of Chebyshev inequality
required bounding 𝑉𝑎𝑟 [Cnt⟨𝜑,ℎ⟩ | ℎ(𝜎) = 0] from above. We
obtained such a bound on 𝑉𝑎𝑟 [Cnt⟨𝜑,ℎ⟩ | ℎ(𝜎) = 0] with the
usage of 3−wise independence.

Lemma3. ∀𝜎 ∈ 𝑠𝑜𝑙 (𝜑), 1
(1+𝜀) |𝑠𝑜𝑙 (𝜑) | ≤ Pr[𝑂𝜎 |Ret] ≤ 1+𝜀

|𝑠𝑜𝑙 (𝜑) |

Proof. The high-level overview is to employ Lemma 2 to
obtain the lower bound and employ Lemma 1 to obtain the
desired upper bound.

Pr[Cnt⟨𝜑,ℎ⟩ ≤ thresh|ℎ(𝜎) = 0]
≥ Pr[AcCnt] Pr[Cnt⟨𝜑,ℎ⟩ ≤ thresh|ℎ(𝜎) = 0 ∧ AcCnt]
Using Lemma 2, we obtain

Pr[Cnt⟨𝜑,ℎ⟩ ≤ thresh|ℎ(𝜎) = 0] ≥ (1 − 𝛿) (1 − 1
2pivot)

Thus, we have∀𝜎 ∈ 𝑠𝑜𝑙 (𝜑), (1−𝛿) (1− 1
2pivot) ≤ Pr[Cnt⟨𝜑,ℎ⟩ ≤

thresh|ℎ(𝜎) = 0] ≤ 1

Then using Lemma 1,
(1 − 1

2pivot) (1 − 𝛿)
|𝑠𝑜𝑙 (𝜑) | ≤ Pr[𝑂𝜎 |𝑆] ≤

1
(1 − 1

2pivot) (1 − 𝛿) |𝑠𝑜𝑙 (𝜑) |
.

If 0 < 𝜀 ≤ 1, 1 − 𝜀
2 ≥

1
1+𝜀 , and as pivot ≥ 2

𝜀
and 𝛿 ≤ 𝜀

4 ,
(1 − 𝛿) (1 − 1

2pivot) ≥ 1 − 𝜀
2 ≥

1
1+𝜀

Else if 𝜀 > 1, 𝛿 = 0.1 and pivot = 200 thus (1 − 𝛿) (1 −
1

2pivot) = 0.89775 ≥ 1
2 ≥

1
1+𝜀

Hence in all cases 1
(1+𝜀) |𝑠𝑜𝑙 (𝜑) | ≤ Pr[𝑂𝜎 |Ret] ≤ 1+𝜀

|𝑠𝑜𝑙 (𝜑) | □

Lemma 4. Pr[Ret] ≥ 0.05

Proof. Let loTh =
3pivot
10 , we have

Pr[Ret] ≥ (1 − 𝛿) Pr[loTh ≤ Cnt⟨𝜑,ℎ⟩ ≤ thresh|AcCnt] loTh
thresh

This inequality comes from the observation that ifCnt⟨𝜑,ℎ⟩ ≥
loTh then there is a probability of at least loTh

thresh that we re-
turn an element of 𝑠𝑜𝑙 (𝜑) (we choose 𝑘 uniformly at random
in J1, threshK and there are at least loTh values that yield a
return).

On Almost-Uniform Generation of SAT Solutions Conference’17, July 2017, Washington, DC, USA

Next, observe that loTh
thresh ≥

3pivot
10∗(3+4pivot) ≥

2
27 (as pivot ≥

200)

Remember that thresh ≥ 2 + 4pivot, and if we have an
accurate count, then, pivot

2 ≤ E[Cnt⟨𝜑,ℎ⟩] ≤ 2pivot.
Hence, we have E[Cnt⟨𝜑,ℎ⟩]− pivot

5 ≥ loTh and E[Cnt⟨𝜑,ℎ⟩]+
pivot
5 ≤ thresh
Thus,

Pr[loTh ≤ Cnt⟨𝜑,ℎ⟩ ≤ thresh
�� AcCnt]

≥ Pr
[�� Cnt⟨𝜑,ℎ⟩ − E[Cnt⟨𝜑,ℎ⟩] ��< pivot

5
�� AcCnt]

Applying Chebyshev inequality Pr
[�� Cnt⟨𝜑,ℎ⟩−E[Cnt⟨𝜑,ℎ⟩] ��<

pivot
5

�� AcCnt] ≤ 25E[Cnt⟨𝜑,ℎ⟩]
pivot2

≤ 50
pivot ≤

1
4

Hence Pr[loTh ≤ Cnt⟨𝜑,ℎ⟩ ≤ thresh
�� AcCnt] ≥ 3

4 and
Pr[𝑆] ≥ 9

10
3
4

2
27 = 0.05 □

Lemma 5. The algorithm UniSamp makes O(log𝑛 log 𝜀−1 +
𝜀−1) calls to SAT oracle.

Proof. ApproxCount is invokedwith 𝛿 ≤ 𝜀/4, therefore, from
Proposition 2, this leads to O(log𝑛 log 𝜀−1) calls. Further-
more, since thresh ∈ O(𝜀−1), the calls to BSAT add another
O(𝜀−1). Therefore, in totalUniSampmakes O(log𝑛 log 𝜀−1+
𝜀−1) calls to SAT oracle. □

Choice of Parameters
The complexity of the algorithm is tightly related to the
values of 𝛿 and pivot. The parameter 𝛿 is directly linked
to the number of calls to the SAT oracle, and pivot is the
main parameter that influences the number of calls made
by BSAT. It is worth noting that we only need to verify the
equation (1 − 𝛿) (1 − 1

2pivot) ≤
1

1+𝜀 for the Lemma 3 to be
true. We purposefully take simple values for the sake of
proof simplicity. One could search better values by trying to
minimize the number of calls to the oracle O(log𝑛 log𝛿−1 +
pivot) and/or the query size O(|𝜑 | + pivot + 𝑛2).
Nevertheless, we expected the probability to be close to

E[Cnt⟨𝜑,ℎ⟩]
thresh . Indeed, we only fail if 𝑘 is greater than Cnt⟨𝜑,ℎ⟩ ,

as we sample 𝑘 uniformly at random, the expected probabil-
ity of success is E[Cnt⟨𝜑,ℎ⟩]

thresh . Unfortunately, proving that the
probability of success is, indeed, E[Cnt⟨𝜑,ℎ⟩]

thresh is not that sim-
ple because of several technical details. Mainly, BSAT halts
after thresh calls, so we only have a truncated expectation
(Pr[Ret] = ∑thresh

𝑖=1
𝑖

thresh Pr[Cnt⟨𝜑,ℎ⟩ = 𝑖]). Because of this,
to guarantee a probability of success, we were forced to do a
less careful analysis, and we likely get a very loose bound.
This is also the reason why we add upper and lower bounds
on 𝛿 and pivot respectively.

4.3 From 3-wise to 2-wise independent hash
function family

As mentioned in Remark 4.1, the proof of Lemma 2 cru-
cially relies on the usage of 3-wise independence. In this
context, one naturally wonders whether it is possible to
obtain stronger guarantees with access to only 2-wise inde-
pendent hash functions. The objective of this section is to
establish the following theorem:

Theorem 1.2. Given access to SAT oracle, for all 𝜀 > 14, there
exists a probabilistic polynomial time almost-uniform gener-
ation procedure for Boolean Formulas that makes O(log𝑛 ·
log

(1
𝜀−1

)
) queries to SAT oracle and uses 2−wise independent

hashing.

4.4 Modifications to UniSamp

We will consider the variant of UniSamp wherein line 7 is
replaced by 𝛿 ← 𝑚𝑖𝑛(0.1, 𝜀−1

𝜀+1). It is worth noting that this
change still implies log(𝛿−1) = O(𝜀−1). However, thresh is
now a constant, so therefore, theUniSampmakesO(log𝑛 log 𝜀−1+
thresh) ∈ O(log𝑛 log 𝜀−1) calls to SAT oracle.

Lemma 6. If 𝐻 (𝑛,𝑚) is 2-wise independent, ∀𝜎 ∈ 𝑠𝑜𝑙 (𝜑)
Pr(Cnt⟨𝜑,ℎ⟩ ≤ thresh|ℎ(𝜎) = 0 ∧ AcCnt) ≥ 1

2

Proof. Reusing the notations introduced in Lemma 2, note
that computation of E[Cnt⟨𝜑,ℎ⟩ |ℎ(𝜎) = 0 ∧ AcCnt] only re-
quires 2-wise independence. Therefore, E[Cnt⟨𝜑,ℎ⟩ |ℎ(𝜎) =
0 ∧ AcCnt] ≤ 1 + 2pivot.
But the 2-wise independence does not suffice to bound

the 𝑉𝑎𝑟 [Cnt⟨𝜑,ℎ⟩ |ℎ(𝜎) = 0 ∧ AcCnt] and therefore, we can
not proceed with the usage of Chebyshev inequality. That
said, we observe that we can instead rely on the weaker con-
centration bound offered by Markov inequality as follows:

Pr[Cnt⟨𝜑,ℎ⟩ ≤ thresh|𝛾𝜎 ∧ AcCnt]

≥ 1 −
E[Cnt⟨𝜑,ℎ⟩ |ℎ(𝜎) = 0 ∧ AcCnt]

thresh
Recalling that thresh ≥ 2 + 4pivot,

Pr[Cnt⟨𝜑,ℎ⟩ ≤ thresh|𝛾𝜎 ∧ AcCnt] ≥ 1 − 1 + 2pivot
2 + 4pivot =

1
2
□

It is perhaps worth noting that with 3−wise independence,
we could lower bound the above probability by 1 − 1

2pivot ,
and therefore, allowing it to be arbitrarily close to 1.

Theorem 4.2. If 𝐻 (𝑛,𝑚) is 2−wise independent, then

∀𝜀 > 1,∀𝜎 ∈ 𝑠𝑜𝑙 (𝜑),
1

(1 + 𝜀) |𝑠𝑜𝑙 (𝜑) | ≤ Pr(𝑂𝜎 |Ret) ≤
1 + 𝜀
|𝑠𝑜𝑙 (𝜑) |

4It is perhaps worth remarking that 𝜀 > 1 is not a typo and the problem is
not trivial for the case when 𝜀 > 1

Conference’17, July 2017, Washington, DC, USA Remi Delannoy and Kuldeep S. Meel

Proof. The proof follows along the similar lines that of Lemma 3
with the usage of Lemma 2 substituted with that of Lemma 6.

Pr(Cnt⟨𝜑,ℎ⟩ ≤ thresh|ℎ(𝜎) = 0)
= Pr(AcCnt) Pr(Cnt⟨𝜑,ℎ⟩ ≤ thresh|ℎ(𝜎) = 0 ∧ AcCnt)
+ Pr(AcCnt) Pr(Cnt⟨𝜑,ℎ⟩ ≤ thresh|ℎ(𝜎) = 0 ∧ AcCnt)
≥ Pr(AcCnt) Pr(Cnt⟨𝜑,ℎ⟩ ≤ thresh|ℎ(𝜎) = 0 ∧ AcCnt)
Using Lemma 6, Pr(Cnt⟨𝜑,ℎ⟩ ≤ thresh|ℎ(𝜎) = 0) ≥ (1 −

𝛿) (1 − 1
2). Therefore, we have ∀𝜎 ∈ 𝑠𝑜𝑙 (𝜑), (1 − 𝛿) (1 −

1
2) ≤

Pr(Cnt⟨𝜑,ℎ⟩ ≤ thresh|ℎ(𝜎) = 0) ≤ 1
Then using Lemma 1,

(1 − 𝛿)
2|𝑠𝑜𝑙 (𝜑) | ≤ Pr(𝑂𝜎 |Ret) ≤

2
(1 − 𝛿) |𝑠𝑜𝑙 (𝜑) |

As 𝛿 ≤ 𝜀−1
𝜀+1 , 1 − 𝛿 ≥

2
𝜀+1 and we have

1
(1 + 𝜀) |𝑠𝑜𝑙 (𝜑) | ≤ Pr(𝑂𝜎 |Ret) ≤

1 + 𝜀
|𝑠𝑜𝑙 (𝜑) |

□

5 Universal Generators
So far we have focused on one particular NP relation: SAT
but the core framework can be applied to any arbitrary NP
relation with minor modifications. To this end, we will first
fix some notations: given an NP language 𝐿, let 𝑅 be the NP-
relation defining 𝐿, i.e. 𝐿 = {𝑦 | ∃𝑤 such that 𝑅(𝑦,𝑤) = 1}.
Also, let 𝑛 = |𝑦 |, and without loss of generality, we can
assume 𝑅𝑦

𝑑𝑒𝑓
= {𝑥 | 𝑅(𝑦, 𝑥) = 1} ⊆ {0, 1}𝑛 .

Similar to [2], for ℎ : {0, 1}𝑛 ↦→ {0, 1}𝑚 , 𝑦 ∈ 𝐿𝑅 , we can
define

𝑅𝑦,ℎ = {𝑤 ∈ 𝑅𝑦 | ℎ(𝑤) = 0} = ℎ−1 (0) ∩ 𝑅𝑦

The following proposition generalizes the Proposition 1

Proposition 5. [2] For every NP relation 𝑅, there is a poly-
nomial time oracle algorithmM1 that takes in 𝑦 ∈ 𝐿𝑅, ℎ ∈
𝐻 (𝑛,𝑚), and thresh as input and outputs 𝑅𝑦,ℎ if |𝑅𝑦,ℎ | ≤
thresh and ⊥ otherwise.M1 makes O(𝑛 · thresh) calls to NP
oracle.

Proof. Let consider the set 𝑆𝑅,ℎ = {(𝑦, 𝑘) | ∃𝑧1, 𝑧2...𝑧𝑘 such that
𝑧1...𝑧𝑘 are distinct and ∀𝑖 ∈ J1, 𝑘K, 𝑅(𝑦, 𝑧𝑘) = 1 and ℎ(𝑧𝑘) =
0} and 𝑆 ′

𝑅,ℎ
= {(𝑦, 𝑘, 𝑖, 𝑗) | ∃𝑧1 ≺ 𝑧2 ≺ ... ≺ 𝑧𝑘 such that 𝑧𝑖, 𝑗 =

1 and ∀𝑙 ∈ J1, 𝑘K, 𝑅(𝑦, 𝑧𝑙) = 1 and ℎ(𝑧𝑙) = 0}
Here, 𝑧𝑖, 𝑗 is the j-th bit of 𝑧𝑖 and ≺ denotes some ordering

relation. As 𝑅 is an NP relation and ℎ can be computed in
polynomial time, these sets are in NP. Then, given the access
to a NP oracle,M1 can be implemented as follow.

It is immediate that wemake at most 1+thresh+thresh·𝑛 ∈
O(𝑛 · thresh) calls to the oracle.

□

Note that when𝑚 = 0, h is just an identity function, and
therefore, we will omit mentioning ℎ for the special case

Algorithm 2M1 (𝑅,𝑦, ℎ, thresh)
1: if (𝑦, thresh + 1) ∈ 𝑆𝑅,ℎ then ⊲ call the oracle
2: return ⊥;
3: 𝑐𝑜𝑢𝑛𝑡 ← 0;
4: while (𝑥, 𝑐𝑜𝑢𝑛𝑡) ∈ 𝑆𝑅,ℎ do ⊲ call the oracle
5: 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1;
6: for 1 ≤ 𝑖 ≤ 𝑐𝑜𝑢𝑛𝑡 do
7: for 1 ≤ 𝑗 ≤ 𝑛 do
8: if (𝑦, 𝑐𝑜𝑢𝑛𝑡, 𝑖, 𝑗) ∈ 𝑆 ′

𝑅,ℎ
then ⊲ call the oracle

9: 𝑦𝑖, 𝑗 ← 1;
10: else
11: 𝑦𝑖, 𝑗 ← 0;
12: 𝑦𝑖 ← 𝑦𝑖,1...𝑦𝑖,𝑛 ;

return {𝑦1, 𝑦2, ..., 𝑦𝑐𝑜𝑢𝑛𝑡 }

Algorithm 3 UniversalSampler(𝑅,𝑦, 𝜀)
1: 𝑝𝑖𝑣𝑜𝑡 ← max(200, 2

𝜀
)

2: thresh← 1 + ⌈4𝑝𝑖𝑣𝑜𝑡⌉
3: 𝑊 ←M1 (𝑅,𝑦, thresh)
4: if𝑊 ≠ ⊥ then
5: Choose 𝑘 uniformly at random in J1, |𝑊 |K
6: return𝑤𝑘

7: 𝛿 ← min(0.1, 𝜀4)
8: 𝐶 ←M2 (𝑅,𝑦,

√
2 − 1, 𝛿)

9: 𝑚 ← ⌊log2 (𝐶
𝑝𝑖𝑣𝑜𝑡
) + 1

2 ⌋
10: Choose ℎ at random from 𝐻 (𝑛,𝑚)
11: 𝑊 ←M1 (𝑅,𝑦, ℎ, thresh)
12: if𝑊 ≠ ⊥ then
13: Choose 𝑘 uniformly at random in J1, threshK
14: if |𝑊 | ≥ 𝑘 then return𝑊 [𝑘]
15: return ⊥

when m = 0. We also have an analogous generalization for
Proposition 2.

Proposition 6. [3] For every NP relation 𝑅, there is a prob-
abilistic polynomial time algorithmM2 that takes in 𝑦 ∈ 𝐿𝑅 ,
𝜃 > 0, and 𝛿 > 0 as input and returns an estimate 𝜈 such that

Pr[
|𝑅𝑦 |
1 + 𝜃 ≤ 𝜈 ≤ (1 + 𝜃) |𝑅𝑦 |] ≥ 1 − 𝛿

Furthermore,M2 makes O(log(𝑛/𝜃) log(1/𝛿) calls to NP or-
acle.

Equipped with the two propositions, we can now finally
state the theorem:

Theorem 5.1. Let 𝑅 be an NP-relation. Then there exists
an almost-uniform generation procedure for 𝑅 for all 𝜀 > 0
that makes O(𝑛𝜀−1) queries to NP oracle and uses 3−wise
independent hashing.

Proof. Given proposition 5 and 6 we can adapt our algo-
rithm by replacing BSAT byM1 and ApproxCount byM2.

On Almost-Uniform Generation of SAT Solutions Conference’17, July 2017, Washington, DC, USA

We state the pseudocode of the algorithm in Algorithm 3
for completeness. Then, it is immediate that our algorithm
makes O(𝑛𝜀−1 + log𝑛 log(𝜀−1)) ∈ O(𝑛𝜀−1) queries to the NP
oracle. □

6 A Nuanced Analysis: On Size of SAT
Queries

The traditional analysis often focuses on the number of
queries to the given oracle. Over the past two decades, SAT
solving has witnessed an unprecedented progress that has
allowed the modern SAT solvers to solve problems involving
millions of variables [11]. The progress in SAT solving has
led to rise in designing algorithms such that the formulas
over which SAT solvers are invoked with are easy for SAT
solvers to solve [13]. While understanding the behavior of
SAT solvers is a major open research question, a parameter
of interest is often the size of the queries. In this regard, the
past few years have witnessed design of algorithm that may
trade off the number of queries for smaller sized queries.
To put this in perspective, we will survey the complex-

ity of two different algorithms for approximate counting
algorithms:

Proposition 7. Given a CNF formula 𝜑 over 𝑛 variables,
tolerance 𝜃 > 0 and a confidence parameter 𝛿 ∈ (0, 1]:

1. there exists probabilistic approximate model counter A
that runs in probabilistic polynomial time given access to
a SAT oracle, makes O(log(𝑛/𝜃) log(1/𝛿)) calls to SAT
oracle and each query is of the size O(|𝜑 | + 𝑛2

𝜃 2) [3, 10, 21]
2. probabilistic approximate model counter B that runs

in probabilistic polynomial time given access to a SAT
oracle, makes O(log(𝑛) 1

𝜃 2 log(1/𝛿)) calls to SAT oracle
and each query is of the size O(|𝜑 | + 𝑛

𝜃 2) [7, 9]

In practice, it turns out that variants of algorithm B work
more efficiently than those ofA [1, 14]. The current state of
the art algorithm for approximate model counting (based on
empirical performance) is ApproxMC (a variant of B) [9, 20].
We present a more nuanced analysis of the complexity of
JVV approach and UniSamp in the following table (Table 2)
based on the approximate model counters invoked by them.
In Table 2, JVV-A refers to implementation of JVVwith prob-
abilistic model counter A stated in Proposition 7; similarly,
JVV-B refers to JVV with probabilistic model counter B.
The following propositions prove the results stated in

Table 2.

Proposition 8. JVV-A makes O(𝑛2 log𝑛 + 𝑛 log𝑛 log 𝜀−1)
SAT queries. The size of the queries is O(|𝜑 | + 𝑛4).

Proof. From the pseudocode of JVV, the algorithm makes
2n+1 calls to ApproxCount with 𝜃 = 1/𝑛 and 𝛿 = 𝜀

(2𝑛+1)2𝑛+2 .
Here, their procedure ApproxCount is implemented by a
probabilistic approximate counter which makes
O(log(𝑛/𝜃) log(1/𝛿))) calls to a SAT oracle. Substituing 𝜃

and 𝛿 by their value, one call to ApproxCount in the JVV algo-
rithmmakesO(log(𝑛2) log((2𝑛+1)2𝑛+2𝜀−1)) = O(log𝑛(log𝑛+
(𝑛+2) + log(𝜀−1)) = O(𝑛 log𝑛+ log𝑛 log(𝜀−1)) calls to a SAT
oracle. As JVV makes O(𝑛) calls to ApproxCount, the total
number of queries is O(𝑛2 log𝑛 + 𝑛 log𝑛 log(𝜀−1)). The size
of the queries is O(|𝜑 | + 𝑛2

𝜃 2), substituing with 𝜃 = 1/𝑛 imme-
diatly gives O(|𝜑 | + 𝑛4). □

Proposition 9. JVV-B makes O(𝑛4 log𝑛 + 𝑛3 log𝑛 log 𝜀−1)
SAT queries. The size of the queries is O(|𝜑 | + 𝑛3).

Proof. Likewise, we substitute 𝜃 and 𝛿 by their value. The
only difference is that the probabilistic approximate counter
now makes O(𝜃−2 log𝑛 log𝛿−1) SAT queries. We get that
one call to ApproxCount in the JVV algorithm makes
O(𝑛2 log(𝑛) log((2𝑛 + 1)2𝑛+2𝜀−1)) = O(𝑛2 log𝑛(log𝑛 + (𝑛 +
2) + log(𝜀−1)) = O(𝑛3 log𝑛 + 𝑛2 log𝑛 log(𝜀−1)) calls to a
SAT oracle. As JVV makes O(𝑛) calls to ApproxCount, the
total number of queries is O(𝑛4 log𝑛+𝑛3 log𝑛 log(𝜀−1)). The
size of the queries is O(|𝜑 | + 𝑛

𝜃 2), substituing with 𝜃 = 1/𝑛
immediatly gives O(|𝜑 | + 𝑛3). □

Proposition 10. UniSamp-A makes O(𝜀−1 + log𝑛 log 𝜀−1)
SAT queries. The size of the queries is O(|𝜑 | + 𝑛2 + 𝑛𝜀−1).

Proof. UniSamp makes only one call to the probabilistic
approximate counter with 𝜃 =

√
2 − 1 and 𝛿 ≤ 𝜀/4. Sub-

stituing these values, we makes O(log𝑛 log 𝜀−1) calls to a
SAT oracle to get an approximate count. Then, we need to
add the calls made by BSAT. BSAT makes at most thresh
calls by design. As thresh = O(𝑝𝑖𝑣𝑜𝑡) and 𝑝𝑖𝑣𝑜𝑡 = O(𝜀−1),
BSAT makes O(𝜀−1) additionnals calls to the SAT oracle.
Adding the calls of BSAT to the ones of ApproxCount, we
get O(𝜀−1 + log𝑛 log 𝜀−1) As 𝜃 is constant, the size of the
queries made by ApproxCount is O(|𝜑 | + 𝑛2). For BSAT, we
add a blocking clause for each witness already found. As
each clause contain at most 𝑛 variables and that we can find
at most thresh = O(𝜀−1) witness, the size of the queries
made by BSAT is O(|𝜑 | + 𝑛𝜀−1). All in all, the queries size is
O(|𝜑 | + 𝑛2 + 𝑛𝜀−1).

□

Proposition 11. UniSamp-B makes O(𝜀−1 + log𝑛 log 𝜀−1)
SAT queries. The size of the queries is O(|𝜑 | + 𝑛2 + 𝑛𝜀−1).

Proof. As 𝜃 is constant, the number of calls to the oracle
made by ApproxCount and the size of the queries do not
change. As the only difference between UniSamp-A and
UniSamp-B is the implementation of ApproxCount, both
algorihtms have the same complexity in term of number and
size of queries. □

7 Experimental results
Since uniform sampling has widespread applications, we
are interested in measuring the impact of our algorithmic

Conference’17, July 2017, Washington, DC, USA Remi Delannoy and Kuldeep S. Meel

Table 2. Almost-uniform generators along with the number of queries, the size of SAT Queries, and the independence of hash
functions

SAT Queries Size Independence
JVV-A [8] O(𝑛2 log𝑛 + 𝑛 log𝑛 log 𝜀−1) O(|𝜑 | + 𝑛4) 2

UniSamp-A[10] O(𝜀−1 + log𝑛 · log 𝜀−1) O(|𝜑 | + 𝑛2 + 𝑛𝜀−1) 3
JVV-B[9] O(𝑛4 log𝑛 + 𝑛3 log𝑛 log 𝜀−1) O(|𝜑 | + 𝑛3) 2

UniSamp-B[11] O(𝜀−1 + log𝑛 · log 𝜀−1) O(|𝜑 | + 𝑛2 + 𝑛𝜀−1) 3

Table 3. Experimental Results

Benchmark Variables Clauses JVV (𝜀 = 0.3) UniSamp (𝜀 = 0.3)
time
(sec/sample)

success rate time
(sec/sample)

success rate

s27_new_3_2 17 31 0.38 0.372 0.02 1.00
s27_new_7_4 17 35 0.38 0.372 0.02 1.00
4step 165 418 timeout - 1.03 0.21
s420_15_7 366 994 timeout - 1.56 0.29
GuidanceService2.sk 715 2181 timeout - 1.00 0.23
min-6s 839 2762 timeout - 34.18 0.20
GuidanceService.sk 988 3088 timeout - 1.06 0.29
prod-2s 1113 4974 timeout - 6.91 0.19
90-16-2-q 1216 1920 timeout - 3254.91 0.31
UserServiceImpl.sk 1509 5009 timeout - 0.72 0.29
PhaseService.sk 1686 5655 timeout - 1.39 0.21
ProjectService3.sk 3175 11019 timeout - 6.90 0.19
blasted_case104 3666 11589 timeout - 319.88 0.32
blasted_squaring41 4185 13599 timeout - 3348.58 0.55
ProcessBean.sk 4768 14458 timeout - 5.87 0.23
doublyLinkedList.sk 6890 26918 timeout - 6.28 0.20
01B-1 9159 39959 timeout - 345.59 0.29
107.sk_3_90 8948 40147 timeout - 7.51 0.32
LoginService.sk 8200 26689 timeout - 7.13 0.19
sort.sk_8_52 12125 49611 timeout - 11.46 0.20
enqueueSeqSK.sk 16466 58515 timeout - 29.71 0.21
compress.sk 44901 166948 timeout - 123.19 0.19
hash-4 188361 755882 timeout - 315.34 0.29

framework. Given the lack of scalability of JVV, the prac-
tical implementations have to rely on algorithms without
formal guarantees. Therefore, we seek to understand if our
scheme can lead to practically scalable tools. To this end,
we conducted a comprehensive performance evaluation of
counting algorithms involving 562 benchmarks arising from
wide range of application areas including probabilistic rea-
soning, plan recognition, DQMR networks, ISCAS89 com-
binatorial circuits, quantified information flow, program
synthesis, functional synthesis, logistics [20]. We employ
CryptoMiniSAT [19] as the underlying SAT solver given
its native support for CNF-XOR formulas, i.e., formulas ex-
pressed as conjunction of CNF and XOR clauses.

The experiments were conducted on a high performance
computer cluster, with each node consisting of an E5-2690
v3 CPU with 24 cores and 96GB of RAM such that each
core’s access was restricted to 4GB. The computational effort
for the evaluation consisted of over 20,000 hours. We used
timeout of 3600 (i.e., 1 hour) seconds for each experiment,
which consisted of running a tool on a particular benchmark.

Since the algorithms are randomized, for an accurate mea-
surement, we run each algorithm 100 times for every bench-
mark and compute the average time per sample generation
and the observed success probability. The success probabil-
ity is computed as the number of runs where a sample was
returned divided by the total number of runs (i.e., 100). The
average time per sample generation is computed as the total

On Almost-Uniform Generation of SAT Solutions Conference’17, July 2017, Washington, DC, USA

time taken across 100 runs divided by the number of runs
that generated samples while the observed success probabil-
ity is computed as the fraction of runs that output a sample
(i.e, the output is not ⊥).

We present the results on a subset of benchmarks in Ta-
ble 3. The first column states the name of the benchmark,
while the second and third columns state the number of
variables and clauses corresponding to the benchmark. The
fourth and fifth columns state the time taken per sample gen-
eration and the observed success probability for JVV while
the sixth and seventh columns present the corresponding
data for UniSamp. For lack of space, we present results on a
subset of the benchmarks.
Table 3 clearly shows that while JVV times out on all

except two instances, UniSamp is able to generate samples
within reasonable time. Furthermore, observe that in practice,
the success rate is significantly higher than our theoretical
guarantees, thereby suggesting the potential for tighter anal-
ysis. Across all the benchmarks, JVV timed out on 544 out
of 562 instances while UniSamp did not time on any of the
562 instances.

8 Conclusion
Uniform sampling is a fundamental problemwith wide range
of applications. The prior state of the art techniques, how-
ever, required O(𝑛2 log𝑛 + log𝑛 log 𝜀−1) calls to SAT oracle
while using 2-wise independence. In this work, we propose
a new algorithm that makes only O(𝜀−1 + log𝑛 log 𝜀−1) calls
to SAT oracle. The improvement in theory also leads to the
development of the first almost-uniform sampling tool with
rigorous guarantees and our empirical comparisons clearly
demonstrate that UniSamp is able to handle instances that
were beyond the ability of JVV.

References
[1] Durgesh Agrawal, Bhavishya, and Kuldeep S. Meel. On the sparsity of

xors in approximate model counting. In Proceedings of the International
Conference on Theory and Applications of Satisfiability Testing (SAT), 7
2020.

[2] M. Bellare, O. Goldreich, and E. Petrank. Uniform generation of
NP-witnesses using an NP-oracle. Information and Computation,
163(2):510–526, 2000.

[3] Mihir Bellare and Erez Petrank. Making zero-knowledge provers
efficient. In Proceedings of the twenty-fourth annual ACM symposium
on Theory of computing, pages 711–722, 1992.

[4] J Lawrence Carter and Mark N Wegman. Universal classes of hash
functions. In Proceedings of the ninth annual ACM symposium on
Theory of computing, pages 106–112. ACM, 1977.

[5] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y. Vardi.
Distribution-aware sampling and weighted model counting for SAT.
In Proc. of AAAI, pages 1722–1730, 2014.

[6] S. Chakraborty, K. S. Meel, and M. Y. Vardi. A scalable and nearly
uniform generator of SAT witnesses. In Proc. of CAV, pages 608–623,
2013.

[7] S. Chakraborty, K. S. Meel, and M. Y. Vardi. A scalable approximate
model counter. In Proc. of CP, pages 200–216, 2013.

[8] S. Chakraborty, K. S. Meel, and M. Y. Vardi. Balancing scalability and
uniformity in SAT witness generator. In Proc. of DAC, pages 1–6, 2014.

[9] S. Chakraborty, K. S. Meel, and M. Y. Vardi. Algorithmic improvements
in approximate counting for probabilistic inference: From linear to
logarithmic SAT calls. In Proc. of IJCAI, 2016.

[10] M.R. Jerrum, L.G. Valiant, and V.V. Vazirani. Random generation of
combinatorial structures from a uniform distribution. Theoretical
Computer Science, 43(2-3):169–188, 1986.

[11] S. Malik and L. Zhang. Boolean satisfiability from theoretical hardness
to practical success. Commun. ACM, 52(8):76–82, 2009.

[12] George Markowsky, J Lawrence Carter, and Mark N Wegman. Anal-
ysis of a universal class of hash functions. In International Sympo-
sium on Mathematical Foundations of Computer Science, pages 345–354.
Springer, 1978.

[13] Joao Marques-Silva. Computing with sat oracles: Past, present and
future. In Conference on Computability in Europe, pages 264–276.
Springer, 2018.

[14] S. Meel, Kuldeep S. r○ Akshay. Sparse hashing for scalable approxi-
mate model counting: Theory and practice. In Proceedings of Logic in
Computer science (LICS), 7 2020.

[15] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus, and
G. Shurek. Constraint-based random stimuli generation for hardware
verification. In Proc of IAAI, pages 1720–1727, 2006.

[16] Mihai Pǎtraşcu and Mikkel Thorup. The power of simple tabulation
hashing. Journal of the ACM (JACM), 59(3):1–50, 2012.

[17] Palash Sashittal and Mohammed El-Kebir. Titus: Sampling and sum-
marizing transmission trees with muti-strain infections. bioRxiv, 2020.

[18] J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-Hoeffding bounds
for applications with limited independence. SIAM Journal on Discrete
Mathematics, 8:223–250, May 1995.

[19] M. Soos, K. Nohl, and C. Castelluccia. Extending SAT Solvers to
Cryptographic Problems. In Proc. of SAT. Springer-Verlag, 2009.

[20] Mate Soos and Kuldeep S Meel. Bird: Engineering an efficient cnf-xor
sat solver and its applications to approximate model counting. In
Proceedings of AAAI Conference on Artificial Intelligence (AAAI)(1 2019),
2019.

[21] L. Stockmeyer. The complexity of approximate counting. In Proc. of
STOC, pages 118–126, 1983.

	Abstract
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Boolean Formulas
	2.2 Approximate Model Counting
	2.3 k-wise Independent Hashing

	3 Background
	4 Almost-Uniform Generation
	4.1 Algorithm
	4.2 Analysis when H(n,m) is 3-wise independent
	4.3 From 3-wise to 2-wise independent hash function family
	4.4 Modifications to UniSamp

	5 Universal Generators
	6 A Nuanced Analysis: On Size of SAT Queries
	7 Experimental results
	8 Conclusion
	References

