
CSC 411 Lecture 21-22: Reinforcement learning

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto

CSC411 Lec19 1 / 1

Today

Learn to play games

Reinforcement Learning

CSC411 Lec19 2 / 1

Playing Games: Atari

https://www.youtube.com/watch?v=V1eYniJ0Rnk

CSC411 Lec19 3 / 1

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Playing Games: Super Mario

https://www.youtube.com/watch?v=wfL4L_l4U9A

CSC411 Lec19 4 / 1

https://www.youtube.com/watch?v=wfL4L_l4U9A

Making Pancakes!

https://www.youtube.com/watch?v=W_gxLKSsSIE

CSC411 Lec19 5 / 1

https://www.youtube.com/watch?v=W_gxLKSsSIE

Reinforcement Learning Resources

Reinforcement Learning: An Introduction second edition, Sutton & Barto
Book (2016)

Video lectures by David Silver

CSC411 Lec19 6 / 1

http://incompleteideas.net/sutton/book/bookdraft2017nov5.pdf
https://www.youtube.com/watch?v=2pWv7GOvuf0

Reinforcement Learning

Learning algorithms differ in the information available to learner

I Supervised: correct outputs
I Unsupervised: no feedback, must construct measure of good output
I Reinforcement learning: Reward.

More realistic learning scenario:

I Continuous stream of input information, and actions
I Effects of action depend on state of the world
I Obtain reward that depends on world state and actions

I You know the reward for your action, not other actions.
I Could be a delay between action and reward.

CSC411 Lec19 7 / 1

Reinforcement Learning

[pic from: Peter Abbeel]

CSC411 Lec19 8 / 1

Example: Tic Tac Toe, Notation

CSC411 Lec19 9 / 1

Example: Tic Tac Toe, Notation

CSC411 Lec19 10 / 1

Example: Tic Tac Toe, Notation

CSC411 Lec19 11 / 1

Example: Tic Tac Toe, Notation

CSC411 Lec19 12 / 1

Formulating Reinforcement Learning

World described by a set of states and actions

At every time step t, we are in a state st , and we:

I Take an action at (possibly null action)
I Receive some reward rt+1

I Move into a new state st+1

An RL agent may include one or more of these components:

I Policy π: agent’s behaviour function
I Value function: how good is each state and/or action
I Model: agent’s representation of the environment

CSC411 Lec19 13 / 1

Policy

A policy is the agent’s behaviour.

It’s a selection of which action to take, based on the current state

Deterministic policy: a = π(s)

Stochastic policy: π(a|s) = P[at = a|st = s]

[Slide credit: D. Silver]

CSC411 Lec19 14 / 1

Value Function

Value function is the expected future reward

Used to evaluate the goodness/badness of states

Our aim will be to maximize the value function (the total reward we receive
over time): find the policy with the highest expected reward

By following a policy π, the value function is defined as:

V π(st) = E[rt + γrt+1 + γ2rt+2 + · · ·]

γ is called a discount rate, and it is always 0 ≤ γ ≤ 1

If γ close to 1, rewards further in the future count more, and we say that the
agent is “farsighted”

γ is less than 1 because there is usually a time limit to the sequence of
actions needed to solve a task (we prefer rewards sooner rather than later)

[Slide credit: D. Silver]

CSC411 Lec19 15 / 1

Model

The model describes the environment by a distribution over rewards and
state transitions:

P(st+1 = s ′, rt+1 = r ′|st = s, at = a)

We assume the Markov property: the future depends on the past only
through the current state

CSC411 Lec19 16 / 1

Maze Example

Rewards: −1 per time-step

Actions: N, E, S, W

States: Agent’s location

[Slide credit: D. Silver]

CSC411 Lec19 17 / 1

Maze Example

Arrows represent policy π(s)
for each state s

[Slide credit: D. Silver]

CSC411 Lec19 18 / 1

Maze Example

Numbers represent value V π(s)
of each state s

[Slide credit: D. Silver]

CSC411 Lec19 19 / 1

Example: Tic-Tac-Toe

Consider the game tic-tac-toe:

I reward: win/lose/tie the game (+1/− 1/0) [only at final move in given
game]

I state: positions of X’s and O’s on the board
I policy: mapping from states to actions

I based on rules of game: choice of one open position

I value function: prediction of reward in future, based on current state

In tic-tac-toe, since state space is tractable, can use a table to represent
value function

CSC411 Lec19 20 / 1

RL & Tic-Tac-Toe

Each board position (taking into account symmetry) has some probability

Simple learning process:

I start with all values = 0.5
I policy: choose move with highest

probability of winning given current
legal moves from current state

I update entries in table based on
outcome of each game

I After many games value function will
represent true probability of winning
from each state

Can try alternative policy: sometimes select moves randomly (exploration)

CSC411 Lec19 21 / 1

MDP

Markov Decision Problem (MDP): tuple (S ,A,P, γ) where P is

P(st+1 = s ′, rt+1 = r ′|st = s, at = a)

Main assumption: Markovian dynamics and reward.

Standard MDP problems:

1. Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

[Pic: P. Abbeel]

CSC411 Lec19 22 / 1

Basic Problems

Markov Decision Problem (MDP): tuple (S ,A,P, γ) where P is

P(st+1 = s ′, rt+1 = r ′|st = s, at = a)

Standard MDP problems:

1. Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

2. Learning: We don’t know which states are good or what the actions
do. We must try out the actions and states to learn what to do

[P. Abbeel]

CSC411 Lec19 23 / 1

Example of Standard MDP Problem

1. Planning: given complete Markov decision problem as input, compute policy
with optimal expected return

2. Learning: Only have access to experience in the MDP, learn a near-optimal
strategy

CSC411 Lec19 24 / 1

Example of Standard MDP Problem

1. Planning: given complete Markov decision problem as input, compute policy
with optimal expected return

2. Learning: Only have access to experience in the MDP, learn a near-optimal
strategy

We will focus on learning, but discuss planning along the way

CSC411 Lec19 25 / 1

Exploration vs. Exploitation

If we knew how the world works (embodied in P), then the policy should be
deterministic

I just select optimal action in each state

Reinforcement learning is like trial-and-error learning

The agent should discover a good policy from its experiences of the
environment

Without losing too much reward along the way

Since we do not have complete knowledge of the world, taking what appears
to be the optimal action may prevent us from finding better states/actions

Interesting trade-off:

I immediate reward (exploitation) vs. gaining knowledge that might
enable higher future reward (exploration)

CSC411 Lec19 26 / 1

Examples

Restaurant Selection

I Exploitation: Go to your favourite restaurant
I Exploration: Try a new restaurant

Online Banner Advertisements

I Exploitation: Show the most successful advert
I Exploration: Show a different advert

Oil Drilling

I Exploitation: Drill at the best known location
I Exploration: Drill at a new location

Game Playing

I Exploitation: Play the move you believe is best
I Exploration: Play an experimental move

[Slide credit: D. Silver]

CSC411 Lec19 27 / 1

Value function

The value function V π(s) assigns each state the expected reward

V π(s) = E
at ,at+i ,st+i

[∞∑
i=0

γ i rt+i |st = s

]

Usually not informative enough to make decisions.

The Q-value Qπ(s, a) is the expected reward of taking action a in state s
and then continuing according to π.

Qπ(s, a) = E
at+i ,st+i

[∞∑
i=0

γ i rt+i |st = s, at = a

]

CSC411 Lec19 28 / 1

Bellman equations

The foundation of many RL algorithms

V π(s) = E
at ,at+i ,st+i

[
∞∑
i=0

γ i rt+i |st = s

]

= E
at
[rt |st = s] + γ E

at ,at+i ,st+i

[
∞∑
i=1

γ i rt+i+1|st = s

]
= E

at
[rt |st = s] + γ E

st+1

[V π(st+1)|st = s]

=
∑
a,r

Pπ(a|st)p(r |a, st) · r + γ
∑
a,s′

Pπ(a|st)p(s ′|a, st) · V π(s ′)

Similar equation holds for Q

Qπ(s, a) = E
at+i ,st+i

[
∞∑
i=0

γ i rt+i |st = s, at = a

]
=
∑
r

p(r |a, st) · r + γ
∑
s′

p(s ′|a, st) · V π(s ′)

=
∑
r

p(r |a, st) · r + γ
∑
a′,s′

p(s ′|a, st)p(a′|s ′) · Qπ(s ′, a′)

CSC411 Lec19 29 / 1

Solving Bellman equations

The Bellman equations are a set of linear equations with a unique solution.

Can solve fast(er) because the linear mapping is a contractive mapping.

This lets you know the quality of each state/action under your policy -
policy evaluation.

You can improve by picking π′(s) = maxa Q
π(s, a) - policy improvement.

Can show the iterative policy evaluation and improvement converges to the
optimal policy.

Are we done? Why isn’t this enough?

I Need to know the model! Usually isn’t known.
I Number of states is usually huge (how many unique states does a chess

game have?)

CSC411 Lec19 30 / 1

Optimal Bellman equations

First step is understand the Bellman equation for the optimal policy π∗

Under this policy V ∗(s) = maxa Q
∗(s, a)

V ∗(s) = max
a

[
E [rt+1|st = s, at = a] + γ E

st+1

[V ∗(st+1)|st = s, at = a]

]
= max

a

[∑
r

p(r |a, st) · r + γ
∑
s′

p(s ′|a, st) · V ∗(s ′)

]

Q∗(s, a) = E [rt+1|st = s, at = a] + γ E
st+1

[
max
a′

Q∗(st+1, a
′)|st = s, at = a

]
=
∑
r

p(r |a, st) · r + γ
∑
s′

p(s ′|a, st) ·max
a′

Q∗(s ′, a′)

Set on nonlinear equations.

Same issues as before.

CSC411 Lec19 31 / 1

Q-learning intuition

Q-learning is a simple algorithm to find the optimal policy without knowing
the model.

Q∗ is the unique solution to the optimal Bellman equation.

Q∗(s, a) = E [rt+1|st = s, at = a] + γ E
st+1

[
max
a′

Q∗(st+1, a
′)|st = s, at = a

]

We don’t know the model and don’t want to update all states
simultaneously.

Solution - given sample st , at , rt+1, st+1 from the environment update your
Q-values so they are closer to satisfying the bellman equation.

I off-policy method: Samples don’t have to be from the optimal policy.

Samples need to be diverse enough to see everything - exploration.

CSC411 Lec19 32 / 1

Exploration vs exploitation

Given Q-value the best thing we can do (given our limited knowledge) is to
take a = arg maxa′ Q(s, a′) - exploitation

How do we balance exploration with exploitation?

Simplest solution: ε-greedy.

I With probability 1− ε pick a = arg maxa′ Q(s, a′) (i.e. greedy)
I With probability ε pick any other action uniformly.

Another idea - softmax using Q values

I With probability 1− ε pick a = arg maxa′ Q(s, a′) (i.e. greedy)
I With probability ε pick any other action with probability
∝ exp(βQ(s, a)).

Other fancier solutions exist, many leading methods use simple ε-greedy
sampling.

CSC411 Lec19 33 / 1

Q-learning algorithm

Can prove convergence to the optimal Q∗ under mild conditions.

Update is equivalent to gradient descent on loss
||R + γmaxa Q(S ′, a)− Q(s, a)||2.

Why L2 loss? Optimal solution is the mean which is what we are looking for!

CSC411 Lec19 34 / 1

Bootstrapping

Another way to think about Q-learning.

Q(s, a) is the expected reward, can use Monte-Carlo estimation.

Problem - you update only after the episode ends, can be very long (or
infinite).

Q-learning solution - take only 1 step forward and estimate the future using
our Q value - bootstrapping.

I ”learn a guess from a guess”

Q-learning is just one algorithm in a family of algorithms that use this idea.

CSC411 Lec19 35 / 1

Function approximation

Q-learning still scales badly with large state spaces, how many states does a
chess game have? Need to save the full table!

Similar states, e.g. move all chess pieces two steps to the left, at treated as
totally different.

Solution: Instead of Q being a S × A table it is a parametrized function.

Looking for function Q̂(s, a;w) ≈ Q∗(s, a)

I Linear functions Q(s, a;w) = wTφ(s, a).
I Neural network

Hopefully can generalize to unseen states.

Problem: Each change to parameters changes all states/actions - can lead
to instability.

For non-linear Q-learning can diverge.

CSC411 Lec19 36 / 1

Deep Q-learning

We have a function approximator Q(s, a; θ), standard is neural net but
doesn’t have to be.

What is the objective that we are optimizing?

We want to minimize Eρ[||R + γmaxa′ Q(S ′, a′)− Q(s, a)||2]
I ρ is a distribution over states, depends on θ!

Two terms depend on Q, don’t want to take gradients w.r. to
γmaxa Q(S ′, a)

We want to correct our previous estimation given the new information.

Figure: Take from:rll.berkeley.edu/deeprlcourse

This simple approach doesn’t work well as is.

CSC411 Lec19 37 / 1

Issues and solutions

Problem: data in the minibatch is highly correlated
I Consecutive samples are from the same episode and probably similar

states.
I Solution: Replay memory.
I You store a large memory buffer of previous (s, a, r , s ′) (notice this is all

you need for Q-learning) and sample from it to get diverse minibatch.

Problem: The data distribution keeps changing
I Since we aren’t optimizing yi its like solving a different (but related)

least squares each iteration.
I We can stabilize by fixing a target network for a few iterations

Figure: Take from:rll.berkeley.edu/deeprlcourse

CSC411 Lec19 38 / 1

Example: DQN on atari

Trained a NN from scratch on atari games

Ablation study

CSC411 Lec19 39 / 1

RL recap

Learning from experience not from labeled examples.

Why is RL hard?

I Limited feedback.
I Delayed rewards.
I Your model effect what you see.
I Huge state space.

Usually solved by learning the value function or optimizing the policy (not
covered)

Model based method but less successful at the moment.

How do you define the rewards? Can be trick.

I Bad rewards can lead to reward hacking

CSC411 Lec19 40 / 1

Q-Learning recap

Try to find Q that satisfies the optimal Bellman conditions

Off-policy algorithm - Doesn’t have to follow a greedy policy to evaluate it.

Model free algorithm - Doesn’t have any model for instantaneous reward or
dynamics.

Learns a separate value for each s, a pair - doesn’t scale up to huge state
spaces.

Can scale using a function approximation

I No more theoretical guarantees.
I Can diverge.
I Some simple tricks help a lot.

CSC411 Lec19 41 / 1

