
Boltzmann Machines

Geoffrey E. Hinton

March 25, 2007

A Boltzmann Machine is a network of symmetrically connected, neuron-
like units that make stochastic decisions about whether to be on or off. Boltz-
mann machines have a simple learning algorithm that allows them to discover
interesting features in datasets composed of binary vectors. The learning al-
gorithm is very slow in networks with many layers of feature detectors, but
it can be made much faster by learning one layer of feature detectors at a
time.

Boltzmann machines are used to solve two quite different computational
problems. For a search problem, the weights on the connections are fixed
and are used to represent the cost function of an optimization problem. The
stochastic dynamics of a Boltzmann machine then allow it to sample binary
state vectors that represent good solutions to the optimization problem.

For a learning problem, the Boltzmann machine is shown a set of binary
data vectors and it must find weights on the connections so that the data vec-
tors are good solutions to the optimization problem defined by those weights.
To solve a learning problem, Boltzmann machines make many small updates
to their weights, and each update requires them to solve many different search
problems.

The stochastic dynamics of a Boltzmann machine

When unit i is given the opportunity to update its binary state, it first
computes its total input, zi, which is the sum of its own bias, bi, and the
weights on connections coming from other active units:

zi = bi +
∑

j

sjwij (1)

1



where wij is the weight on the connection between i and j, and sj is 1 if unit
j is on and 0 otherwise. Unit i then turns on with a probability given by the
logistic function:

prob(si = 1) =
1

1 + e−zi

(2)

If the units are updated sequentially in any order that does not depend on
their total inputs, the network will eventually reach a Boltzmann distribution
(also called its equilibrium or stationary distribution) in which the probability
of a state vector, v, is determined solely by the “energy” of that state vector
relative to the energies of all possible binary state vectors:

P (v) = e−E(v)/
∑

u

e−E(u) (3)

As in Hopfield nets, the energy of state vector v is defined as

E(v) = −
∑

i

sv

i bi −
∑

i<j

sv

i sv

j wij (4)

where sv

i is the binary state assigned to unit i by state vector v.

If the weights on the connections are chosen so that the energies of state
vectors represent the badness of those state vectors as solutions to an op-
timization problem, then the stochastic dynamics of a Boltzmann machine
can be viewed as a way of escaping from poor local optima while searching
for good solutions. The total input to unit i, zi, represents the difference in
energy depending on whether that unit is off or on, and the fact that unit
i occasionally turns on even if zi is negative means that the energy can oc-
casionally increase during the search, thus allowing the search to jump over
energy barriers.

The search can be improved by using simulated annealing (Kirkpatrick
et al., 1983). This scales down all of the weights and energies by a factor,
T , which is analogous to the temperature of a physical system. By reducing
T from a large initial value to a small final value, it is possible to benefit
from the fast equilibration at high temperatures and still have a final equi-
librium distribution that makes good solutions much more probable than bad
ones. At a temperature of 0 the update rule becomes deterministic and a
Boltzmann machine turns into a Hopfield net.

2



Learning in Boltzmann Machines

Given a training set of state vectors (the data), learning consists of find-
ing weights and biases (the parameters) that make those state vectors good.
More specifically, the aim is to find weights and biases that define a Boltz-
mann distribution in which the training vectors have high probability. By
differentiating Eq. 3 and using the fact that ∂E(v)/∂wij = −sv

i sv

j it can be
shown that

∑

v∈data

∂ log P (v)

∂wij

= 〈sisj〉data − 〈sisj〉model (5)

where 〈sisj〉data is the expected value of sisj in the data distribution and
〈sisj〉model is the expected value when the Boltzmann machine is sampling
state vectors from its equilibrium distribution at a temperature of 1. To
perform gradient ascent in the log probability that the Boltzmann machine
would generate the observed data when sampling from its equilibrium distri-
bution, wij is incremented by a small learning rate times the RHS of Eq. 5.
The learning rule for the bias, bi, is the same as Eq. 5, but with sj ommitted.

If the observed data specifies a binary state for every unit in the Boltz-
mann machine, the learning problem is convex: There are no non-global
optima in the parameter space. Learning becomes much more interesting if
the Boltzmann machine consists of some “visible” units, whose states can
be observed, and some “hidden” units whose states are not specified by the
observed data. The hidden units act as latent variables (features) that allow
the Boltzmann machine to model distributions over visible state vectors that
cannot be modelled by direct pairwise interactions between the visible units.
A surprising property of Boltzmann machines is that, even with hidden units,
the learning rule remains unchanged. This makes it possible to learn binary
features that capture higher-order structure in the data. With hidden units,
the expectation 〈sisj〉data is the average, over all data vectors, of the ex-
pected value of sisj when a data vector is clamped on the visible units and
the hidden units are repeatedly updated until they reach equilibrium with
the clamped data vector.

It is surprising that the learning rule is so simple because ∂ log P (v)/∂wij

depends on all the other weights in the network. Fortunately, the difference
in the two correlations in Eq. 5 tells wij everthing it needs to know about
the other weights. This makes it unnecessary to explicitly propagate error
derivatives, as in the backpropagation algorithm.

3



Higher-order Boltzmann machines

The stochastic dynamics and the learning rule can accommodate more
complicated energy functions (Sejnowski, 1986). For example, the quadratic
energy function in Eq. 4 can be replaced by an energy function whose typical
term is sisjskwijk. The total input to unit i that is used in the update rule
must then be replaced by zi = bi +

∑
j<k sjskwijk. The only change in the

learning rule is that sisj is replaced by sisjsk.

Conditional Boltzmann machines

Boltzmann machines model the distribution of the data vectors, but there
is a simple extension for modelling conditional distributions (Ackley et al.,
1985). The only difference between the visible and the hidden units is that,
when sampling 〈sisj〉data, the visible units are clamped and the hidden units
are not. If a subset of the visible units are also clamped when sampling
〈sisj〉model this subset acts as “input” units and the remaining visible units
act as “output” units. The same learning rule applies, but now it maximizes
the log probabilities of the observed output vectors conditional on the input
vectors.

Non-binary units (not required reading)

The binary stochastic units used in Boltzmann machines can be general-
ized to “softmax” units that have more than 2 discrete values, Gaussian units
whose output is simply their total input plus Gaussian noise, binomial units,
Poisson units, and any other type of unit that falls in the exponential family,
which is characterized by the fact that the adjustable parameters have linear
effects on the log probabilities (Welling et al., 2005). The general form of the
gradient required for learning is simply the change in the sufficient statistics
caused by clamping data on the visible units.

The speed of learning

Learning is typically very slow in Boltzmann machines with many hid-
den layers because large networks can take a long time to approach their
equilibrium distribution, especially when the weights are large and the equi-
librium distribution is highly multimodal, as it usually is when the visible
units are unclamped. Even if samples from the equilibrium distribution can
be obtained, the learning signal is very noisy because it is the difference of
two sampled expectations. These difficulties can be overcome by restricting

4



the connectivity, simplifying the learning algorithm, and learning one hidden
layer at a time.

Restricted Boltzmann machines

A restricted Boltzmann machine (Smolensky, 1986) consists of a layer of
visible units and a layer of hidden units with no visible-visible or hidden-
hidden connections. With these restrictions, the hidden units are condition-
ally independent given a visible vector, so unbiased samples from 〈sisj〉data

can be obtained in one parallel step. To sample from 〈sisj〉model still requires
multiple iterations that alternate between updating all the hidden units in
parallel and updating all of the visible units in parallel. However, learning
still works well if 〈sisj〉model is replaced by 〈sisj〉recon which is obtained as
follows:

1. Starting with a data vector on the visible units, update all of the hidden
units in parallel.

2. Update all of the visible units in parallel to get a “reconstruction”.

3. Update all of the hidden units again.

This efficient learning procedure does approximate gradient descent in a
quantity called “contrastive divergence” and works well in practice (Hinton,
2002).

After learning one hidden layer, the activity vectors of the hidden units,
when they are being driven by the real data, can be treated as “data” for
training another restricted Boltzmann machine. This can be repeated to
learn as many hidden layers as desired. After learning multiple hidden layers
in this way, the whole network can be viewed as a single, multilayer gen-
erative model and each additional hidden layer improves a lower bound on
the probability that the multilayer model would generate the training data
(Hinton et al., 2006). Surprisingly, the resulting multilayer generative model
is not a Boltzmann machine.

Learning one hidden layer at a time is a very effective way to learn deep
neural networks with many hidden layers and millions of weights. Even
though the learning is unsupervised, the highest level features are typically
much more useful for classification than the raw data vectors. These deep

5



networks can be fine-tuned to be better at classification or dimensionality
reduction using the backpropagation algorithm (Hinton and Salakhutdinov,
2006). Alternatively, they can be fine-tuned to be better generative models
using a version of the “wake-sleep” algorithm (Hinton et al., 2006).

Relationships to other models (not required reading)

Boltzmann machines are a type of Markov random field, but most Markov
random fields have simple, local interaction weights which are designed by
hand rather than being learned. Boltzmann machines also resemble Ising
models, but Ising models typically use random or hand-designed interaction
weights.

The search procedure for Boltzmann machines is an early example of
Gibbs sampling, a Markov chain Monte Carlo method which was invented
independently (Geman and Geman, 1984) and was also inspired by simulated
annealing.

Conditional random fields (Della Pietra et al., 1997) can be viewed as
simplified versions of higher-order, conditional Boltzmann machines in which
the hidden units have been eliminated. This makes the learning problem
convex, but removes the ability to learn new features.

References

Ackley, D., Hinton, G., and Sejnowski, T. (1985). A Learning Algorithm for
Boltzmann Machines. Cognitive Science, 9(1):147–169.

Della Pietra, S., Della Pietra, V., and Lafferty, J. (1997). Inducing features
of random fields. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(4):380–393.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 6(6):721–741.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive
divergence. Neural Computation, 14(8):1711–1800.

6



Hinton, G. E., Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm
for deep belief nets. Neural Computation, 18:1527–1554.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality
of data with neural networks. Science, 313:504–507.

Kirkpatrick, S., Gelatt Jr, C., and Vecchi, M. (1983). Optimization by Sim-
ulated Annealing. Science, 220(4598):671.

Sejnowski, T. (1986). Higher-order Boltzmann machines. AIP Conference

Proceedings, 151(1):398–403.

Smolensky, P. (1986). Information processing in dynamical systems: Foun-
dations of harmony theory. In Rumelhart, D. E. and McClelland, J. L.,
editors, Parallel Distributed Processing: Volume 1: Foundations, pages
194–281. MIT Press, Cambridge.

Welling, M., Rosen-Zvi, M., and Hinton, G. E. (2005). Exponential family
harmoniums with an application to information retrieval. In Advances in

Neural Information Processing Systems 17, pages 1481–1488. MIT Press,
Cambridge, MA.

7


