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1 Introduction

Restricted Boltzmann machines (RBMs) have been used as generative models of many different
types of data including labeled or unlabeled images (Hinton et al., 2006a), windows of mel-cepstral
coefficients that represent speech (Mohamed et al., 2009), bags of words that represent documents
(Salakhutdinov and Hinton, 2009), and user ratings of movies (Salakhutdinov et al., 2007). In their
conditional form they can be used to model high-dimensional temporal sequences such as video or
motion capture data (Taylor et al., 2006) or speech (Mohamed and Hinton, 2010). Their most
important use is as learning modules that are composed to form deep belief nets (Hinton et al.,
2006a).

RBMs are usually trained using the contrastive divergence learning procedure (Hinton, 2002).
This requires a certain amount of practical experience to decide how to set the values of numerical
meta-parameters such as the learning rate, the momentum, the weight-cost, the sparsity target, the
initial values of the weights, the number of hidden units and the size of each mini-batch. There are also
decisions to be made about what types of units to use, whether to update their states stochastically
or deterministically, how many times to update the states of the hidden units for each training case,
and whether to start each sequence of state updates at a data-vector. In addition, it is useful to know
how to monitor the progress of learning and when to terminate the training.

For any particular application, the code that was used gives a complete specification of all of
these decisions, but it does not explain why the decisions were made or how minor changes will affect
performance. More significantly, it does not provide a novice user with any guidance about how to
make good decisions for a new application. This requires some sensible heuristics and the ability to
relate failures of the learning to the decisions that caused those failures.

Over the last few years, the machine learning group at the University of Toronto has acquired
considerable expertise at training RBMs and this guide is an attempt to share this expertise with
other machine learning researchers. We are still on a fairly steep part of the learning curve, so the
guide is a living document that will be updated from time to time and the version number should
always be used when referring to it.

2 An overview of Restricted Boltzmann Machines and Contrastive
Divergence

Skip this section if you already know about RBMs

Consider a training set of binary vectors which we will assume are binary images for the purposes
of explanation. The training set can be modeled using a two-layer network called a “Restricted
Boltzmann Machine” (Smolensky, 1986; Freund and Haussler, 1992; Hinton, 2002) in which stochastic,
binary pixels are connected to stochastic, binary feature detectors using symmetrically weighted
connections. The pixels correspond to “visible” units of the RBM because their states are observed;
the feature detectors correspond to “hidden” units. A joint configuration, (v,h) of the visible and
hidden units has an energy (Hopfield, 1982) given by:

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

vihjwij (1)

where vi, hj are the binary states of visible unit i and hidden unit j, ai, bj are their biases and wij is
the weight between them. The network assigns a probability to every possible pair of a visible and a
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hidden vector via this energy function:

p(v,h) =
1
Z
e−E(v,h) (2)

where the “partition function”, Z, is given by summing over all possible pairs of visible and hidden
vectors:

Z =
∑
v,h

e−E(v,h) (3)

The probability that the network assigns to a visible vector, v, is given by summing over all possible
hidden vectors:

p(v) =
1
Z

∑
h

e−E(v,h) (4)

The probability that the network assigns to a training image can be raised by adjusting the weights
and biases to lower the energy of that image and to raise the energy of other images, especially those
that have low energies and therefore make a big contribution to the partition function. The derivative
of the log probability of a training vector with respect to a weight is surprisingly simple.

∂ log p(v)
∂wij

= 〈vihj〉data − 〈vihj〉model (5)

where the angle brackets are used to denote expectations under the distribution specified by the
subscript that follows. This leads to a very simple learning rule for performing stochastic steepest
ascent in the log probability of the training data:

∆wij = ε(〈vihj〉data − 〈vihj〉model) (6)

where ε is a learning rate.

Because there are no direct connections between hidden units in an RBM, it is very easy to get
an unbiased sample of 〈vihj〉data. Given a randomly selected training image, v, the binary state, hj ,
of each hidden unit, j, is set to 1 with probability

p(hj = 1 | v) = σ(bj +
∑

i

viwij) (7)

where σ(x) is the logistic sigmoid function 1/(1 + exp(−x)). vihj is then an unbiased sample.

Because there are no direct connections between visible units in an RBM, it is also very easy to
get an unbiased sample of the state of a visible unit, given a hidden vector

p(vi = 1 | h) = σ(ai +
∑

j

hjwij) (8)

Getting an unbiased sample of 〈vihj〉model, however, is much more difficult. It can be done by
starting at any random state of the visible units and performing alternating Gibbs sampling for a very
long time. One iteration of alternating Gibbs sampling consists of updating all of the hidden units
in parallel using equation 7 followed by updating all of the visible units in parallel using equation 8.

A much faster learning procedure was proposed in Hinton (2002). This starts by setting the
states of the visible units to a training vector. Then the binary states of the hidden units are all
computed in parallel using equation 7. Once binary states have been chosen for the hidden units,
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a “reconstruction” is produced by setting each vi to 1 with a probability given by equation 8. The
change in a weight is then given by

∆wij = ε(〈vihj〉data − 〈vihj〉recon) (9)

A simplified version of the same learning rule that uses the states of indivisdual units instead of
pairwise products is used for the biases.

The learning works well even though it is only crudely approximating the gradient of the log prob-
ability of the training data (Hinton, 2002). The learning rule is much more closely approximating the
gradient of another objective function called the Contrastive Divergence (Hinton, 2002) which is the
difference between two Kullback-Liebler divergences, but it ignores one tricky term in this objective
function so it is not even following that gradient. Indeed, Sutskever and Tieleman have shown that it
is not following the gradient of any function (Sutskever and Tieleman, 2010). Nevertheless, it works
well enough to achieve success in many significant applications.

RBMs typically learn better models if more steps of alternating Gibbs sampling are used before
collecting the statistics for the second term in the learning rule, which will be called the negative
statistics. CDn will be used to denote learning using n full steps of alternating Gibbs sampling.

3 How to collect statistics when using Contrastive Divergence

To begin with, we shall assume that all of the visible and hidden units are binary. Other types of
units will be discussed in sections 13. We shall also assume that the purpose of the learning is to
create a good generative model of the set of training vectors. When using RBMs to learn Deep Belief
Nets (see the article on Deep Belief Networks at www.scholarpedia.org) that will subsequently be
fine-tuned using backpropagation, the generative model is not the ultimate objective and it may be
possible to save time by underfitting it, but we will ignore that here.

3.1 Updating the hidden states

Assuming that the hidden units are binary and that you are using CD1, the hidden units should have
stochastic binary states when they are being driven by a data-vector. The probability of turning on
a hidden unit, j, is computed by applying the logistic function σ(x) = 1/(1 + exp(−x)) to its “total
input”:

p(hj = 1) = σ(bj +
∑

i

viwij) (10)

and the hidden unit turns on if this probability is greater than a random number uniformly distributed
between 0 and 1.

It is very important to make these hidden states binary, rather than using the probabilities
themselves. If the probabilities are used, each hidden unit can communicate a real-value to the
visible units during the reconstruction. This seriously violates the information bottleneck created by
the fact that a hidden unit can convey at most one bit (on average). This information bottleneck
acts as a strong regularizer.

For the last update of the hidden units, it is silly to use stochastic binary states because nothing
depends on which state is chosen. So use the probability itself to avoid unnecessary sampling noise.
When using CDn, only the final update of the hidden units should use the probability.
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3.2 Updating the visible states

Assuming that the visible units are binary, the correct way to update the visible states when generating
a reconstruction is to stochastically pick a 1 or 0 with a probability determined by the total top-down
input:

pi = p(vi = 1) = σ(ai +
∑

j

hjwij) (11)

However, it is common to use the probability, pi, instead of sampling a binary value. This is not
nearly as problematic as using probabilities for the data-driven hidden states and it reduces sampling
noise thus allowing faster learning. There is some evidence that it leads to slightly worse density
models (Tijmen Tieleman, personal communication, 2008). This probably does not matter when
using an RBM to pretrain a layer of hidden features for use in a deep belief net.

3.3 Collecting the statistics needed for learning

Assuming that the visible units are using real-valued probabilities instead of stochastic binary values,
there are two sensible ways to collect the positive statistics for the connection between visible unit i
and hidden unit j:

〈pihj〉data or 〈pipj〉data

where pj is a probability and hj is a binary state that takes value 1 with probability pj . Using hj

is closer to the mathematical model of an RBM, but using pj usually has less sampling noise which
allows slightly faster learning2.

3.4 A recipe for getting the learning signal for CD1

When the hidden units are being driven by data, always use stochastic binary states. When they are
being driven by reconstructions, always use probabilities without sampling.

Assuming the visible units use the logistic function, use real-valued probabilities for both the data
and the reconstructions3.

When collecting the pairwise statistics for learning weights or the individual statistics for learning
biases, use the probabilities, not the binary states, and make sure the weights have random initial
values to break symmetry.

4 The size of a mini-batch

It is possible to update the weights after estimating the gradient on a single training case, but it is
often more efficient to divide the training set into small “mini-batches” of 10 to 100 cases4. This
allows matrix-matrix multiplies to be used which is very advantageous on GPU boards or in Matlab.

2Using hj always creates more noise in the positive statistics than using pj but it can actually create less noise in
the difference of the positive and negative statistics because the negative statistics depend on the binary decision for
the state of j that is used for creating the reconstruction. The probability of j when driven by the reconstruction is
highly correlated with the binary decision that was made for j when it was driven by the data.

3So there is nothing random about the generation of the reconstructions given the binary states of the hidden units.
4The word “batch” is confusing and will be avoided because when it is used to contrast with “on-line” it usually

means the entire training set.
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To avoid having to change the learning rate when the size of a mini-batch is changed, it is helpful
to divide the total gradient computed on a mini-batch by the size of the mini-batch, so when talking
about learning rates we will assume that they multiply the average, per-case gradient computed on
a mini-batch, not the total gradient for the mini-batch.

It is a serious mistake to make the mini-batches too large when using stochastic gradient descent.
Increasing the mini-batch size by a factor of N leads to a more reliable gradient estimate but it does
not increase the maximum stable learning rate by a factor of N, so the net effect is that the weight
updates are smaller per gradient evaluation5.

4.1 A recipe for dividing the training set into mini-batches

For datasets that contain a small number of equiprobable classes, the ideal mini-batch size is often
equal to the number of classes and each mini-batch should contain one example of each class to reduce
the sampling error when estimating the gradient for the whole training set from a single mini-batch.
For other datasets, first randomize the order of the training examples then use minibatches of size
about 10.

5 Monitoring the progress of learning

It is easy to compute the squared error between the data and the reconstructions, so this quantity
is often printed out during learning. The reconstruction error on the entire training set should fall
rapidly and consistently at the start of learning and then more slowly. Due to the noise in the
gradient estimates, the reconstruction error on the individual mini-batches will fluctuate gently after
the initial rapid descent. It may also oscillate gently with a period of a few mini-batches when using
high momentum (see section 9).

Although it is convenient, the reconstruction error is actually a very poor measure of the progress of
learning. It is not the function that CDn learning is approximately optimizing, especially for n >> 1,
and it systematically confounds two different quantities that are changing during the learning. The
first is the difference between the empirical distribution of the training data and the equilibrium
distribution of the RBM. The second is the mixing rate of the alternating Gibbs Markov chain. If
the mixing rate is very low, the reconstruction error will be very small even when the distributions of
the data and the model are very different. As the weights increase the mixing rate falls, so decreases
in reconstruction error do not necessarily mean that the model is improving and, conversely, small
increases do not necessarily mean the model is getting worse. Large increases, however, are a bad sign
except when they are temporary and caused by changes in the learning rate, momentum, weight-cost
or sparsity meta-parameters.

5.1 A recipe for using the reconstruction error

Use it but don’t trust it. If you really want to know what is going on during the learning, use multiple
histograms and graphic displays as described in section 15. Also consider using Annealed Importance

5The easy way to parallelize the learning on a cluster is to divide each mini-batch into sub-mini-batches and to use
different cores to compute the gradients on each sub-mini-batch. The gradients computed by different cores must then
be combined. To minimize the ratio of communication to computation, it is tempting to make the sub-mini-batches
large. This usually makes the learning much less efficient, thus wiping out much of the gain achieved by using multiple
cores (Vinod Nair, personal communication, 2007).
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Sampling (Salakhutdinov and Murray, 2008) to estimate the density on held out data. If you are
learning a joint density model of labelled data (see section 16), consider monitoring the discriminative
performance on the training data and on a held out validation set.

6 Monitoring the overfitting

When learning a generative model, the obvious quantity to monitor is the probability that the current
model assigns to a datapoint. When this probability starts to decrease for held out validation data, it
is time to stop learning. Unfortunately, for large RBMs, it is very difficult to compute this probability
because it requires knowledge of the partition function. Nevertheless, it is possible to directly monitor
the overfitting by comparing the free energies of training data and held out validation data. In this
comparison, the partition function cancels out. The free energy of a data vector can be computed in
a time that is linear in the number of hidden units (see section 16.1). If the model is not overfitting
at all, the average free energy should be about the same on training and validation data. As the
model starts to overfit the average free energy of the validation data will rise relative to the average
free energy of the training data and this gap represents the amount of overfitting6.

6.1 A recipe for monitoring the overfitting

After every few epochs, compute the average free energy of a representative subset of the training
data and compare it with the average free energy of a validation set. Always use the same subset of
the training data. If the gap starts growing, the model is overfitting, though the probability of the
training data may be growing even faster than the gap, so the probability of the validation data may
still be improving. Make sure that the same weights are used when computing the two averages that
you wish to compare.

7 The learning rate

If the learning rate is much too large, the reconstruction error usually increases dramatically and the
weights may explode.

If the learning rate is reduced while the network is learning normally, the reconstruction error
will usually fall significiantly. This is not necessarily a good thing. It is due, in part, to the smaller
noise level in the stochastic weight updates and it is generally accompanied by slower learning in
the long term. Towards the end of learning, however, it typically pays to decrease the learning rate.
Averaging the weights across several updates is an alternative way to remove some of the noise from
the final weights.

7.1 A recipe for setting the learning rates for weights and biases

A good rule of thumb for setting the learning rate (Max Welling, personal communication, 2002) is
to look at a histogram of the weight updates and a histogram of the weights. The updates should
be about 10−3 times the weights (to within about an order of magnitude). When a unit has a very

6The average free energies often change by large amounts during learning and this means very little because the log
partition function also changes by large amounts. It is only differences in free energies that are easy to interpret without
knowing the partition function.

8



large fan-in, the updates should be smaller since many small changes in the same direction can easily
reverse the sign of the gradient. Conversely, for biases, the updates can be bigger.

8 The initial values of the weights and biases

The weights are typically initialized to small random values chosen from a zero-mean Gaussian with
a standard deviation of about 0.01. Using larger random values can speed the initial learning, but
it may lead to a slightly worse final model. Care should be taken to ensure that the initial weight
values do not allow typical visible vectors to drive the hidden unit probabilities very close to 1 or 0
as this significantly slows the learning. If the statistics used for learning are stochastic, the initial
weights can all be zero since the noise in the statistics will make the hidden units become different
from one another even if they all have identical connectivities.

It is usually helpful to initialize the bias of visible unit i to log[pi/(1−pi)] where pi is the proportion
of training vectors in which unit i is on. If this is not done, the early stage of learning will use the
hidden units to make i turn on with a probability of approximately pi.

When using a sparsity target probability of t (see section 11), it makes sense to initialize the
hidden biases to be log[t/(1 − t)]. Otherwise, initial hidden biases of 0 are usually fine. It is also
possible to start the hidden units with quite large negative biases of about −4 as a crude way of
encouraging sparsity.

8.1 A recipe for setting the initial values of the weights and biases

Use small random values for the weights chosen from a zero-mean Gaussian with a standard deviation
of 0.01. Set the hidden biases to 0. Set the visible biases to log[pi/(1−pi)] where pi is the proportion
of training vectors in which unit i is on. Look at the activities of the hidden units occasionally to
check that they are not always on or off.

9 Momentum

Momentum is a simple method for increasing the speed of learning when the objective function
contains long, narrow and fairly straight ravines with a gentle but consistent gradient along the floor
of the ravine and much steeper gradients up the sides of the ravine. The momentum method simulates
a heavy ball rolling down a surface. The ball builds up velocity along the floor of the ravine, but not
across the ravine because the opposing gradients on opposite sides of the ravine cancel each other out
over time. Instead of using the estimated gradient times the learning rate to increment the values
of the parameters, the momentum method uses this quantity to increment the velocity, v, of the
parameters and the current velocity is then used as the parameter increment.

The velocity of the ball is assumed to decay with time and the “momentum” meta-parmeter, α is
the fraction of the previous velocity that remains after computing the gradient on a new mini-batch:

∆θi(t) = vi(t) = αvi(t− 1)− εdE
dθi

(t) (12)

If the gradient remains constant, the terminal velocity will exceed εdE/dθi by a factor of 1/(1−α).
This is a factor of 10 for a momentum of 0.9 which is a typical setting of this meta-parameter. The
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temporal smoothing in the momentum method avoids the divergent oscillations across the ravine that
would be caused by simply increasing the learning rate by a factor of 1/(1− α).

The momentum method causes the parameters to move in a direction that is not the direction
of steepest descent, so it bears some resemblance to methods like conjugate gradient, but the way it
uses the previous gradients is much simpler. Unlike methods that use different learning rates for each
parameter, momentum works just as well when the ravines are not aligned with the parameter axes.

An alternative way of viewing the momentum method (Tijmen Tieleman, personal communica-
tion, 2008) is as follows: It is equivalent to increasing the learning rate by a factor of 1/(1− α) but
delaying the full effect of each gradient estimate by dividing the full increment into a series of expo-
nentially decaying installments. This gives the system time to respond to the early installments by
moving to a region of parameter space that has opposing gradients before it feels the full effect of the
increment. This, in turn, allows the learning rate to be larger without causing unstable oscillations.

At the start of learning, the random initial parameter values may create very large gradients and
the system is unlikely to be in the floor of a ravine, so it is usually best to start with a low momentum
of 0.5 for a number of parameter updates. This very conservative momentum typically makes the
learning more stable than no momentum at all by damping oscillations across ravines (Hinton, 1978).

9.1 A recipe for using momentum

Start with a momentum of 0.5. Once the large initial progress in the reduction of the reconstruction
error has settled down to gentle progress, increase the momentum to 0.9. This shock may cause a
transient increase in the reconstruction error. If this causes a more lasting instability, keep reducing
the learning rate by factors of 2 until the instability disappears.

10 Weight-decay

Weight-decay works by adding an extra term to the normal gradient. The extra term is the derivative
of a function that penalizes large weights. The simplest penalty function, called “L2”, is half of the
sum of the squared weights times a coefficient which will be called the weight-cost.

It is important to multiply the derivative of the penalty term by the learning rate. Otherwise,
changes in the learning rate change the function that is being optimized rather than just changing
the optimization procedure.

There are four different reasons for using weight-decay in an RBM. The first is to improve general-
ization to new data by reducing overfitting to the training data7. The second is to make the receptive
fields of the hidden units smoother and more interpretable by shrinking useless weights. The third is
to “unstick” hidden units that have developed very large weights early in the training and are either
always firmly on or always firmly off. A better way to allow such units to become useful again is to
use a “sparsity” target as described in section 11.

The fourth reason is to improve the mixing rate of the alternating Gibbs Markov chain. With small
weights, the Markov chain mixes more rapidly8. The CD learning procedure is based on ignoring

7Since the penalty is applied on every mini-batch, Bayesians really ought to divide the weight-cost by the size of
the training set. They can then interpret weight-decay as the effect of a Gaussian weight prior whose variance is
independent of the size of the training set. This division is typically not done. Instead, larger weight-costs are used for
smaller training sets.

8With all zero weights, it reaches its rather boring stationary distribution in a single full step.
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derivatives that come from later steps in the Markov chain (Hinton, Osindero and Teh, 2006), so
it tends to approximate maximum likelihood learning better when the mixing is fast. The ignored
derivatives are then small for the following reason: When a Markov chain is very close to its stationary
distribution, the best parameters for modeling samples from the chain are very close to its current
parameters.

A different form of weight-decay called “L1” is to use the derivative of the sum of the absolute
values of the weights. This often causes many of the weights to become exactly zero whilst allowing
a few of the weights to grow quite large. This can make it easier to interpret the weights. When
learning features for images, for example, L1 weight-decay often leads to strongly localized receptive
fields.

An alternative way to control the size of the weights is to impose a maximum allowed value on
the sum of the squares or absolute values of the incoming weights for each unit. After each weight
update, the weights are rescaled if they exceed this maximum value. This helps to avoid hidden units
getting stuck with extremely small weights, but a sparsity target is probably a better way to avoid
this problem.

10.1 A recipe for using weight-decay

For an RBM, sensible values for the weight-cost coefficient for L2 weight-decay typically range from
0.01 to 0.00001. Weight-cost is typically not applied to the hidden and visible biases because there
are far fewer of these so they are less likely to cause overfitting. Also, the biases sometimes need to
be quite large.

Try an initial weight-cost of 0.0001. If you are using Annealed Importance Sampling (Salakhut-
dinov and Murray, 2008) to estimate the density on a held-out validation set, try adjusting the
weight-cost by factors of 2 to optimize density. Small differences in weight-cost are unlikely to cause
big differences in performance. If you are training a joint density model that allows you to test
discriminative performance on a validation set this can be used in place of the density for optimizing
the weight-cost. However, in either case, remember that weight-decay does more than just preventing
overfitting. It also increases the mixing rate which makes CD learning a better approximation to
maximum likelihood. So even if overfitting is not a problem because the supply of training data is
infinite, weight-decay can still be helpful.

11 Encouraging sparse hidden activities

Hidden units that are only rarely active are typically easier to interpret than those that are active
about half of the time. Also, discriminative performance is sometimes improved by using features
that are only rarely active (Nair and Hinton, 2009).

Sparse activities of the binary hidden units can be achieved by specifying a “sparsity target”
which is the desired probability of being active, p << 1. An additional penalty term is then used
to encourage the actual probability of being active, q, to be close to p. q is estimated by using an
exponentially decaying average of the mean probability that a unit is active in each mini-batch:

qnew = λqold + (1− λ)qcurrent (13)

where qcurrent is the mean activation probability of the hidden unit on the current mini-batch.
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The natural penalty measure to use is the cross entropy between the desired and actual distribu-
tions:

Sparsity penalty ∝ −p log q − (1− p) log(1− q) (14)

For logistic units this has a simple derivative of q − p with respect to the total input to a unit. This
derivative, scaled by a meta-parameter called “sparsity-cost”, is used to adjust both the bias and
the incoming weights of each hidden unit. It is important to apply the same derivative to both. If
the derivative is only applied to the bias, for example, the bias will typically keep becoming more
negative to ensure the hidden unit is rarely on, but the weights will keep becoming more positive to
make the unit more useful.

11.1 A recipe for sparsity

Set the sparsity target to between 0.01 and 0.19. Set the decay-rate, λ, of the estimated value of q to
be between 0.9 and 0.99. Histogram the mean activities of the hidden units and set the sparsity-cost
so that the hidden units have mean probabilities in the vicinity of the target. If the probabilities are
tightly clustered around the target value, reduce the sparsity-cost so that it interferes less with the
main objective of the learning.

12 The number of hidden units

Intuitions derived from discriminative machine learning are a bad guide for determining a sensible
number of hidden units. In discriminative learning, the amount of constraint that a training case
imposes on the parameters is equal to the number of bits that it takes to specify the label. Labels
usually contain very few bits of information, so using more parameters than training cases will typ-
ically cause severe overfitting. When learning generative models of high-dimensional data, however,
it is the number of bits that it takes to specify a data vector that determines how much constraint
each training case imposes on the parameters of the model. This can be several orders of magnitude
greater than number of bits required to specify a label. So it may be quite reasonable to fit a million
parameters to 10,000 training images if each image contains 1,000 pixels. This would allow 1000 glob-
ally connected hidden units. If the hidden units are locally connected or if they use weight-sharing,
many more can be used.

12.1 A recipe for choosing the number of hidden units

Assuming that the main issue is overfitting rather than the amount of computation at training or
test time, estimate how many bits it would take to describe each data-vector if you were using a good
model (i.e. estimate the typical negative log2 probability of a datavector under a good model). Then
multiply that estimate by the number of training cases and use a number of parameters that is about
an order of magnitude smaller. If you are using a sparsity target that is very small, you may be able
to use more hidden units. If the training cases are highly redundant, as they typically will be for very
big training sets, you need to use fewer parameters.

9If you are only using the sparsity target to revive hidden units that are never active and suppress hidden units that
are always active, a target value of 0.5 makes sense (even though it makes nonsense of the name).
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13 Different types of unit

RBM’s were developed using binary visible and hidden units, but many other types of unit can also
be used. A general treatment for units in the exponential family is given in (Welling et al., 2005).
The main use of other types of unit is for dealing with data that is not well-modeled by binary (or
logistic) visible units.

13.1 Softmax and multinomial units

For a binary unit, the probability of turning on is given by the logistic sigmoid function of its total
input, x.

p = σ(x) =
1

1 + e−x
=

ex

ex + e0
(15)

The energy contributed by the unit is −x if it is on and 0 if it is off. Equation 15 makes it clear that
the probability of each of the two possible states is proportional to the negative exponential of its
energy. This can be generalized to K alternative states.

pj =
exj∑K
i=1 e

xi
(16)

This is often called a “softmax” unit. It is the appropriate way to deal with a quantity that has
K alternative values which are not ordered in any way. A softmax can be viewed as a set of binary
units whose states are mutually constrained so that exactly one of the K states has value 1 and the
rest have value 0. When viewed in this way, the learning rule for the binary units in a softmax is
identical to the rule for standard binary units. The only difference is in the way the probabilities of
the states are computed and the samples are taken.

A further generalization of the softmax unit is to sample N times (with replacement) from the
probability distribution instead of just sampling once. The K different states can then have integer
values bigger than 1, but the values must add to N . This is called a multinomial unit and, again, the
learning rule is unchanged.

13.2 Gaussian visible units

For data such as patches of natural images or the Mel-Cepstrum coefficients used to represent speech,
logistic units are a very poor representation. One solution is to replace the binary visible units by
linear units with independent Gaussian noise. The energy function then becomes:

E(v,h) =
∑
i∈vis

(vi − ai)2

2σ2
i

−
∑

j∈hid

bjhj −
∑
i,j

vi

σi
hjwij (17)

where σi is the standard deviation of the Gaussian noise for visible unit i.

It is possible to learn the variance of the noise for each visible unit but this is difficult using CD1.
In many applications, it is much easier to first normalise each component of the data to have zero
mean and unit variance and then to use noise free reconstructions, with the variance in equation 17
set to 1. The reconstructed value of a Gaussian visible unit is then equal to its top-down input from
the binary hidden units plus its bias.

The learning rate needs to be about one or two orders of magnitude smaller than when using
binary visible units and some of the failures reported in the literature are probably due to using a
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learning rate that is much too big. A smaller learning rate is required because there is no upper
bound to the size of a component in the reconstruction and if one component becomes very large, the
weights emanating from it will get a very big learning signal. With binary hidden and visible units,
the learning signal for each training case must lie between −1 and 1, so binary-binary nets are much
more stable.

13.3 Gaussian visible and hidden units

If both the visible and the hidden units are Gaussian, the instability problems become much worse.
The individual activities are held close to their means by quadratic “containment” terms with coef-
ficients determined by the standard deviations of the assumed noise levels:

E(v,h) =
∑
i∈vis

(vi − ai)2

2σ2
i

+
∑

j∈hid

(hj − bj)2

2σ2
j

−
∑
i,j

vi

σi

hj

σj
wij (18)

If any of the eigenvalues of the weight matrix become sufficiently large, the quadratic interaction
terms can dominate the containment terms and there is then no lower bound to the energy that can
be achieved by scaling up the activities in the direction of the corresponding eigenvector. With a
sufficiently small learning rate, CD1 can detect and correct these directions so it is possible to learn
an undirected version of a factor analysis model (Marks and Movellan, 2001) using all Gaussian units,
but this is harder than using EM (Ghahramani and Hinton, 1996) to learn a directed model.

13.4 Binomial units

A simple way to get a unit with noisy integer values in the range 0 to N is to make N separate copies
of a binary unit and give them all the same weights and bias (Teh and Hinton, 2001). Since all copies
receive the same total input, they all have the same probability, p, of turning on and this only has
to be computed once. The expected number that are on is Np and the variance in this number is
Np(1 − p). For small p, this acts like a Poisson unit, but as p approaches 1 the variance becomes
small again which may not be desireable. Also, for small values of p the growth in p is exponential
in the total input. This makes learning much less stable than for the rectified linear units described
in section 13.5.

One nice thing about using weight-sharing to synthesize a new type of unit out of binary units is
that the mathematics underlying binary-binary RBM’s remains unchanged.

13.5 Rectified linear units

A small modification to binomial units makes them far more interesting as models of real neurons
and also more useful for practical applications. All copies still have the same learned weight vector
w and the same learned bias, b, but each copy has a different, fixed offset to the bias. If the offsets
are −0.5,−1.5,−2.5, ... − (N − 0.5) the sum of the probabilities of the copies is extremely close to
having a closed form:

∞∑
i=1

σ(x− i+ 0.5) ≈ log(1 + ex) (19)

where x = vwT + b. So the total activity of all of the copies behaves like a smoothed version of a
rectified linear unit that saturates for sufficiently large input. Even though log(1 + ex) is not in the
exponential family, we can model it accurately using a set of binary units with shared weights and
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fixed bias offsets. This set has no more parameters than an ordinary binary unit, but it provides a
much more expressive variable. The variance is σ(x) so units that are firmly off do not create noise
and the noise does not become large when x is large.

A drawback of giving each copy a bias that differs by a fixed offset is that the logistic function
needs to be used many times to get the probabilities required for sampling an integer value correctly.
It is possible, however, to use a fast approximation in which the sampled value of the rectified linear
unit is not constrained to be an integer. Instead it is approximated by max(0, x + N(0, 1) where
N(0, 1) is Gaussian noise with zero mean and unit variance. This type of rectified linear unit seems
to work fine for either visible units or hidden units when training with CD1 (Nair and Hinton, 2010).

If both visible and hidden units are rectified linear, a much smaller learning rate may be needed to
avoid unstable dynamics in the activity or weight updates. If the weight between two rectified linear
units is greater than 1 there is no lower bound to the energy that can be achieved by giving both units
very high activities so there is no proper probability distribution. Nevertheless, contrastive divergence
learning may still work provided the learning rate is low enough to give the learning time to detect
and correct directions in which the Markov chain would blow up if allowed to run for many iterations.
RBM’s composed of rectified linear units are more stable than RBM’s composed of Gaussian units
because the rectification prevents biphasic oscillations of the weight dynamics in which units alternate
between vary high positive activity for one mini-batch followed by very high negative activity for the
next mini-batch.

14 Varieties of contrastive divergence

Although CD1 is not a very good approximation to maximum likelihood learning, this does not seem
to matter when an RBM is being learned in order to provide hidden features for training a higher-level
RBM. CD1 ensures that the hidden features retain most of the information in the data vector and
it is not necessarily a good idea to use a form of CD that is a closer approximation to maximum
likelihood but is worse at retaining the information in the data vector. If, however, the aim is to
learn an RBM that is a good density or joint-density model, CD1 is far from optimal.

At the beginning of learning, the weights are small and mixing is fast so CD1 provides a good
approximation to maximum likelihood. As the weights grow, the mixing gets worse and it makes
sense to gradually increase the n in CDn (Carreira-Perpignan and Hinton, 2005; Salakhutdinov et al.,
2007). When n is increased, the difference of pairwise statistics that is used for learning will increase
so it may be necessary to reduce the learning rate.

A more radical departure from CD1 is called “persistent contrastive divergence” (Tieleman, 2008).
Instead of initializing each alternating Gibbs Markov chain at a datavector, which is the essence of
CD learning, we keep track of the states of a number of persistent chains or “fantasy particles”. Each
persisitent chain has its hidden and visible states updated one (or a few) times after each weight
update. The learning signal is then the difference between the pairwise statistics measured on a mini-
batch of data and the pairwise statistics measured on the persistent chains. Typically the number of
persistent chains is the same as the size of a mini-batch, but there is no good reason for this. The
persistent chains mix surprisingly fast because the weight-updates repel each chain from its current
state by raising the energy of that state (Tieleman and Hinton, 2009).

When using persistent CD, the learning rate typically needs to be quite a lot smaller and the
early phase of the learning is much slower in reducing the reconstruction error. In the early phase of
learning the persistent chains often have very correlated states, but this goes away with time. The final
reconstruction error is also typically larger than with CD1 because persistent CD is, asymptotically,
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performing maximum likelihood learning rather than trying to make the distribution of the one-step
reconstructions resemble the distribution of the data. Persistent CD learns significantly better models
than CD1 or even CD10 (Tieleman, 2008) and is the recommended method if the aim is to build the
best density model of the data.

Persistent CD can be improved by adding to the standard parameters an overlay of “fast weights”
which learn very rapidly but also decay very rapidly (Tieleman and Hinton, 2009). These fast weights
improve the mixing of the persistent chains. However, the use of fast weights introduces yet more
meta-parameters and will not be discussed further here.

15 Displaying what is happening during learning

There are many ways in which learning can go wrong and most of the common problems are easy
to diagnose with the right graphical displays. The three types of display described below give much
more insight into what is happening than simply monitoring the reconstruction error.

Histograms of the weights, the visible biases and the hidden biases are very useful. In addition, it
is useful to examine histograms of the increments to these parameters when they are updated, though
it is wasteful to make these histograms after every update.

For domains in which the visible units have spatial or temporal structure (e.g. images or speech)
it is very helpful to display, for each hidden unit, the weights connecting that hidden unit to the
visible units. These “receptive” fields are a good way of visualizing what features the hidden units
have learned. When displaying the receptive fields of many hidden units it can be very misleading to
use different scales for different hidden units. Gray-scale displays of receptive fields are usually less
pretty but much more informative than false colour displays.

For a single minibatch, it is very useful to see a two-dimensional, gray-scale display with a range
of [0,1] that shows the probability of each binary hidden unit on each training case in a mini-batch10.
This immediately allows you to see if some hidden units are never used or if some training cases
activate an unusually large or small number of hidden units. It also shows how certain the hidden
units are. When learning is working properly, this display should look thoroughly random without
any obvious vertical or horizontal lines. Histograms can be used instead of this display, but it takes
quite a few histograms to convey the same information.

16 Using RBM’s for discrimination

There are three obvious ways of using RBMs for discrimination. The first is to use the hidden
features learned by the RBM as the inputs for some standard discriminative method. This will not
be discussed further here, though it is probably the most important way of using RBM’s, especially
when many layers of hidden features are learned unsupervised before starting on the discriminative
training.

The second method is to train a separate RBM on each class. After training, the free energy of a
test vector, t, is computed (see subsection 16.1)for each class-specific RBM. The log probability that
the RBM trained on class c assigns to the test vector is given by:

log p(t|c) = −Fc(t)− logZc (20)
10If there are more than a few hundred hidden units, just use a subset of them.
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where Zc is the partition function of that RBM. Since each class-specific RBM will have a different,
unknown partition function, the free energies cannot be used directly for discrimination. However, if
the number of classes is small it is easy to deal with the unknown log partition functions by simply
training a “softmax” model (on a separate training set) to predict the class from the free energies of
all of the class specific RBMs:

log p(class = c|t) =
e−Fc(t)−log Ẑc∑
d e
−Fd(t)−log Ẑd

(21)

where the Ẑ are parameters that are learned by maximum likleihood training of the softmax. Of
course, equation 21 can also be used to learn the weights and biases of each RBM but this requires
a lot of data to avoid overfitting. Combining the discriminative gradients for the weights and biases
that come from equation 21 with the approximate gradients that come from contrastive divergence
will often do better than either method alone. The approximate gradient produced by contrastive
divergence acts as a strong regularizer to prevent overfitting and the discriminative gradient ensures
that there is some pressure to use the weights and biases in a way that helps discrimination.

The third method is to train a joint density model using a single RBM that has two sets of visible
units. In addition to the units that represent a data vector, there is a “softmax” label unit that
represents the class. After training, each possible label is tried in turn with a test vector and the
one that gives lowest free energy is chosen as the most likely class. The partition function is not a
problem here, since it is the same for all classes. Again, it is possible to combine discriminiative and
generative training of the joint RBM by using discriminative gradients that are the derivatives of the
log probability of the correct class (Hinton, 2007):

log p(class = c|t) =
e−Fc(t)∑
d e
−Fd(t)

(22)

16.1 Computing the free energy of a visible vector

The free energy of visible vector v is the energy that a single configuration would need to have in
order to have the same probability as all of the configurations that contain v:

e−F (v) =
∑
h

e−E(v,h) (23)

It is also given by the expected energy minus the entropy:

F (v) = −
∑

i

viai −
∑

j

pjxj +
∑

j

(pj log pj + (1− pj) log(1− pj)) (24)

where xj = bj +
∑

i viwij is the total input to hidden unit j and pj = σ(xj) is the probability that
hj = 1 given v. A good way to compute F(v) is to use yet another expression for the free energy:

F (v) = −
∑

i

viai −
∑

j

log(1 + exj ) (25)

17 Dealing with missing values

In a directed belief net it is very easy to deal with missing values for visible variables. When performing
inference, a missing value that is at the receiving end of a directed connection has no effect on the
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units that send connections to it. This is not true for the undirected connections used in an RBM.
To perform inference in the standard way, the missing value must first be filled in and there are at
least two ways to do this.

A particularly simple type of missing value occurs when learning a joint density for data in which
each training case is composed of a vector v such as an image plus a single discrete label. If the label
is missing from a subset of the cases, it can be Gibbs sampled from its exact conditional distribution.
This is done by computing the free energy (see section 16.1) for each possible value of the label and
then picking label l with probability proportional to exp(−F (l,v). After this, the training case is
treated just like a complete training case.

For real-valued visible units, there is a different way to impute missing values that still works well
even if several values are missing from the same training case (Hinton et al., 2006b). If the learning
cycles through the training set many times, the missing values can be treated in just the same way as
the other parameters. Starting with a sensible initial guess, a missing value is updated each time the
weights are updated, but possibly using a different learning rate. The update for the missing value
for visible unit i on training case c is:

∆vc
i = ε

(
∂F

∂v̂c
i

− ∂F

∂vc
i

)
(26)

where vc
i is the imputed value and v̂c

i is the reconstruction of the imputed value. Momentum can
be used for imputed values in just the same way as it is used for the usual parameters.

There is a more radical way of dealing with missing values that can be used when the number of
missing values is very large. This occurs, for example, with user preference data where most users
do not express their preference for most objects (Salakhutdinov et al., 2007). Instead of trying to
impute the missing values, we pretend they do not exist by using RBM’s with different numbers of
visible units for different training cases. The different RBMs form a family of different models with
shared weights. Each RBM in the family can now do correct inference for its hidden states, but the
tying of the weights means that they may not be ideal for any particular RBM. Adding a visible unit
for a missing value and then performing correct inference that integrates out this missing value does
not give the same distribution for the hidden units as simply ommitting the visible unit which is why
this is a family of models rather than just one model. When using a family of models to deal with
missing values, it can be very helpful to scale the hidden biases by the number of visible units in the
RBM (Salakhutdinov and Hinton, 2009).
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