
Using Pairs of Data-Points to De�ne

Splits for Decision Trees

Geo�rey E. Hinton and Michael Revow

Department of Computer Science
University of Toronto

Toronto, Ontario, M5S 1A4, Canada
hinton@cs.toronto.edu, revow@cs.toronto.edu

Abstract

Conventional binary classi�cation trees such as CART either split
the data using axis-aligned hyperplanes or they perform a compu-
tationally expensive search in the continuous space of completely
unrestricted hyperplanes. We show that the limitations of the for-
mer can be overcome without resorting to the latter. For every
pair of training data-points, there is one hyperplane that is orthog-
onal to the line joining the data-points and bisects this line. In a
comparison on a suite of 12 datasets we found that this method of
generating candidate splits outperformed axis-aligned splits, par-
ticularly when the training sets are data limited.

1 Introduction

Binary decision trees come in many 
avours, but they all rely on splitting the set of
k-dimensional data-points at each internal node into two disjoint sets. Each split is
usually performed by projecting the data onto some direction in the k-dimensional
space and then thresholding the scalar value of the projection. There are two
commonly used methods of picking a projection direction. The simplest method is
to restrict the allowable directions to the k axes de�ned by the data. This is the
default method used in CART [1]. If this set of directions is too restrictive, the
usual alternative is to search general directions in the full k-dimensional space or
general directions in a space de�ned by a subset of the k axes.

Projections onto one of the k axes de�ned by the the data have many advantages
over projections onto a more general direction:



1. It is very e�cient to perform the projection for each of the data-points. We
simply ignore the values of the data-point on the other axes.

2. For N data-points, it is feasible to consider all possible axis-aligned pro-
jections and thresholds because there are only k possible projections and
for each of these there are at most N � 1 threshold values that yield dif-
ferent splits. Selecting from a �xed set of projections and thresholds is
simpler than searching the k-dimensional continuous space of hyperplanes
that correspond to unrestricted projections and thresholds.

3. Since a split is selected from only about Nk candidates, it takes only about
log

2
N + log

2
k bits to de�ne the split. So it is possible to use many more

of these axis-aligned splits before over�tting occurs than if we use more
general hyperplanes. If the data-points are in general position, each subset
of size k de�nes a di�erent hyperplane so there are N !=k!(N�k)! distinctly
di�erent hyperplanes and if k << N it takes approximately k log

2
N bits

to specify one of them.

For some data sets, the restriction to axis-aligned projections is too limiting. This
is especially true for high-dimensional data, like images, in which there are strong
correlations between the intensities of neighboring pixels. In such cases, many axis-
aligned boundaries may be required to approximate a planar boundary that is not
axis-aligned, so it is natural to consider unrestricted projections and some versions
of the CART program allow this. Unfortunately this greatly increases the computa-
tional burden and the search may get trapped in local minima. Also signi�cant care
must be exercised to avoid over�tting. There is, however, an intermediate approach
which allows the projections to be non-axis-aligned but preserves all three of the
attractive properties of axis-aligned projections: It is trivial to decide which side of
the resulting hyperplane a given data-point lies on; the hyperplanes can be selected
from a modest-sized set of sensible candidates; and hence many splits can be used
before over�tting occurs because only a few bits are required to specify each split.

2 Using two data-points to de�ne a projection

Each pair of data-points de�nes a direction in the data space. This direction is a
plausible candidate for a projection to be used in splitting the data, especially if
it is a classi�cation task and the two data-points are in di�erent classes. For each
such direction, we could consider all of the N � 1 possible thresholds that would
give di�erent splits, or, to save time and reduce complexity, we could only consider
the threshold value that is halfway between the two data-points that de�ne the
projection. If we use this threshold value, each pair of data-points de�nes exactly
one hyperplane and we call the two data-points the \poles" of this hyperplane.

For a general k-dimensional hyperplane it requires O(k) operations to decide
whether a data-point, C, is on one side or the other. But we can save a factor
of k by using hyperplanes de�ned by pairs of data-points. If we already know the
distances of C from each of the two poles, A;B then we only need to compare these
two distances (see �gure 1). 1 So if we are willing to do O(kN2) operations to

1If the threshold value is not midway between the poles, we can still save a factor of k
but we need to compute (d2AC � d2BC)=2dAB instead of just the sign of this expression.



A

B

C

Figure 1: A hyperplane orthogonal to the line joining points A and B. We can
quickly determine on which side a test point, C, lies by comparing the distances
AC and BC.

compute all the pairwise distances between the data-points, we can then decide in
constant time which side of the hyperplane a point lies on.

As we are building the decision tree, we need to compute the gain in performance
from using each possible split at each existing terminal node. Since all the terminal
nodes combined contain N data-points and there are N (N�1)=2 possible splits this
takes time O(N3) instead of O(kN3). So the work in computing all the pairwise
distances is trivial compared with the savings.

Using the Minimum Description Length framework, it is clear that pole-pair splits
can be described very cheaply, so a lot of them can be used before over�tting occurs.
When applying MDL to a supervised learning task we can assume that the receiver
gets to see the input vectors for free. It is only the output vectors that need to be
communicated. So if splits are selected from a set of N (N�1)=2 possibilities that is
determined by the input vectors, it takes only about 2 log

2
N bits to communicate

a split to a receiver. Even if we allow all N possible threshold values along the
projection de�ned by two data-points, it takes only about 3 log

2
N bits. So the

number of these splits that can be used before over�tting occurs should be greater
by a factor of about k=2 or k=3 than for general hyperplanes. Assuming that
k << N , the same line of argument suggests that even more axis-aligned planes
can be used, but only by a factor of about 2 or 3.

To summarize, the hyperplanes planes de�ned by pairs of data-points are computa-
tionally convenient and seem like natural candidates for good splits. They overcome
the major weakness of axis-aligned splits and, because they can be speci�ed in a
modest number of bits, they may be more e�ective than fully general hyperplanes.

3 Building the decision tree

We want to compare the \pole-pair" method of generating candidate hyperplanes
with the standard axis-aligned method and the method that uses unrestricted hy-
perplanes. We can see no reason to expect strong interactions between the method
of building the tree and the method of generating the candidate hyperplanes, but
to minimize confounding e�ects we always use exactly the same method of building
the decision tree.



We faithfully followed the method described in [1], except for a small modi�ca-
tion where the code that was kindly supplied by Leo Breiman departed from the
description in the book.

Training a decision tree involves two distinct stages. In the �rst stage, nodes are
repeatedly split until each terminal node is \pure" which means that all of its data-
points belong to the same class. The pure tree therefore �ts the training data
perfectly. A node is split by considering all candidate decision planes and choosing
the one that maximizes the decrease in impurity. Breiman et. al recommend using
the Gini index to measure impurity. 2 If p(jjt) is the probability of class j at node
t, then the Gini index is 1�

P
j p

2(jjt).

Clearly the tree obtained at the end of the �rst stage will over�t the data and so in
the second stage the tree is pruned by recombining nodes. For a tree, Ti, with jTij
terminal nodes we consider the regularized cost:

C = E + �jTij (1)

where E is the classi�cation error and � is a pruning parameter. In \weakest-link"
pruning the terminal nodes are eliminated in the order which keeps (1) minimal as
� increases. This leads to a particular sequence, T = fT1; T2; :::Tkg of subtrees,
in which jT1j > jT2j::: > jTkj. We call this the \main" sequence of subtrees because
they are trained on all of the training data.

The last remaining issue to be resolved is which tree in the main sequence to use.
The simplest method is to use a separate validation set and choose the tree size
that gives best classi�cation on it. Unfortunately, many of the data sets we used
were too small to hold back a reserved validation set. So we always used 10-fold
cross validation to pick the size of the tree. We �rst grew 10 di�erent subsidiary
trees until their terminal nodes were pure, using 9=10 of the data for training each of
them. Then we pruned back each of these pure subsidiary trees, as above, producing
10 sequences of subsidiary subtrees. These subsidiary sequences could then be used
for estimating the performance of each subtree in the main sequence. For each of
the main subtrees, Ti, we found the largest tree in each subsidiary sequence that
was no larger than Ti and estimated the performance of Ti to be the average of the
performance achieved by each subsidiary subtree on the 1=10 of the data that was
not used for training that subsidiary tree. We then chose the Ti that achieved the
best performance estimate and used it on the test set. Results are expressed as the
ratio of the test error rate to the baseline rate which is the error rate of a tree with
only a single terminal node.

4 The Data Sets

Eleven data sets were selected from the database of machine learning tasks main-
tained by the University of California at Irvine (see the appendix for a detailed
description of the data sets used). Except as noted in the appendix, the data sets
were used exactly in the form of the distribution as of June 1993. All data sets have

2Impurity is not an information measure but, like an information measure, it is mini-
mized when all the nodes are pure and maximized when all classes at each node have equal
probability.



only continuous attributes and there are no missing values.3 The synthetic \waves"
example [1] was added as a twelfth data set.

Table 1 gives a brief description of the data sets. The �rst column gives a two
letter abbreviation for the dataset. The following columns give the total number of
instances, number of classes and number of attributes respectively.

Database Size Classes Attributes
(N) (c) (k)

IR 150 3 4
TR 215 3 5
LV 345 2 6
DB 768 2 8
BC 683 2 9
GL 163 2 9
VW 990 11 10
WN 178 3 13
VH 846 4 18
WV 2100 3 21
IS 351 2 34
SN 208 2 60

Table 1: Data sets used in comparisons

A few data sets in the original distribution have designated training and testing
subsets while others do not. To ensure regularity among data sets, we pooled all
usable examples in a given data set, randomized the order in the pool and then
divided the pool into training and testing sets. Two divisions were considered.
The large training division had 2

3
of the the pooled examples allocated data to the

training set and 1

3
in the testing set. The small training division had 1

3
of the data

in the training set and 2

3
in the testing set.

5 Results

Table 2 give the error rates, expressed as a percentage of the base rates for both
the large and small divisions of the data.

In both the small and large training divisions of the datasets, the pole pair method
had lower error rates than axis aligned or linear cart in the majority of datasets
tested. While these results are interesting, they do not provide any measure of con-
�dence that one method performs better or worse than another. Since all methods
were trained and tested use the same data, we can perform a two-tailed McNemar

test [2] on the predictions for pairs of methods. The resulting P-values are given in
table 3. Again the conclusion is that neither axis aligned nor linear cart signi�cantly
outperform the pole pair method in the majority of cases.

3In the BC dataset we removed the case identi�cation number attribute and had to
delete 16 cases with missing values.



Database Small Train Large Train
cart linear pole cart linear pole

IR 14.3 14.3 4.3 5.6 5.6 5.6
TR 36.6 26.8 14.6 33.3 33.3 20.8
LV 88.9 100.0 100.0 108.7 87.0 97.8
DB 85.8 82.2 87.0 69.7 69.7 59.6
BC 12.8 14.1 8.3 15.7 12.0 9.6
GL 62.5 81.3 89.6 46.4 46.4 35.7
VW 31.8 37.7 30.0 21.4 26.2 19.2
WN 17.8 13.7 11.0 14.7 11.8 14.7
VH 42.5 46.5 44.2 36.2 43.9 40.7
WV 28.9 25.8 24.3 30.6 24.8 26.6
IS 44.0 31.0 41.7 21.4 23.8 42.9
SN 65.2 71.2 48.5 48.4 45.2 48.4

Table 2: Relative error rates expressed as a percentage of the baseline rate on the
small and large training sets.

6 Discussion

In section 2, we subtly motivated the pole pair method as choosing a decision
hyperplane so that the poles normal to the decision plane are representative of
the classes that the hyperplane must di�erentiate. This implies that candidate
hyperplanes should be generated by considering only those pairs whose poles come
from di�erent classes. An alternative strategy is to disregard class membership, and
consider all possible pole pairs.

Another variant of the method arises depending on whether the inputs are scaled
(for example so that all input dimensions have the same variance). Axis aligned
CART is indi�erent to scalings along the dimensions, but clearly the pole pair
method (and linear CART) are scale dependent. We investigated both variations of
the basic method, but found that the results were very similar to the basic method
presented above.

Table 3 suggest that pole pair method is only superior to the conventional forms
of CART only when there is a limited amount of training data available. This
conclusion may be misleading as the size of the test sets in the large training set
case was much smaller than with the small training set and so the result may be
simply be a consequence of the di�culty in demonstrating signi�cant di�erence with
limited amount of testing data.

To summarize, we have demonstrated that the pole pair method is a simple, e�ective
method for choosing a projection direction at binary tree nodes. It may also be
an e�ective way for choosing a projection direction (ie the incoming weights) for
continuous valued units in a neural network.



Small Training

IR TR LV DB BC GL VW WN VH WV IS SN

Axis-Pole .02 .02 .18 .46 .06 .02 .24 .15 .33 .07 .00 .44

Linear-Pole .02 .13 1.0 .26 .02 .30 .00 .41 .27 .02 .17 .09

Axis-Linear 1.0 .06 .18 .30 .40 .00 .00 .31 .08 .32 .03 .02

Large Training

IR TR LV DB BC GL VW WN VH WV IS SN

Axis-Pole .75 .23 .29 .04 .11 .29 .26 .69 .14 .60 .08 .02

Linear-Pole .75 .23 .26 .04 .25 .30 .01 .50 .25 .50 .26 .05

Axis-Linear 1.0 1.0 .07 1.0 .29 .69 .06 .50 .03 .50 .01 .50

Table 3: P-Values using a two-tailed McNemar test on the small (top) and large

(bottom) training sets. Each row gives P-values when the methods in the left most
column are compared. A signi�cant di�erence at the P = 0:05 level is indicated by
printing the P-value in italic (bold) face depending on whether the �rst (second)
mentioned method in the �rst column had superior performance. For example, in
the top most row, the pole pair method was signi�cantly better than the axis aligned
method on the TR dataset.

A Databases used in the study

IR - Iris plant database. Predict the class of iris plant. A classical but simple
domain.

TR - Thyroid gland data. Classify patient thyroids as normal, hypothyroidism or
hyperthyroidism based on serum, hormonal, etc levels.

LV - BUPA liver disorders. Predict normality/abnormality of a liver from blood
tests.

DB - Pima Indians Diabetes. Predict presence/absence of diabetes in adult females
of Pima Indian heritage.

BC - Breast cancer database from the University of Wisconsin Hospitals, Madison
from Dr. William H. Wolberg [3]. Classify as benign/malignant cases based on cell
measurements. The 16 cases having missing values were removed for the experi-
ments reported here. The sample code number attribute included in the database
was not used.

GL - Glass identi�cation database. Predict type of glass from composition and
optical properties. In these experiments we only considered the classi�cation into

oat/non
oat processed glass, ignoring other types of glass.

VW - Vowel recognition. Classify 11 vowel sounds from log area parameters of
the input speech waveform. The original task was to perform speaker independent
vowel recognition. However the process of pooling all training and testing data
resulted in the task no longer being speaker independent.



WN - Wine recognition. Predict wine class from a chemical analysis.

VH - Vehicle silhouettes. Discriminate between model cars and buses based on
features extracted from silhouettes images.

WV - Waveform example. This is the only synthetic database and is taken directly
from [1].

IS - Johns Hopkins University Ionosphere database. Binary classi�cation task as to
whether radar pulses encountered free electrons in the ionosphere or not based on
the autocorrelation of the received signals.

SN - Sonar, Mines versus. Rocks. Classify returned sonar signals as re
ected from
metal or rock cylinders based on the energy of the sonar signal in di�erent frequency
bands. In these experiments we did not control for aspect-angle.

Acknowledgments

We thank Leo Breiman for kindly making his CART code available to us. This
research was funded by the Institute for Robotics and Intelligent Systems and by
NSERC. Hinton is the Noranda fellow of the Canadian Institute for Advanced Re-
search.

References

References

[1] L. Breiman, J. H. Freidman, R. A. Olshen, and C. J. Stone. Classi�cation and

regression trees. Wadsworth international Group, Belmont, California, 1984.

[2] J. L. Fleiss. Statistical methods for rates and proportions. Second edition. Wiley,
1981.

[3] O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear program-
ming. SIAM News, 23(5):1 & 18, 1990.


